Expectation Maximisation (EM)

CS 486/686: Introduction to Artificial Intelligence University of Waterloo

Incomplete Data

- •So far we have seen problems where
 - Values of all attributes are known
 - Learning is relatively easy
- Many real-world problems have hidden variables
 - Incomplete data
 - Missing attribute values

Maximum Likelihood Learning

Learning of Bayes nets parameters

- Θ_{V=true, Par(V)=x} = P(V=true | Par(V)=x)
- Θ_{V=true, Par(V)=x} =(#Insts V=true)/(Total #V=x)

Assumes all attributes have values

• What if some values are missing?

Naïve Solutions

- Ignore examples with missing attribute values
 - What if all examples have missing attribute values?
- Ignore hidden variables
 - Model might become much more complex

Hidden Variables: Heart disease example

- a) Uses a Hidden Variable, simpler (fewer CPT parameters)
- b) No Hidden Variable, complex (many CPT parameters)

"Direct" ML

Maximize likelihood directly where E are the evidence variables and Z are the hidden variables

$$h_{ML} = \arg \max_{h} P(E|h)$$

= $\arg \max_{h} \sum_{Z} P(E, Z|h)$
= $\arg \max_{h} \sum_{Z} \prod_{i} CPT(V_{i})$
= $\arg \max_{h} \log \sum_{z} \prod_{i} CPT(V_{i})$

Expectation-Maximization (EM)

If we knew the missing values computing h_{ML} is trivial

- 1. Guess h_{ML}
- 2. Iterate

Expectation: based on h_{ML} compute expectation of (missing) values **Maximization**: based on expected (missing) values

compute new h_{ML}

Expectation-Maximization (EM)

Formally

- Approximate maximum likelihood
- Iteratively compute:
- $-h_{i+1} = argmax_h \Sigma_z P(\mathbf{Z}|h_i, \mathbf{e}) \log P(\mathbf{e}, \mathbf{Z}|h_i)$

EM

Log inside can linearize the product $h_{i+1} = \arg \max_{h} \sum_{\mathbf{Z}} P(\mathbf{Z}|h, \mathbf{e}) \log P(\mathbf{e}, \mathbf{Z}|h)$ $= \arg \max_{h} \sum_{Z} P(\mathbf{Z}|h, \mathbf{e}) \log \prod_{j} \operatorname{CPT}_{j}$ $= \arg \max_{h} \sum_{Z} P(\mathbf{Z}|h, \mathbf{e}) \sum_{j} \log \mathrm{CPT}_{j}$ Monotonic improvement of likelihood $P(\mathbf{e}|h_{i+1}) \ge P(\mathbf{e}|h_i)$

- •Assume we have two coins, A and B
- •The probability of getting heads with A is θ_A
- The probability of getting heads with B is θ_{B}
- We want to find θ_A and θ_B by performing a number of trials

Example from S. Zafeiriohu, Advanced Statistical Machine Learning, Imperial College

- Coin A and Coin B
- НТТТННТНТН
- •ннннтннннн
- нтнннннтнн
- HTHTTTHHTT
- •тнннтнннтн

Coin A	Coin B
	5 H <i>,</i> 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

Coin A	Coin B
	5 H <i>,</i> 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\theta_A = \frac{24}{24+6} = 0.8$$
$$\theta_B = \frac{9}{9+11} = 0.45$$

Now assume we do not know which coin was used in which trial (hidden variable)

- •нтттннтнтн
- •ннннтннннн
- нтннннннн
- НТНТТТННТТ
- •тнннтнннтн

Initialization:
$$\theta_A^0 = 0.60$$

 $\theta_B^0 = 0.50$

E Step: Compute the Expected counts of Heads and Tails

Trial 1: H T T T H H T H T H

$$P(A|\text{Trial 1}) = \frac{P(\text{Trial 1}|A)P(A)}{\sum_{i \in \{A,B\}} P(\text{Trial 1}|i)P(i)} = 0.45$$

$$P(B|\text{Trial 1}) = \frac{P(\text{Trial 1}|B)P(B)}{\sum_{i \in \{A,B\}} P(\text{Trial 1}|i)P(i)} = 0.55$$

$$Coin A$$

$$2.2 \text{ H},$$

$$2.2 \text{ H},$$

$$2.2 \text{ T},$$

$$2.8 \text{ H},$$

$$2.2 \text{ T},$$

$$2.8 \text{ T},$$

\text{ T},$$

- HTTTHHTHTH (0.55
 A, 0.45 B)
- HHHHTHHHHH (0.80
 A, 0.20 B)
- **HTHHHHHHH** (0.73 A, 0.27 A)
- HTHTTTHHTT (0.35
 A, 0.65 B)
- **THHHTHHHTH** (0.65 A, 0.35 B)

Coin A	Coin B
2.2H, 2.2T	2.8H, 2.8T
7.2H, 0.8T	1.8H, 0.2T
5.9H <i>,</i> 1.5T	2.1H, 0.5T
1.4H, 2.1T	2.6H, 3.9T
4.5H <i>,</i> 1.9T	2.5H, 1.1T
21.3H <i>,</i> 8.6T	11.7H, 8.4T

M Step: Compute parameters based on expected counts

Coin A	Coin B
2.2H, 2.2T	2.8H, 2.8T
7.2H <i>,</i> 0.8T	1.8H, 0.2T
5.9H <i>,</i> 1.5T	2.1H, 0.5T
1.4H, 2.1T	2.6H, 3.9T
4.5H <i>,</i> 1.9T	2.5H, 1.1T
21.3H, 8.6T	11.7H <i>,</i> 8.4T

$$\begin{split} \theta^1_A &= \frac{21.3}{21.3+8.6} = 0.71 \\ \theta^1_B &= \frac{11.7}{11.7+8.4} = 0.58 \end{split}$$

Repeat

$$heta_A^{10} = 0.80 \ heta_B^{10} = 0.52$$

EM: k-means Algorithm

Input

- Set of examples, E
- Input features X₁,...,X_n
- val(e,X)=value of feature j for example e
- k classes

Function *class*:E-> {1,...,k} where *class(e)=i* means example e belongs to class i

Output

Function *pval* where *pval(i,X_j)* is the predicted value of feature X_j for each example in class i

k-means Algorithm

- •Sum-of-squares error for class i and pval is $\sum_{e \in E} \sum_{j=1}^{n} (\text{pval}(\text{class}(e), X_j) - \text{val}(e, X_j))^2$
- •Goal: Final *class* and *pval* that minimizes sum-of-squares error.

Minimizing the error

$$\sum_{e \in E} \sum_{j=1}^{n} (\operatorname{pval}(\operatorname{class}(e), X_j) - \operatorname{val}(e, X_j))^2$$

- Given *class*, the *pval* that minimizes sum-of-square error is the mean value for that class
- •Given *pval*, each example can be assigned to the *class* that minimizes the error for that example

k-means Algorithm

- Randomly assign the examples to classes
- Repeat the following two steps until E step does not change the assignment of any example

- M: For each class i and feature Xj

$$\operatorname{pval}(i, X_j) = \frac{\sum_{e:\operatorname{class}(e)=i} \operatorname{val}(e, X_j)}{|\{e: \operatorname{class}(e)=i\}|}$$

– E: For each example e, assign e to the class that minimizes $\sum_{j=1}^{n} (\operatorname{pval}(\operatorname{class}(e), X_j) - \operatorname{val}(e, X_j))^2$

k-means Example

- Data set: (X,Y) pairs
 - (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4), (3.5, 5), (4.5, 1.5), (5.2, 0.7), (5.3, 1.8), (6.2, 1.7), (6.7, 2.5), (8.5, 9.2), (9.1, 9.7), (9.5, 8.5)

Example Data

Random Assignment to Classes

Assign Each Example to Closest Mean

Reassign each example

Properties of k-means

- An assignment is stable if both M step and E step do not change the assignment
 - Algorithm will eventually converge to a stable local minimum
 - No guarantee that it will converge to a global minimum
- Increasing k can always decrease error until k is the number of different examples