Expectation Maximisation (EM)

CS 486/686: Introduction to Artificial Intelligence University of Waterloo

Incomplete Data

-So far we have seen problems where

- Values of all attributes are known
- Learning is relatively easy
- Many real-world problems have hidden variables
- Incomplete data
- Missing attribute values

Maximum Likelihood Learning

Learning of Bayes nets parameters

- $\Theta_{V=t r u e, ~}^{\operatorname{Par}(\mathrm{V})=x=}=P(\mathrm{~V}=\operatorname{true} \mid \operatorname{Par}(\mathrm{V})=x)$

Assumes all attributes have values
-What if some values are missing?

Naïve Solutions

- Ignore examples with missing attribute values
- What if all examples have missing attribute values?
- Ignore hidden variables
- Model might become much more complex

Hidden Variables: Heart disease example

(a)

(b)
a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)

"Direct" ML

Maximize likelihood directly where E are the evidence variables and Z are the hidden variables

$$
\begin{aligned}
h_{M L} & =\arg \max _{h} P(E \mid h) \\
& =\arg \max _{h} \sum_{Z} P(E, Z \mid h) \\
& =\arg \max _{h} \sum_{Z} \prod_{i} \mathrm{CPT}\left(V_{i}\right) \\
& =\arg \max _{h} \log \sum_{z} \prod_{i} \mathrm{CPT}\left(V_{i}\right)
\end{aligned}
$$

Expectation-Maximization (EM)

If we knew the missing values computing $h_{M L}$ is trivial

1. Guess hML
2. Iterate

Expectation: based on $h_{M L}$ compute expectation of (missing) values
Maximization: based on expected (missing) values compute new hmL

Expectation-Maximization (EM)

Formally

- Approximate maximum likelihood
- Iteratively compute:
$-h_{i+1}=\operatorname{argmax}_{h} \Sigma_{Z} P\left(\mathbf{Z} \mid h_{i}, \mathbf{e}\right) \log P\left(\mathbf{e}, \mathbf{Z} \mid h_{i}\right)$

Maximization

EM

Log inside can linearize the product

$$
\begin{aligned}
h_{i+1} & =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \log P(\mathbf{e}, \mathbf{Z} \mid h) \\
& =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \log \prod_{j} \mathrm{CPT}_{j} \\
& =\arg \max _{h} \sum_{Z} P(\mathbf{Z} \mid h, \mathbf{e}) \sum_{j} \log \mathrm{CPT}_{j}
\end{aligned}
$$

Monotonic improvement of likelihood

$$
P\left(\mathbf{e} \mid h_{i+1}\right) \geq P\left(\mathbf{e} \mid h_{i}\right)
$$

Example

- Assume we have two coins, A and B
- The probability of getting heads with A is θ_{A}
-The probability of getting heads with B is θ_{B}
-We want to find θ_{A} and θ_{B} by performing a number of trials

Example

Coin A and Coin B

- H T T TH H T H TH
- H H H H THHHH
- HTHHHHHTHH
- HTHTTTHHTT
- T H H H T H H H H

Coin A	Coin B
	$5 \mathrm{H}, 5 \mathrm{~T}$
$9 \mathrm{H}, 1 \mathrm{~T}$	
$8 \mathrm{H}, 2 \mathrm{~T}$	
	$4 \mathrm{H}, 6 \mathrm{~T}$
$7 \mathrm{H}, 3 \mathrm{~T}$	
$24 \mathrm{H}, 6 \mathrm{~T}$	$9 \mathrm{H}, 11 \mathrm{~T}$

Example

Coin A	Coin B
	$5 \mathrm{H}, 5 \mathrm{~T}$
$9 \mathrm{H}, 1 \mathrm{~T}$	
$8 \mathrm{H}, 2 \mathrm{~T}$	
	$4 \mathrm{H}, 6 \mathrm{~T}$
$7 \mathrm{H}, 3 \mathrm{~T}$	
$24 \mathrm{H}, 6 \mathrm{~T}$	$9 \mathrm{H}, 11 \mathrm{~T}$

$$
\begin{aligned}
& \theta_{A}=\frac{24}{24+6}=0.8 \\
& \theta_{B}=\frac{9}{9+11}=0.45
\end{aligned}
$$

Example

Now assume we do not know which coin was used in which trial (hidden variable)

- HTTTHHTHTH
- HHHHTHHHHH
- HTHHHHHTHH
- HTHTTTHHTT
-THHHTHHHTH

Example

Initialization: $\quad \theta_{A}^{0}=0.60$

$$
\theta_{B}^{0}=0.50
$$

E Step: Compute the Expected counts of Heads and Tails

Trial 1: HTTTHHTHTH

$$
\begin{aligned}
& P(A \mid \text { Trial } 1)=\frac{P(\text { Trial } 1 \mid A) P(A)}{\sum_{i \in\{A, B\}} P(\text { Trial } 1 \mid i) P(i)}=0.45 \\
& P(B \mid \text { Trial } 1)=\frac{P(\text { Trial } 1 \mid B) P(B)}{\sum_{i \in\{A, B\}} P(\text { Trial } 1 \mid i) P(i)}=0.55
\end{aligned}
$$

Coin A	Coin B
2.2 H,	2.8 H,
2.2 T	2.8 T

Example

- HTTTHHTHTH(0.55

A, 0.45 B)

- HHHHTHHHHH $(0.80$ A, 0.20 B)
- HTHHHHHTHH(0.73

A, 0.27 A)
H T H T T T H H T T (0.35 A, 0.65 B)

- THHHTHHHTH 0.65

Coin A	Coin B
$2.2 \mathrm{H}, 2.2 \mathrm{~T}$	$2.8 \mathrm{H}, 2.8 \mathrm{~T}$
$7.2 \mathrm{H}, 0.8 \mathrm{~T}$	$1.8 \mathrm{H}, 0.2 \mathrm{~T}$
$5.9 \mathrm{H}, 1.5 \mathrm{~T}$	$2.1 \mathrm{H}, 0.5 \mathrm{~T}$
$1.4 \mathrm{H}, 2.1 \mathrm{~T}$	$2.6 \mathrm{H}, 3.9 \mathrm{~T}$
$4.5 \mathrm{H}, 1.9 \mathrm{~T}$	$2.5 \mathrm{H}, 1.1 \mathrm{~T}$
$21.3 \mathrm{H}, 8.6 \mathrm{~T}$	$11.7 \mathrm{H}, 8.4 \mathrm{~T}$

A, 0.35 B)

Example

M Step: Compute parameters based on expected counts

Coin A	Coin B
$2.2 \mathrm{H}, 2.2 \mathrm{~T}$	$2.8 \mathrm{H}, 2.8 \mathrm{~T}$
$7.2 \mathrm{H}, 0.8 \mathrm{~T}$	$1.8 \mathrm{H}, 0.2 \mathrm{~T}$
$5.9 \mathrm{H}, 1.5 \mathrm{~T}$	$2.1 \mathrm{H}, 0.5 \mathrm{~T}$
$1.4 \mathrm{H}, 2.1 \mathrm{~T}$	$2.6 \mathrm{H}, 3.9 \mathrm{~T}$
$4.5 \mathrm{H}, 1.9 \mathrm{~T}$	$2.5 \mathrm{H}, 1.1 \mathrm{~T}$
$21.3 \mathrm{H}, 8.6 \mathrm{~T}$	$11.7 \mathrm{H}, 8.4 \mathrm{~T}$

$$
\begin{gathered}
\theta_{A}^{1}=\frac{21.3}{21.3+8.6}=0.71 \\
\theta_{B}^{1}=\frac{11.7}{11.7+8.4}=0.58 \\
\text { Repeat } \\
\theta_{A}^{10}=0.80 \\
\theta_{B}^{10}=0.52
\end{gathered}
$$

EM: k-means Algorithm

Input

- Set of examples, E
- Input features X_{1}, \ldots, X_{n}
- val(e, $X)=$ value of feature j for example e
-k classes
Function class:E-> $\{1, . ., \mathrm{k}\}$ where class(e)=i means example e belongs to class i

Function pval where pval($\left(i, X_{j}\right)$ is the predicted value of feature X_{j} for each example in class i

k-means Algorithm

- Sum-of-squares error for class i and pval is
$\sum \sum^{n}\left(\operatorname{pval}\left(\operatorname{class}(e), X_{j}\right)-\operatorname{val}\left(e, X_{j}\right)\right)^{2}$ $e \in E j=1$
- Goal: Final class and pval that minimizes sum-of-squares error.

Minimizing the error

$$
\sum \sum^{n}\left(\operatorname{pval}\left(\operatorname{class}(e), X_{j}\right)-\operatorname{val}\left(e, X_{j}\right)\right)^{2}
$$

-Given class, the pval that minimizes sum-ofsquare error is the mean value for that class

- Given pval, each example can be assigned to the class that minimizes the error for that example

k-means Algorithm

- Randomly assign the examples to classes
- Repeat the following two steps until E step does not change the assignment of any example
-M : For each class i and feature Xj
$\operatorname{pval}\left(i, X_{j}\right)=\frac{\sum_{e: c l a s s}(e)=i}{} \operatorname{val}\left(e, X_{j}\right)$
- E: For each example e, assign e to the class that minimizes

$$
\sum_{j=1}^{n}\left(\operatorname{pval}\left(\operatorname{class}(e), X_{j}\right)-\operatorname{val}\left(e, X_{j}\right)\right)^{2}
$$

k-means Example

- Data set: (X, Y) pairs
- (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4), (3.5, 5), (4.5, 1.5), (5.2, 0.7), (5.3, 1.8), (6.2, 1.7), (6.7, 2.5), (8.5, 9.2), (9.1, 9.7), (9.5, 8.5)

Example Data

Random Assignment to Classes

Assign Each Example to Closest Mean

Reassign each example

Properties of k-means

- An assignment is stable if both M step and E step do not change the assignment
- Algorithm will eventually converge to a stable local minimum
- No guarantee that it will converge to a global minimum
- Increasing k can always decrease error until k is the number of different examples

