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Incomplete Data

*So far we have seen problems where
*VValues of all attributes are known
* Learning is relatively easy

* Many real-world problems have hidden
variables
*Incomplete data
* Missing attribute values



Maximum Likelihood Learning

Learning of Bayes nets parameters
* Ov-=true, Par(v)=x = P(V=true | Par(V)=x)
* Ov=true, Par(v)=x =(#Insts V=true)/(Total #V=x)

Assumes all attributes have values
* What if some values are missing?



Naive Solutions

*lgnore examples with missing attribute
values
* What if all examples have missing attribute
values?
*lgnore hidden variables
* Model might become much more complex



Hidden Variables: Heart disease
example

(O
Y

(a) (b)

a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)



“Direct” ML

Maximize likelihood directly where E are the
evidence variables and Z are the hidden
variables

hyr = arg max P(E|h)

= argmf,x;P(E, Z|h)
= argmax ; 1:[ CPT(V;)

= argmax log > H CPT(V;)



Expectation-Maximization (EM)

If we knew the missing values computing
hme is trivial

1. Guess hmt

2. lterate
Expectation: based on hme compute expectation of
(missing) values

Maximization: based on expected (missing) values
compute new hmt



Expectation-Maximization (EM)

Formally
— Approximate maximum likelihood
— |teratively compute:

- h.,,=argmax, 2, P(Z| h,e)log P(e,Z|hi)
-
Y
Expectation
\—

y

Maximization



EM

Log inside can linearize the product

hii1 = arg mﬁx;P(Zm, e)log P(e, Z|h)

= P(Z|h,e)l PT;
argm}?x; (Z|h,e) ogI;[C ]

= P(Z\h ] PT,
argm}?x; (Z] ,e); og CPT;
Monotonic improvement of likelihood

P(elh;y1) = P(e|h;)



Example

* Assume we have two coins, A and B
*The probability of getting heads with A is Oa
*The probability of getting heads with B is Oz

*We want to find 0a and Bs by performing a
number of trials

Example from S. Zafeiriohu, Advanced Statistical Machine Learning, Imperial College



Example

Coin A and Coin B

*HTTTHHTHTH
*HHHHTHHHHH
*HTHHHHHTHH
*HTHTTTHHTT
*THHHTHHHTH

CoinA |CoinB
5H,5T
OH,1T
8H,2T
4H,6T
7H,3T
24H,6T  |9H,11T
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Example

CoinA |CoinB
5H,5T
9H,1T
8H,2T
A4H,6T
7H,3T
24H,6T  |9H,11T

24

T 24+6

9+

11

0.8

= 0.45



Example

Now assume we do *HTTTHHTHTH
not know which coin *HHHHTHHHHH
was used in which trial *HTHHHHHTHH

(hidden variable) *HTHTTTHHTT
*THHHTHHHTH



Example

Initialization: 6% = 0.60

6% = 0.50

E Step: Compute the Expected counts of Heads and Tails

Trial LHTTTHHTHTH

P(Trial 1|4)P(A)

P(A|Trial 1) = S e cnp, P(Txial 10)P() = 0.45 Coin A Coin B
2.2 H, 2.8 H,
P(B|Trial 1) = — DAl UB)PB) o 2.2T 2.8T

> ica.m P(Trial 1]7)P(3)
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Example

HTTTHHTHTH(0.55
A, 0.45 B)

HHHHTHHHHH(0.80
A, 0.20 B)

HTHHHHHTHH(0.73
A, 0.27 A)

HTHTTTHHTT(0.35
A, 0.65 B)

THHHTHHHTH(0.65
A, 0.35 B)

Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T
7.2H, 0.8T 1.8H, 0.2T
5.9H, 1.5T 2.1H, 0.5T
1.4H, 2.1T 2.6H, 3.9T
4.5H, 1.9T 2.5H, 1.1T
21.3H, 8.6T 11.7H, 8.4T




Example

M Step: Compute parameters based on expected counts

Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T
7.2H, 0.8T 1.8H, 0.2T
5.9H, 1.5T 2.1H, 0.5T
1.4H, 2.1T 2.6H, 3.9T
4.5H, 1.9T 2.5H, 1.1T
21.3H, 8.6T 11.7H, 8.4T

21.3

1 _

47 91.348.6
o _ 11.7

B 117484

=0.71

= 0.58

Repeat

60 = 0.80
65 = 0.52
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EM: k-means Algorithm

Input Output
* Set of examples, E
* Input features Xa,...,Xn Function class:E-> {1,...,k} where
* val(e,X)=value of feature j class(e)=i means example e
for example e belongs to class i
* k classes

Function pval where pval(i, X;) is
the predicted value of feature X;
for each example in class i



k-means Algorithm

*Sum-of-squares error for class i and pval is

TL
> ) (pval(class(e), X;) — val(e, X;))?
eck j=1

*Goal: Final class and pval that minimizes
sum-of-squares error.



Minimizing the error

> ) (pval(class(e), X;) — val(e, X;))’

ecll 1=1

*Given class, the pval that minimizes sum-of-
square error is the mean value for that class

*Given pval, each example can be assigned to
the class that minimizes the error for that
example



k-means Algorithm

e Randomly assign the examples to classes

® Repeat the following two steps until E step does not change the
assignment of any example

— M: For each class i and feature Xj

Ze:class(e)zi Val(e? XJ)

pvalls, X;) = = = lass(e) = i1

— E: For each example e, assign e to the class that minimizes
n

Z(pval(class(e), X;) — val(e, X;))?



k-means Example

e Data set: (X,Y) pairs
-(0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4),

(3.5, 5), (4.5, 1.5), (5.2,0.7), (5.3, 1.8), (6.2,
1.7), (6.7,2.5), (8.5,9.2),(9.1,9.7), (9.5, 8.5)



Example Data
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Random Assignment to Classes
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Assign Each Example to Closest Mean
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Reassigh each example
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Properties of k-means

* An assignment is stable if both M step and E
step do not change the assighment

* Algorithm will eventually converge to a stable
local minimum

* No guarantee that it will converge to a global
minimum
*Increasing k can always decrease error until k
is the number of different examples



