Bayes Nets

CS 486/686: Introduction to Artificial Intelligence

Outline

Inference in Bayes Nets
Variable Elimination

Inference in Bayes Nets

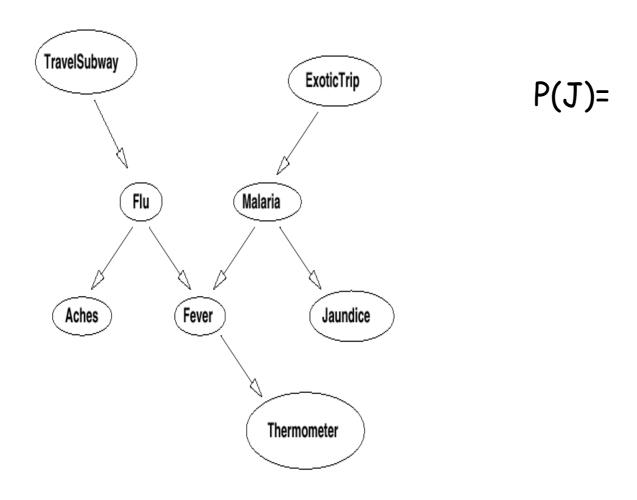
Independence allows us to compute prior and posterior probabilities quite effectively

We will start with a couple simple examples

Networks without loops

A loop is a cycle in the underlying undirected graph

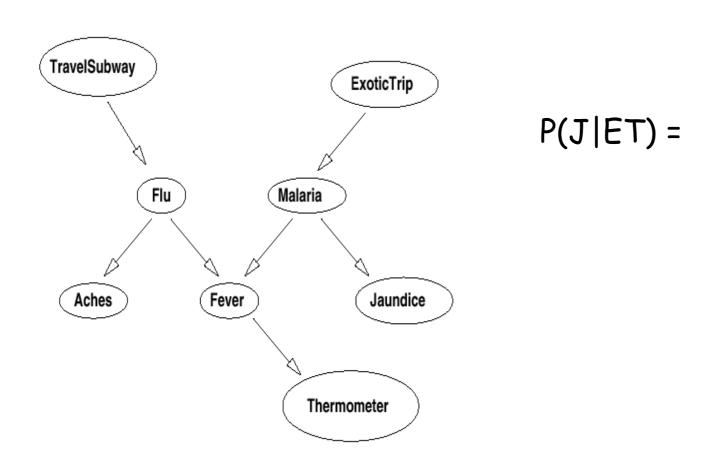
Forward Inference



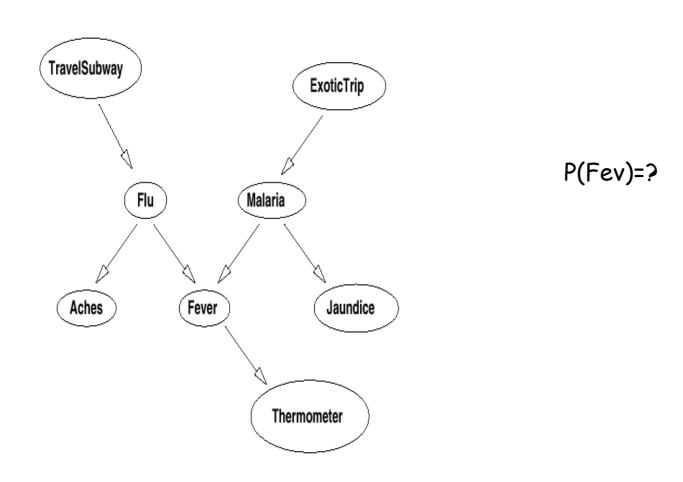
Note: all (final) terms are CPTs in the BN

Note: only ancestors of J considered

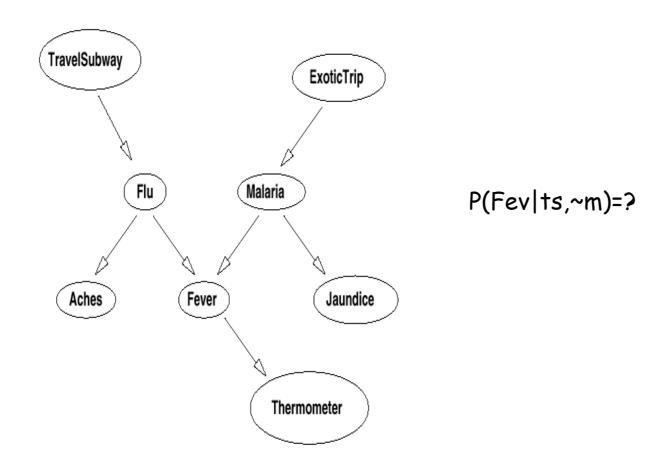
Forward Inference with "Upstream Evidence"



Forward Inference with Multiple Parents

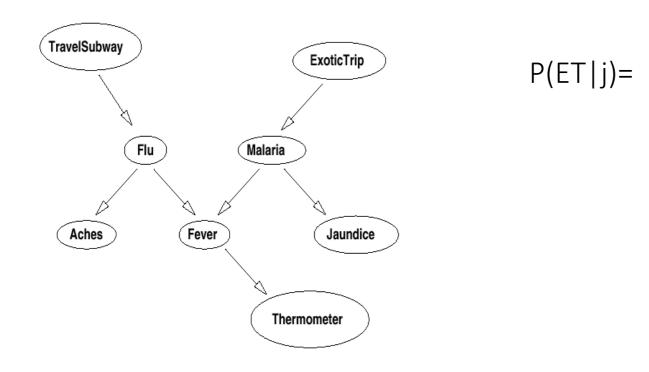


Forward Inference with Evidence



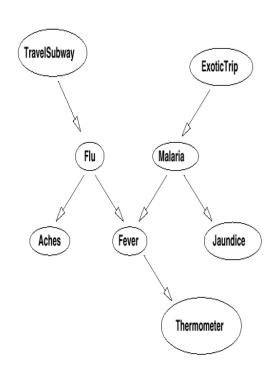
Simple Backward Inference

When evidence is downstream of a query variable, must reason "backwards". This requires Bayes Rule



Backward Inference

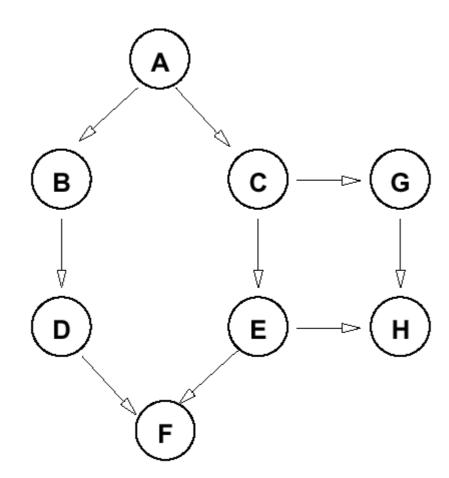
Same idea applies when several pieces of evidence lie "downstream"



P(ET|j,fev)=?

Variable Elimination

What about general BN?



P(H|A,F)=?

Variable Elimination

Simply applies the summing-out rule (marginalization) repeatedly

Exploits independence in network and distributes the sum inward

Basically doing dynamic programming

Factors

- A function $f(X_1,...,X_k)$ is called a factor
 - View this as a table of numbers, one for each instantiation of the variables
 - Exponential in k
- Each CPT in a BN is a factor
 - P(C|A,B) is a function of 3 variables, A, B, C
 - Represented as f(A,B,C)
- Notation: f(X,Y) denotes a factor over variables XUY
 - X and Y are sets of variables

Product of Two Factors

- Let f(X,Y) and g(Y,Z) be two factors with variables Y in common
- The product of f and g, denoted by h=fg is
 - $h(X,Y,Z)=f(X,Y) \times g(Y,Z)$

f(A,B)		g(B,C)		h(A,B,C)				
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27	
a~b	0.1	b∼c	0.3	a~bc	0.08	a~b~c	0.02	
~ab	0.4	~bc	0.8	~abc	0.28	~ab~c	0.12	
~a~b	0.6	~b~c	0.2	~a~bc	0.48	~a~b~c	0.12	

Summing a Variable Out of a Factor

- Let f(X,Y) be a factor with variable X and variable set Y
- We sum out variable X from f to produce $h=\sum_{x\in Dom(X)} f(x,Y)$

f(A,B)		h(B)			
ab	0.9	b	1.3		
a∼b	0.1	~b	0.7		
~ab	0.4				
~a~b	0.6				

Restricting a Factor

- Let f(X,Y) be a factor with variable X
- We restrict factor f to X=x by setting X to the value x and "deleting". Define $h=f_{X=x}$ as: h(Y)=f(x,Y)

f(A,B)		$h(B) = f_{A=a}$			
ab	0.9	b	0.9		
a∼b	0.1	~b	0.1		
~ab	0.4				
~a~b	0.6				

Variable Elimination: No Evidence

 Computing prior probability of query variable X can be seen as applying these operations on factors

```
• P(C) = \Sigma_{A,B} P(C|B) P(B|A) P(A)

= \Sigma_B P(C|B) \Sigma_A P(B|A) P(A)

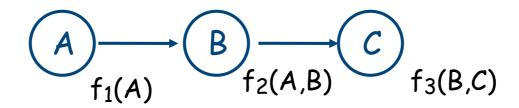
= \Sigma_B f_3(B,C) \Sigma_A f_2(A,B) f_1(A)

= \Sigma_B f_3(B,C) f_4(B)

= f_5(C)

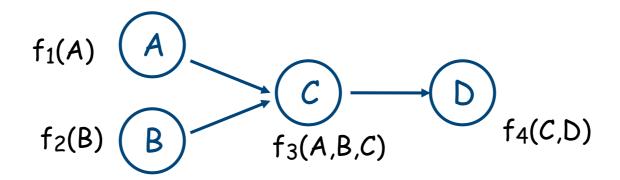
Define new factors: f_4(B) = \Sigma_A f_2(A,B) f_1(A) and f_5(C) = \Sigma_B f_3(B,C) f_4(B)
```

Variable Elimination: No Evidence



f ₁ (A)		f ₂ (A,B)		f ₃ (B,C)		f ₄ (B)		f ₅ (C)	
а	0.9	ab	0.9	bc	0.7	b	0.85	С	0.625
~a	0.1	a~b	0.1	b~c	0.3	~b	0.15	~C	0.375
		~ab	0.4	~bc	0.2				
		~a~b	0.6	~b~c	0.8				

Variable Elimination: No Evidence



```
\begin{split} P(D) &= \Sigma_{A,B,C} \ P(D|C) \ P(C|B,A) \ P(B) \ P(A) \\ &= \Sigma_{C} \ P(D|C) \ \Sigma_{B} \ P(B) \ \Sigma_{A} \ P(C|B,A) \ P(A) \\ &= \Sigma_{C} \ f_{4}(C,D) \ \Sigma_{B} \ f_{2}(B) \ \Sigma_{A} \ f_{3}(A,B,C) \ f_{1}(A) \\ &= \Sigma_{C} \ f_{4}(C,D) \ \Sigma_{B} \ f_{2}(B) \ f_{5}(B,C) \\ &= \Sigma_{C} \ f_{4}(C,D) \ f_{6}(C) \\ &= f_{7}(D) \end{split}
```

Define new factors: $f_5(B,C)$, $f_6(C)$, $f_7(D)$, in the obvious way

Variable Elimination: One View

- Write out desired computation using chain rule, exploiting independence relations in networks
- Arrange terms in convenient fashion
- Distribution each sum (over each variable) in as far as it will go
- Apply operations "inside out", repeatedly elimination and creating new factors
 - Note that each step eliminates a variable

The Algorithm

 Given query variable Q, remaining variables Z. Let F be the set of factors corresponding to CPTs for {Q}UZ.

- 1. Choose an elimination ordering Z_1 , ..., Z_n of variables in **Z**.
- 2. For each Z_j -- in the order given -- eliminate $Z_j \in \mathbf{Z}$ as follows:
 - (a) Compute new factor $g_j = \sum_{Z_j} f_1 \times f_2 \times ... \times f_k$, where the f_i are the factors in F that include Z_j
 - (b) Remove the factors f_i (that mention Z_j) from F and add new factor g_i to F
- 3. The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

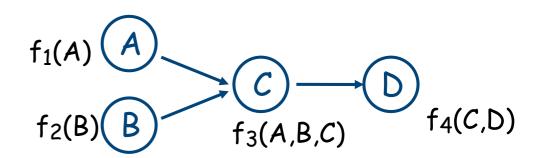
Example Again

Factors: $f_1(A)$ $f_2(B)$ $f_3(A,B,C)$

 $f_4(C,D)$

Query: P(D)?

Elim. Order: A, B, C



Step 1: Add $f_5(B,C) = \Sigma_A f_3(A,B,C) f_1(A)$

Remove: $f_1(A)$, $f_3(A,B,C)$

Step 2: Add $f_6(C) = \Sigma_B f_2(B) f_5(B,C)$

Remove: $f_2(B)$, $f_5(B,C)$

Step 3: Add $f_7(D) = \Sigma_C f_4(C,D) f_6(C)$

Remove: $f_4(C,D)$, $f_6(C)$

Last factor $f_7(D)$ is (possibly unnormalized) probability P(D)

Variable Elimination: Evidence

 Computing posterior of query variable given evidence is similar; suppose we observe C=c:

$$(A) \xrightarrow{f_1(A)} B \xrightarrow{f_2(A,B)} C$$

$$f_3(B,C)$$

$$P(A | c) = \alpha P(A) P(c | A)$$

$$= \alpha P(A) \sum_B P(c | B) P(B | A)$$

$$= \alpha f_1(A) \sum_B f_3(B,c) f_2(A,B)$$

$$= \alpha f_1(A) \sum_B f_4(B) f_2(A,B)$$

$$= \alpha f_1(A) f_5(A)$$

$$= \alpha f_6(A)$$
New factors: $f_4(B) = f_3(B,c)$; $f_5(A) = \sum_B f_2(A,B) f_4(B)$;
$$f_6(A) = f_1(A) f_5(A)$$

The Algorithm (with Evidence)

- Given query variable Q, evidence variables E (observed to be e), remaining variables Z. Let F be the set of factors corresponding to CPTs for {Q}UZ.
 - Replace each factor f∈F that mentions a variable(s) in E with its restriction f_{E=e} (somewhat abusing notation)
 - 2. Choose an elimination ordering Z_1 , ..., Z_n of variables in **Z**.
 - 3. Run variable elimination as above.
 - 4. The remaining factors refer only to the query variable Q. Take their product and normalize to produce P(Q)

Example

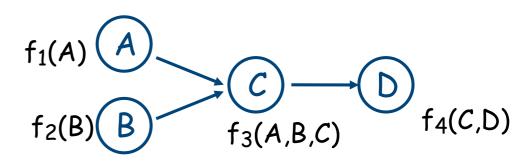
Factors: $f_1(A) f_2(B)$

 $f_3(A,B,C) f_4(C,D)$

Query: P(A)?

Evidence: D = d

Elim. Order: C, B



Some Notes on VE

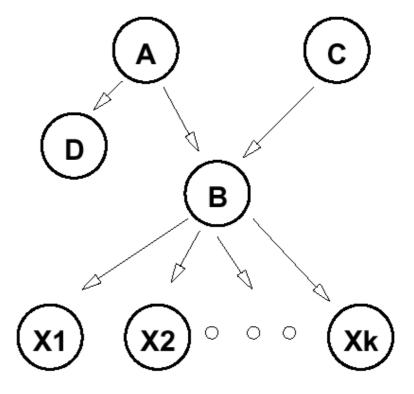
- After each iteration j (elimination of Z_j) factors remaining in set F refer only to variables $Z_{j+1},...,Z_n$ and Q
 - No factor mentions an evidence variable after the initial restriction
- Number of iterations is linear in number of variables

Some Notes on VE

- Complexity is linear in number of variables and exponential in size of the largest factor
 - Recall each factor has exponential size in its number of variables
 - Can't do any better than size of BN (since its original factors are part of the factor set)
 - When we create new factors, we might make a set of variables larger

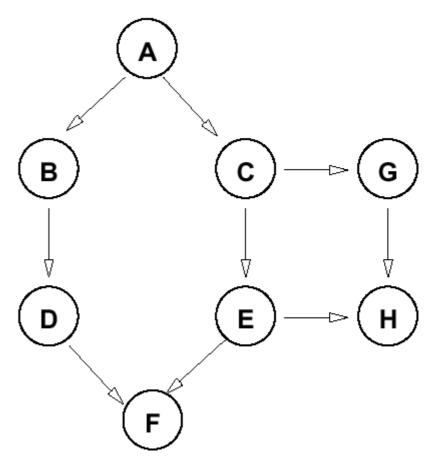
Elimination Ordering: Polytrees

- Inference is linear in size of the network
 - Ordering: eliminate only "singly-connected" nodes
 - Result: no factor ever larger than original CPTs
 - What happens if we eliminate B first?



Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
 - A,F,H,G,B,C,E: Good
 - E,C,A,B,G,H,F: Bad



Relevance

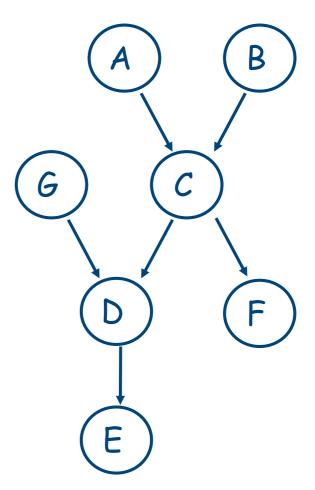
- Certain variables have no impact on the query
 - In ABC network, computing P(A) with no evidence requires elimination of B and C
 - But when you sum out these variables, you compute a trivial factor
 - Eliminating C: $g(C) = \sum_{C} f(B,C) = \sum_{C} Pr(C \mid B)$.
 - Note that $P(c|b)+P(\sim c|b)=1$ and $P(c|\sim b)+P(\sim c|\sim b)=1$

Relevance: A Sound Approximation

- Can restrict our attention to relevant variables
- Given query Q, evidence E
 - Q is relevant
 - If any node Z is relevant, its parents are relevant
 - If E∈E is a descendant of a relevant node, then E is relevant

Example

- P(F)
- P(F|E)
- P(F|E,C)



Probabilistic Inference

- Applications of BN in Al are virtually limitless
- Examples
 - mobile robot navigation
 - speech recognition
 - medical diagnosis, patient monitoring
 - fault diagnosis (e.g. car repairs)
 - etc

Where do BNs Come From?

- Handcrafted
 - Interact with a domain expert to
 - Identify dependencies among variables (causal structure)
 - Quantify local distributions (CPTs)
- Empirical data, human expertise often used as a guide

Where do BNs Come From?

- Recent emphasis on learning BN from data
 - Input: a set of cases (instantiations of variables)
 - Output: network reflecting empirical distribution
 - Issues: identifying causal structure, missing data, discovery of hidden (unobserved) variables, incorporating prior knowledge (bias) about structure