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Inference in Bayes Nets

Variable Elimination
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Inference in Bayes Nets

Independence allows us to compute prior and 
posterior probabilities quite effectively

We will start with a couple simple examples

Networks without loops

A loop is a cycle in the underlying undirected graph
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Forward Inference
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P(J)=

Note: all (final) terms are CPTs in the BN
Note: only ancestors of J considered



Forward Inference with 
“Upstream Evidence”
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P(J|ET) =



Forward Inference with Multiple 
Parents
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P(Fev)=?



Forward Inference with Evidence
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P(Fev|ts,~m)=?



Simple Backward Inference

When evidence is downstream of a query variable, 
must reason “backwards”. This requires Bayes Rule
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P(ET|j)=



Backward Inference

Same idea applies when several pieces of evidence lie 
“downstream”
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P(ET|j,fev)=?



Variable Elimination

What about general BN?

10

P(H|A,F)=?



Variable Elimination

Simply applies the summing-out rule (marginalization) 
repeatedly

Exploits independence in network and distributes the 
sum inward

Basically doing dynamic programming
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Factors

• A function f(X1,...,Xk) is called a factor

- View this as a table of numbers, one for each instantiation of 
the variables

- Exponential in k

• Each CPT in a BN is a factor

- P(C|A,B) is a function of 3 variables, A, B, C

- Represented as f(A,B,C)

• Notation: f(X,Y) denotes a factor over variables X∪Y

- X and Y are sets of variables
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Product of Two Factors

• Let f(X,Y) and g(Y,Z) be two factors with variables Y in 
common

• The product of f and g, denoted by h=fg is 

- h(X,Y,Z)=f(X,Y) x g(Y,Z)
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f(A,B) g(B,C) h(A,B,C)

ab 0.9 bc 0.7 abc 0.63 ab~c 0.27

a~b 0.1 b~c 0.3 a~bc 0.08 a~b~c 0.02

~ab 0.4 ~bc 0.8 ~abc 0.28 ~ab~c 0.12

~a~b 0.6 ~b~c 0.2 ~a~bc 0.48 ~a~b~c 0.12



Summing a Variable Out of a 
Factor

• Let f(X,Y) be a factor with variable X and 
variable set Y

• We sum out variable X from f to produce 
h=∑Xf where h(Y)=∑x∈Dom(X) f(x,Y)
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f(A,B) h(B)

ab 0.9 b 1.3

a~b 0.1 ~b 0.7

~ab 0.4

~a~b 0.6



Restricting a Factor

• Let f(X,Y) be a factor with variable X

• We restrict factor f to X=x by setting X to the value x 
and “deleting”. Define h=fX=x as: h(Y)=f(x,Y)
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f(A,B) h(B) = fA=a

ab 0.9 b 0.9

a~b 0.1 ~b 0.1

~ab 0.4

~a~b 0.6



Variable Elimination: No Evidence

• Computing prior probability of query variable  X  can be 
seen as applying these operations on factors

• P(C) = ΣA,B P(C|B) P(B|A) P(A)

= ΣB P(C|B) ΣA P(B|A) P(A)

= ΣB f3(B,C) ΣA f2(A,B) f1(A) 

= ΣB f3(B,C) f4(B)

= f5(C)

Define new factors: f4(B)= ΣA f2(A,B) f1(A) and  f5(C)= ΣB f3(B,C) 
f4(B)
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B CA

f1(A) f2(A,B) f3(B,C)



Variable Elimination: No Evidence
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B CA

f1(A) f2(A,B) f3(B,C)

f1(A) f2(A,B) f3(B,C) f4(B) f5(C)

a 0.9 ab 0.9 bc 0.7 b 0.85 c 0.625

~a 0.1 a~b 0.1 b~c 0.3 ~b 0.15 ~c 0.375

~ab 0.4 ~bc 0.2

~a~b 0.6 ~b~c 0.8



Variable Elimination: No Evidence

P(D) = ΣA,B,C P(D|C) P(C|B,A) P(B) P(A)

= ΣC P(D|C) ΣB P(B) ΣA P(C|B,A) P(A)

= ΣC f4(C,D) ΣB f2(B) ΣA f3(A,B,C) f1(A) 

= ΣC f4(C,D) ΣB f2(B) f5(B,C)

= ΣC f4(C,D) f6(C)

= f7(D)

Define new factors: f5(B,C), f6(C), f7(D), in the obvious way
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C D

Af1(A)

f3(A,B,C)
f4(C,D)Bf2(B)



Variable Elimination: One View

• Write out desired computation using chain rule, 
exploiting independence relations in networks

• Arrange terms in convenient fashion

• Distribution each sum (over each variable) in as far 
as it will go

• Apply operations “inside out”, repeatedly 
elimination and creating new factors

- Note that each step eliminates a variable
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The Algorithm

• Given query variable Q, remaining variables Z. Let F be the 
set of factors corresponding to CPTs for {Q}∪Z.
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1. Choose an elimination ordering Z1, …, Zn of variables in Z.
2. For each Zj   -- in the order given -- eliminate Zj ∊ Z

as follows:

(a)  Compute new factor  gj = ΣZj f1 x f2 x … x fk,  
where the fi are the factors in F that include Zj   

(b) Remove the factors  fi   (that mention Zj ) from F 
and add new factor  gj   to  F

3. The remaining factors refer only to the query variable Q. 
Take their product and normalize to produce P(Q)



Example Again

Step 1: Add f5(B,C) = ΣA f3(A,B,C) f1(A) 

Remove: f1(A), f3(A,B,C) 

Step 2: Add f6(C)= ΣB f2(B) f5(B,C)

Remove: f2(B) , f5(B,C) 

Step 3: Add f7(D) = ΣC f4(C,D) f6(C) 

Remove: f4(C,D), f6(C) 

Last factor f7(D) is (possibly unnormalized) probability P(D)
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C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

Factors: f1(A) f2(B) f3(A,B,C) 
f4(C,D) 

Query: P(D)?  

Elim. Order: A, B, C



Variable Elimination: Evidence

• Computing posterior of query variable given evidence is similar; 
suppose we observe C=c:

P(A|c) = α P(A) P(c|A)

= α P(A) ΣB P(c|B) P(B|A)

= α f1(A) ΣB f3(B,c) f2(A,B) 

= α f1(A) ΣB f4(B) f2(A,B)

= α f1(A) f5(A)
= α f6(A)

New factors:  f4(B)= f3(B,c);   f5(A)= ΣB f2(A,B) f4(B);

f6(A)= f1(A) f5(A) 
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B CA

f1(A) f2(A,B) f3(B,C)



The Algorithm (with Evidence)

• Given query variable Q, evidence variables E (observed to be 
e), remaining variables Z. Let F be the set of factors 
corresponding to CPTs for {Q}∪Z.
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1. Replace each factor f∊F that mentions a variable(s) in E

with its restriction fE=e (somewhat abusing notation) 

2. Choose an elimination ordering Z1, …, Zn of variables in Z.

3. Run variable elimination as above.

4. The remaining factors refer only to the query variable Q. 

Take their product and normalize to produce P(Q)



Example
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C D
Af1(A)

f3(A,B,C) f4(C,D)Bf2(B)

Factors: f1(A) f2(B) 
f3(A,B,C) f4(C,D) 

Query: P(A)?  

Evidence: D = d

Elim. Order: C, B



Some Notes on VE

• After each iteration j (elimination of Zj) factors 
remaining in set F refer only to variables Zj+1,...,Zn and 
Q

- No factor mentions an evidence variable after the initial 
restriction

•Number of iterations is linear in number of variables
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Some Notes on VE

• Complexity is linear in number of variables and 
exponential in size of the largest factor

- Recall each factor has exponential size in its number 
of variables

- Can’t do any better than size of BN (since its original 
factors are part of the factor set)

- When we create new factors, we might make a set 
of variables larger
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Elimination Ordering: Polytrees

• Inference is linear in size 
of the network

- Ordering: eliminate only 
“singly-connected” nodes

- Result: no factor ever 
larger than original CPTs

- What happens if we 
eliminate B first?
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Effect of Different Orderings

• Suppose query variable 
is D. Consider different 
orderings for this 
network

• A,F,H,G,B,C,E: Good

• E,C,A,B,G,H,F: Bad
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Relevance

• Certain variables have no impact on the query

- In ABC network, computing P(A) with no evidence 
requires elimination of B and C

- But when you sum out these variables, you compute a trivial 
factor

- Eliminating C: g(C)=∑Cf(B,C)=∑CPr(C|B). 

- Note that P(c|b)+P(~c|b)=1 and P(c|~b)+P(~c|~b)=1
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Relevance: A Sound 
Approximation

• Can restrict our attention to relevant variables

• Given query Q, evidence E

- Q is relevant

- If any node Z is relevant, its parents are relevant

- If E∈E is a descendant of a relevant node, then E is 
relevant
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Example

• P(F)

• P(F|E)

• P(F|E,C)
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Probabilistic Inference

• Applications of BN in AI are virtually limitless

• Examples

- mobile robot navigation

- speech recognition

- medical diagnosis, patient monitoring

- fault diagnosis (e.g. car repairs)

- etc
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Where do BNs Come From?

•Handcrafted

- Interact with a domain expert to 

- Identify dependencies among variables (causal structure)

- Quantify local distributions (CPTs)

• Empirical data, human expertise often used as a guide
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Where do BNs Come From?

• Recent emphasis on learning BN from data

- Input: a set of cases (instantiations of variables)

- Output: network reflecting empirical distribution

- Issues: identifying causal structure, missing data, 
discovery of hidden (unobserved) variables, 
incorporating prior knowledge (bias) about 
structure
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