Markov Decision Processes

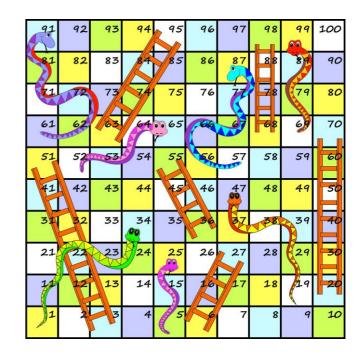
CS 486/686: Introduction to Artificial Intelligence

Outline

- Markov Chains
- Discounted Rewards
- Markov Decision Processes
 - Value Iteration
 - Policy Iteration

Markov Chains

- Simplified version of snakes and ladders
- Start at state 0, roll dice, and move the number of positions indicated on the dice.
 If you land on square 4 you teleport to square 7
- Winner is the one who gets to 11 first



11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain

- Discrete clock pacing interaction of agent with environment, t=0,1,2,...
- Agent can be in one of a set of states S={0,1,...,11}
- Initial state s₀=0
- If an agent is in state s_t at time t, the state at time s_{t+1} is determined *only by the role of the dice at time t*

11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain

- The probability of the next state s_{t+1} does not depend on how the agent got to the current state s_t (Markov Property)
- Example: Assume at time t, agent is in state 2
 - $P(s_{t+1}=3 | s_t)=1/6$
 - $P(s_{t+1}=7 | s_t)=1/3$
 - $P(s_{t+1}=5 \mid s_t)=1/6$, $P(s_{t+1}=6 \mid s_t)=1/6$, $P(s_{t+1}=8 \mid s_t)=1/6$
 - Game is completely described by the *probability distribution of the next state given* the current state

11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain: Formal Representation

- State space S={0,1,2,3,4,5,6,7,8,9,10,11}
- Transition probability matrix P

 P_{ij} =Prob(Next= s_i | This= s_i)

Discounted Rewards

- An assistant professor gets paid, say, 30K per year
- How much, in total, will the assistant professor earn in their lifetime?

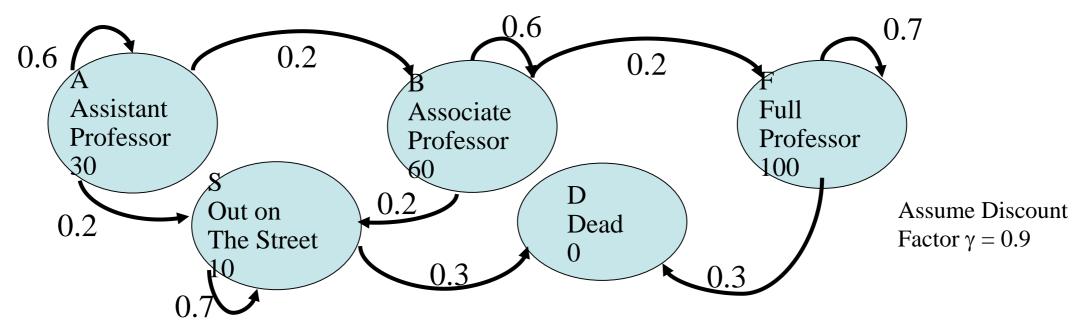
Discounted Rewards

- A reward in the future is not worth quite as much as a reward now
 - Because of chance of inflation
 - Because of chance of obliteration
- Example:
 - Being promised \$10000 next year is worth only 90% as much as receiving \$10000 now
- Assuming payment n years in the future is worth only (0.9)ⁿ of payment now, what is the assistant professor's Future Discounted Sum of Rewards?

Discount Factors

- Used in economics and probabilistic decision-making all the time
- Discounted sum of future awards using discount factor γ is
 - Reward now + γ (reward in 1 time step) + γ^2 (reward in 2 time steps) + γ^3 (reward in 3 time steps) + ...

The Academic Life



- U_A=Expected discounted future rewards starting in state A
- U_B=Expected discounted future rewards starting in state B
- U_F=Expected discounted future rewards starting in state F
- U_S=Expected discounted future rewards starting in state S
- U_D=Expected discounted future rewards starting in state D

Markov System of Rewards

- Set of states S={s₁,s₂,...,s_n}
- Each state has a reward {r₁,r₂,...,r_n}
- Discount factor γ, 0<γ<1
- Transition probability matrix, P

$$P = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix} \qquad P_{ij} = \text{Prob}(\text{Next} = s_j \mid \text{This} = s_i)$$

On each step:

- Assume state is si
- Get reward ri
- Randomly move to state s_i with probability P_{ij}
- All future rewards are discounted by γ

Solving a Markov Process

 Write U*(s_i) = expected discounted sum of future rewards starting at state s_i

-
$$U^*(s_i)=r_i+\gamma(P_{i1}U^*(s_i)+P_{i2}U^*(s_2)+...+P_{in}U^*(s_n))$$

$$\bar{\mathbf{U}} = \begin{pmatrix} U^*(S_1) \\ U^*(S_2) \\ \vdots \\ U^*(S_n) \end{pmatrix} \qquad \bar{\mathbf{R}} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} \qquad \bar{\mathbf{P}} = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{2n} & \cdots & P_{nn} \end{pmatrix}$$

Closed form: $U=(I-\gamma P)^{-1}R$

Solving a Markov System using Matrix Inversion

• Upside:

- You get an exact number!

Downside:

- If you have *n* states you are solving an *n* by *n* system of equations!

Value Iteration

Define

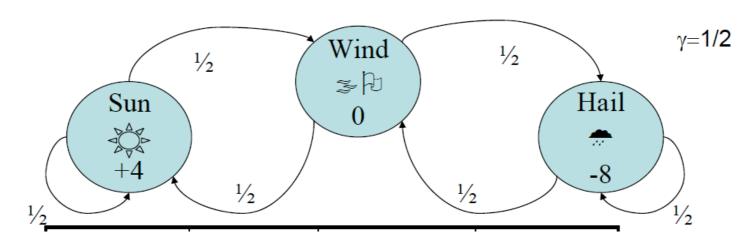
- U¹(s_i)=Expected discounted sum of rewards over next 1 time step
- U²(s_i)=Expected discounted sum of rewards over next 2 time steps
- U³(s_i)=Expected discounted sum of rewards over next 3 time steps
- ...
- U^k(s_i)=Expected discounted sum of rewards over next k time steps

$$U^{1}(S_{i})=r_{i}$$

$$U^{2}(S_{i})=r_{i}+\gamma\sum_{j=1}^{n}p_{ij}U^{1}(s_{j})$$

$$U^{k+1}(S_{i})=r_{i}+\gamma\sum_{j=1}^{n}p_{ij}U^{k}(s_{j})$$

Example: Value Iteration



k	U ^k (sun)	U ^k (wind)	U ^k (hail)
1			
2			
3			
4			
5			

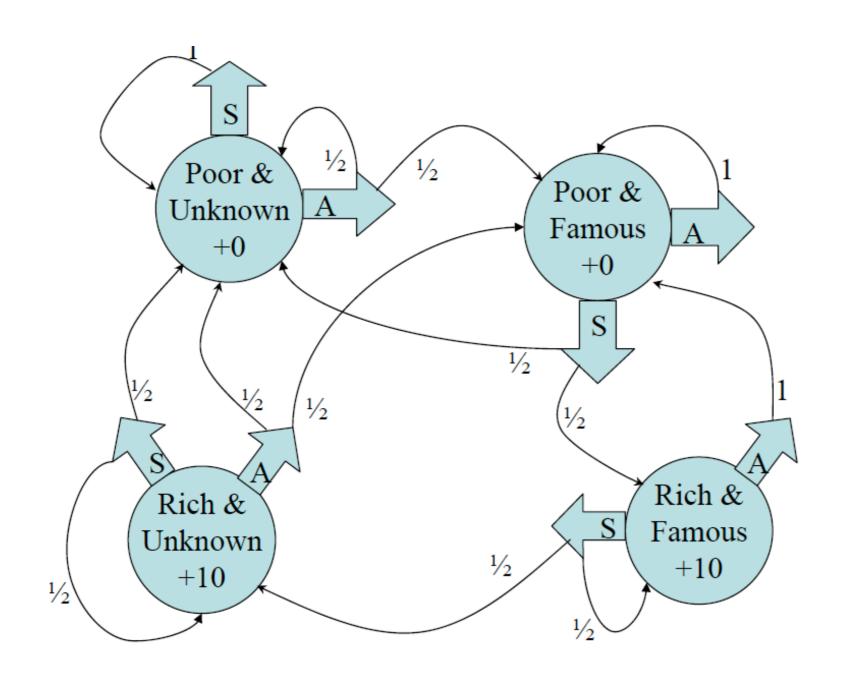
Value Iteration

$$U^1=R$$
, $U^2=R+\gamma PU^1$, $k=2$
While $\max_{s_i}|U^k(s_i)-U^{k-1}(s_i)|>\epsilon$
 $k=k+1$
 $U^k=R+\gamma PU^{k-1}$

Note: As $k \rightarrow \infty$, $U^k(s_i) \rightarrow U^*(s_i)$

This is often faster than matrix inversion

Markov Decision Process



$$\gamma = 0.9$$

You own a company

In every state
you must
choose between
Saving money or
Advertising

Markov Decision Process

- Set of states S={s₁,s₂,...,s_n}
- Each state has a reward {r₁,r₂,...,r_n}
- Set of actions {a₁,...,a_m}
- Discount factor γ, 0<γ<1
- Transition probability function, P

$$P_{ij}^{k}$$
 = Prob(Next = s_{ij} This = s_{ij} and you took action a_{ik})

On each step:

- Assume state is si
- Get reward ri
- Choose action a_k
- Randomly move to state s_j with probability P_{ij}^k
- All future rewards are discounted by γ

Planning in MDPs

- The goal of an agent in an MDP is to be rational
 - Maximize its expected utility
 - But maximizing immediate utility is not good enough
 - Great action now can lead to certain death tomorrow
- Goal is to maximize its long term reward
 - Do this by finding a policy that has high return

Policies

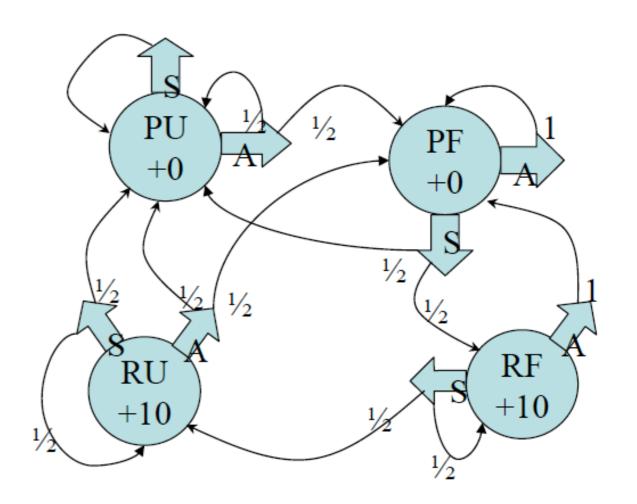
 A policy is a mapping from states to actions

Policy 1

PU	S
PF	Α
RU	S
RF	Α

Policy 2

PU	Α
PF	Α
RU	Α
RF	Α



Fact

- For every MDP there exists an optimal policy
- It is the policy such that for every possible start state, there is no better option that to follow the policy

Our goal: To find this policy!

Finding the Optimal Policy

- Naive approach:
 - Run through all possible policies and select the best

Optimal Value Function

- Define V*(s_i) to be the expected discounted future rewards
 - Starting from state s_i, assuming we use the optimal policy
- Define V^t(s_i) to be the possible sum of discounted rewards I can get if I start at state s_i and live for t time steps
 - Note: $V^1(s_i)=r_i$

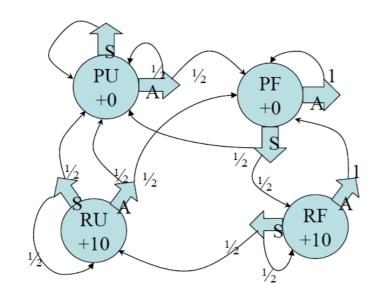
Bellman's Equation

$$V^{t+1}(s_i)=\max_k [r_i+\gamma \sum_{j=1}^n P_{ij}^k V^t(s_j)]$$

- Now we can do Value Iteration!
 - Compute V¹(s_i) for all i
 - Compute V²(s_i) for all i
 - ...
 - Compute V^t(s_i) for all i
 - Until convergence max_i|V^{t+1}(s_i)-V^t(s_i)|<ε

aka Dynamic Programming

Example



$$\gamma = 0.9$$

t	V ^t (PU)	V ^t (PF)	V ^t (RU)	V ^t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	8.55	16.53	25.08
4	4.76	12.20	18.35	28.72
5	7.63	15.07	20.40	31.18
6	10.22	17.46	22.61	33.21

Finding the Optimal Policy

- Compute V*(s_i) for all i using value iteration
- Define the best action in state s_i as

$$argmax_k[r_i+\gamma\sum_jP_{ij}^kV^*(s_j)]$$

Policy Iteration

There are other ways of finding the optimal policy

- Policy Iteration
 - Alternates between two steps
 - **Policy evaluation**: Given π , compute $V_i = V^{\pi}$
 - **Policy improvement**: Calculate a new π_{i+1} using 1-step lookahead

Policy Iteration Algorithm

- Start with random policy π
- Repeat until you stop changing the policy
 - Compute long term reward for each s_i , using π
 - For each state si

$$\max_{k} \left[r_i + \gamma \sum_{j} P_{i,j}^k V^*(s_j) \right] > r_i + \gamma \sum_{j} P_{i,j}^{\pi(s_i)} V^*(s_j)$$

Then

$$\pi(s_i) \leftarrow \arg\max_k \left[r_i + \gamma \sum_j P_{i,j}^k V^*(s_j) \right]$$

Summary

- MDPs describe planning tasks in stochastic worlds
- Goal of the agent is to maximize its expected return
- Value functions estimate the expected return
- In finite MDPs there is a unique optimal policy
 - Dynamic programing can be used to find it

Summary

- Good news
 - finding optimal policy is polynomial in number of states
- Bad news
 - finding optimal policy is polynomial in number of states
- Number of states tends to be very very large
 - exponential in number of state variables
- In practice, can handle problems with up to 10 million states

Extensions

- In "real life" agents may not know what state they are in
 - Partial observability
- Partially Observable MDPs (POMDPs)
 - Set of states
 - Set of actions
 - Each state has a reward
 - Transition probability function $P(s_t | a_{t-1}, s_{t-1})$
 - Set of observations O={o₁,...,o_k}
 - Observation model P(ot | st)

POMDPs

- Agent maintains a belief state, b
 - Probability distribution over all possible states
 - b(s) is the probability assigned to state s
- Insight: optimal action depends only on agent's current belief state
 - Policy is a mapping from belief states to actions

POMDPs

- Decision cycle of an agent
 - Given current b, execute action $a=\pi^*(b)$
 - Receive observation o
 - Update current belief state
 - $b'(s')=\alpha O(o|s')\Sigma sP(s'|a,s)b(s)$
- Possible to write a POMDP as an MDP by summing over all actual states s' that an agent might reach
 - $P(b'|a,b)=\Sigma_o P(b'|o,a,b)\Sigma_{s'}O(o|s')\Sigma_s P(s'|a,s)b(s)$

POMDPs

- Complications
 - Our (new) MDP has a continuous state space
 - In general, finding (approximately) optimal policies is difficult (PSPACE-hard)
 - Problems with even a few dozen states are often infeasible
 - New techniques, take advantage of structure,....