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Outline

Reasoning under uncertainty over time

Hidden Markov Models

Dynamic Bayes Nets
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Introduction

So far we have assumed

The world does not change

Static probability distribution

But the world does evolve over time

How can we use probabilistic inference for  weather 
predictions, stock market predictions, patient 
monitoring, robot localization,...
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Dynamic Inference

To reason over time we need to consider the following:

Allow the world to evolve

Set of states (all possible worlds)

Set of time-slices (snapshots of the world)

Different probability distributions over states at different 
time-slices

Dynamic encoding of how distributions change over time
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Stochastic Process

Set of states: S

Stochastic dynamics: P(st|st-1,...,s0)

Can be viewed as a Bayes Net with one random 
variable per time-slice
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Stochastic Process

Problems:

Infinitely many variables

Infinitely large CPTs

Solutions:

Stationary process: Dynamics do not change over time

Markov assumption: Current state depends only on a 
finite history of past states
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k-Order Markov Process

• Assumption: last k states are sufficient

• First-order Markov process

- P(st|st-1,...,s0)=P(st|st-1)

• Second-order Markov process

- P(st|st-1,...,s0)=P(st|st-1,st-2)
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k-Order Markov Process

• Advantages

- Can specify the entire process using finitely many time 
slices

• Example: Two slices sufficient for a first-order 
Markov process

- Graph:

- Dynamics: P(st|st-1)

- Prior: P(s0)
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Example: Robot Localization

• Example of a first-order Markov process
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Problem: 
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Hidden Markov Models

• In the previous example, the robot could use sensors 
to reduce location uncertainty

• In general:

- States not directly observable (uncertainty captured by a 
distribution)

- Uncertain dynamics increase state uncertainty

- Observations: made via sensors can reduce state uncertainty

• Solution: Hidden Markov Model
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First Order Hidden Markov Model 
(HMM)

• Set of states: S

• Set of observations: O

• Transition model: P(st|st-1)

• Observation model: P(ot|st)

• Prior: P(s0)
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Example: Robot Localization

• Hidden Markov Model

- S: (x,y) coordinates of the robot on the map

- O: distances to surrounding obstacles (measured by laser 
range fingers or sonar)

- P(st|st-1): movement of the robot with uncertainty

- P(ot|st): uncertainty in the measurements provided by the 
sensors

• Localization corresponds to the query:   

- P(st|ot,...,o1)
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Inference

• There are four common tasks

- Monitoring: P(st|ot,...o1)

- Prediction: P(st+k|ot,...,o1)

- Hindsight: P(sk|ot,...,o1)

- Most likely explanation: argmaxst,...,s1 P(st,...,s1|ot,...,o1)

• What algorithms should we use?

- First 3 can be done with variable elimination and the 4th is a variant of 
variable elimination
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Monitoring

We are interested in the distribution over current states 
given observations: P(st|ot,...,o1)

- Examples: patient monitoring, robot localization
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Prediction

We are interested in distributions over future states given 
observations: P(st+k|ot,...,o1)

- Examples: weather prediction, stock market prediction
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Hindsight

Interested in the distribution over a past state given 
observations

- Example: crime scene investigation
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Most Likely Explanation

We are interested in the most likely sequence of states given 
the observations: argmaxs0,...st P(s0,...,st|ot,...,o1)

- Example: speech recognition

Viterbi algorithm:
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Complexity of Temporal Inference

Hidden Markov Models are Bayes Nets with a 
polytree structure!

Variable elimination is

- Linear with respect to number of time slices

- Linear with respect to largest CPT (P(st|st-1) or P(ot|st))

18



Dynamic Bayes Nets

What if the number of states or observations are 
exponential?

• Dynamic Bayes Nets

- Idea: Encode states and observations with several 
random variables

- Advantage: Exploit conditional independence and save 
time and space

- Note: HMMs are just DBNs with one state variable and 
one observation variable
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Example: Robot Localization

• States: (x,y) coordinates and heading θ

• Observations: laser and sonar readings, la and so
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DBN Complexity

Conditional independence allows us to represent the 
transition and observation models very compactly!

• Time and space complexity of inference: 
conditional independence rarely helps

- Inference tends to be exponential in the number of state 
variables

- Intuition: All state variables eventually get correlated

- No better than with HMMs
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Non-Stationary Processes

What if the process is not stationary?

- Solution: Add new state components until dynamics are 
stationary

- Example: Robot navigation based on (x,y,θ) is 
nonstationary when velocity varies

- Solution: Add velocity to state description (x,y,v,θ)

- If velocity varies, then add acceleration,...
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Non-Markovian Processes

What if the process is not Markovian?

- Solution: Add new state components until the dynamics 
are Markovian

- Example: Robot navigation based on (x,y,θ) is non-
Markovian when influenced by battery level

- Solution: Add battery level to state description (x,y,θ,b)
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Markovian Stationary Processes

Problem: Adding components to the state 
description to force a process to be Markovian and 
stationary may significantly increase 
computational complexity

Solution: Try to find the smallest description that 
is self-sufficient (i.e. Markovian and stationary)
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Summary

• Stochastic Process

- Stationary 

- Markov assumption

• Hidden Markov Process

- Prediction

- Monitoring

- Hindsight

- Most likely explanation

• Dynamic Bayes Nets

• What to do if the stationary or Markov assumptions do not hold
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