
Expectation Maximisation
(EM)

CS 486/686: Introduction to  Artificial Intelligence
University of Waterloo

1



Incomplete Data

•So far we have seen problems where
•Values of all attributes are known
• Learning is relatively easy

•Many real-world problems have hidden 
variables
• Incomplete data
•Missing attribute values
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Maximum Likelihood Learning

Learning of Bayes nets parameters
• ΘV=true, Par(V)=x = P(V=true|Par(V)=x)
•ΘV=true, Par(V)=x =(#Insts V=true)/(Total #V=x)

Assumes all attributes have values
•What if some values are missing?
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Naïve Solutions

•Ignore examples with missing attribute 
values
•What if all examples have missing attribute 

values?

•Ignore hidden variables
•Model might become much more complex
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Hidden Variables: Heart disease 
example
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a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)



“Direct” ML
Maximize likelihood directly where E are the 
evidence variables and Z are the hidden 
variables

6



Expectation-Maximization (EM)

If we knew the missing values computing 
hML is trivial

1. Guess hML

2. Iterate
Expectation: based on hML compute expectation of 
(missing) values
Maximization: based on expected (missing) values 
compute new hML
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Expectation-Maximization (EM)

Formally
–Approximate maximum likelihood
– Iteratively compute:
– hi+1=argmaxh ΣZ P(Z|hi,e)log P(e,Z|hi)
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Expectation

Maximization



EM
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Log inside can linearize the product

Monotonic improvement of likelihood 



Example

•Assume we have two coins, A and B

•The probability of getting heads with A is θA

•The probability of getting heads with B is θB

•We want to find θA and θB by performing a 
number of trials
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Example from S. Zafeiriohu, Advanced Statistical Machine Learning, Imperial College



Example

• H T T T H H T H T H

• H H H H T H H H H H

• H T H H H H H T H H

• H T H T T T H H T T

• T H H H T H H H T H
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Coin A and Coin B

Coin A Coin B
5 H, 5 T

9 H, 1 T

8 H, 2 T

4 H, 6 T

7 H, 3 T

24 H, 6 T 9 H, 11 T



Example
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Coin A Coin B
5 H, 5 T

9 H, 1 T

8 H, 2 T

4 H, 6 T

7 H, 3 T

24 H, 6 T 9 H, 11 T



Example

• H T T T H H T H T H

• H H H H T H H H H H

• H T H H H H H T H H

• H T H T T T H H T T

• T H H H T H H H T H
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Now assume we do 
not know which coin 
was used in which trial 
(hidden variable)



Example

14

Initialization:

E Step: Compute the Expected counts of Heads and Tails

Trial 1: H T T T H H T H T H

Coin A Coin B

2.2 H,

2.2 T

2.8 H,

2.8 T



Example
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• H T T T H H T H T H (0.55 
A, 0.45 B)

• H H H H T H H H H H (0.80 
A, 0.20 B)

• H T H H H H H T H H (0.73 
A, 0.27 A)

• H T H T T T H H T T (0.35 
A, 0.65 B)

• T H H H T H H H T H (0.65 
A, 0.35 B)

Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T

7.2H, 0.8T 1.8H, 0.2T

5.9H, 1.5T 2.1H, 0.5T

1.4H, 2.1T 2.6H, 3.9T

4.5H, 1.9T 2.5H, 1.1T

21.3H, 8.6T 11.7H, 8.4T



Example
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Coin A Coin B
2.2H, 2.2T 2.8H, 2.8T

7.2H, 0.8T 1.8H, 0.2T

5.9H, 1.5T 2.1H, 0.5T

1.4H, 2.1T 2.6H, 3.9T

4.5H, 1.9T 2.5H, 1.1T

21.3H, 8.6T 11.7H, 8.4T

Repeat

M Step: Compute parameters based on expected counts



EM: k-means Algorithm

• Set of examples, E

• Input features X1,…,Xn

• val(e,X)=value of feature j 
for example e

• k classes
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Function class:E-> {1,…,k} where 
class(e)=i means  example e 
belongs to class i

Function pval where pval(i,Xj) is 
the predicted value of feature Xj

for each example in class i 

Input Output



k-means Algorithm 

•Sum-of-squares error for class i and pval is

•Goal: Final class and pval that minimizes 
sum-of-squares error.
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Minimizing the error

•Given class, the pval that minimizes sum-of-
square error is the mean value for that class

•Given pval, each example can be assigned to 
the class that minimizes the error for that 
example
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k-means Algorithm

• Randomly assign the examples to classes

• Repeat the following two steps until E step does not change the 
assignment of any example

–M: For each class i and feature Xj

– E: For each example e, assign e to the class that minimizes
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k-means Example

• Data set: (X,Y) pairs
– (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4), 

(3.5, 5), (4.5, 1.5), (5.2, 0.7), (5.3, 1.8), (6.2, 
1.7), (6.7, 2.5),     (8.5, 9.2), (9.1, 9.7), (9.5, 8.5)
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Example Data
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Random Assignment to Classes
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Assign Each Example to Closest Mean

2
4



Reassign each example

2
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Properties of k-means

•An assignment is stable if both M step and E 
step do not change the assignment
•Algorithm will eventually converge to a stable 

local minimum
•No guarantee that it will converge to a global 

minimum

•Increasing k can always decrease error until k 
is the number of different examples
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