Bayes Nets

CS 486/686: Introduction to Artificial Intelligence

Outline

Inference in Bayes Nets
Variable Elimination

Inference in Bayes Nets

Independence allows us to compute prior and posterior probabilities quite effectively

We will start with a couple simple examples
Networks without loops
A loop is a cycle in the underlying undirected graph

Forward Inference

Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered

Forward Inference with "Upstream Evidence"

Forward Inference with Multiple Parents

Forward Inference with Evidence

Simple Backward Inference

When evidence is downstream of a query variable, must reason "backwards". This requires Bayes Rule

Backward Inference

Same idea applies when several pieces of evidence lie "downstream"

$P(E T \mid j, f e v)=$?

Variable Elimination

What about general BN?

$$
P(H \mid A, F)=?
$$

Variable Elimination

Simply applies the summing-out rule (marginalization) repeatedly

Exploits independence in network and distributes the sum inward

Basically doing dynamic programming

Factors

- A function $f\left(X_{1}, \ldots, X_{k}\right)$ is called a factor
- View this as a table of numbers, one for each instantiation of the variables
- Exponential in k
- Each CPT in a BN is a factor
- $P(C \mid A, B)$ is a function of 3 variables, A, B, C
- Represented as $f(A, B, C)$
- Notation: $f(\mathbf{X}, \mathbf{Y})$ denotes a factor over variables XUY
- \mathbf{X} and \mathbf{Y} are sets of variables

Product of Two Factors

- Let $f(\mathbf{X}, \mathbf{Y})$ and $g(\mathbf{Y}, \mathbf{Z})$ be two factors with variables \mathbf{Y} in common
- The product of f and g, denoted by $h=f g$ is
- $h(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=f(\mathbf{X}, \mathbf{Y}) \times \mathrm{g}(\mathbf{Y}, \mathbf{Z})$

f(A, B)		$g(B, C)$		$h(A, B, C)$			
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27
a~b	0.1	$\mathrm{b} \mathrm{\sim}$	0.3	a~bc	0.08	a~b~c	0.02
$\sim a b$	0.4	$\sim \mathrm{bc}$	0.8	~abc	0.28	$\sim \mathrm{ab} \mathrm{\sim c}$	0.12
$\sim a \sim b$	0.6	$\sim \mathrm{b} \mathrm{\sim c}$	0.2	\sim a bc	0.48	~a~b~c	0.12

Summing a Variable Out of a Factor

- Let $f(X, Y)$ be a factor with variable X and variable set Y
- We sum out variable X from f to produce $h=\sum x f$ where $h(\mathbf{Y})=\sum_{x \in \operatorname{Dom}(X)} f(x, Y)$

$f(A, B)$		$h(B)$	
$a b$	0.9	b	1.3
$a \sim b$	0.1	$\sim b$	0.7
$\sim a b$	0.4		
$\sim a \sim b$	0.6		

Restricting a Factor

- Let $f(X, Y)$ be a factor with variable X
- We restrict factor f to $X=x$ by setting X to the value x and "deleting". Define $h=f_{X=x}$ as: $h(Y)=f(x, Y)$

$f(A, B)$		$h(B)=f_{A=a}$	
ab	0.9	b	0.9
$\mathrm{a} \sim \mathrm{b}$	0.1	$\sim \mathrm{~b}$	0.1
$\sim \mathrm{ab}$	0.4		
$\sim \mathrm{a} \sim \mathrm{b}$	0.6		

Variable Elimination: No Evidence

- Computing prior probability of query variable X can be seen as applying these operations on factors

- $P(C)=\Sigma_{A, B} P(C \mid B) P(B \mid A) P(A)$
$=\Sigma_{B} P(C \mid B) \Sigma_{A} P(B \mid A) P(A)$
$=\Sigma_{B} f_{3}(B, C) \Sigma_{A} f_{2}(A, B) f_{1}(A)$
$=\Sigma_{B} f_{3}(B, C) f_{4}(B)$
$=f_{5}(C)$
Define new factors: $f_{4}(B)=\Sigma_{A} f_{2}(A, B) f_{1}(A)$ and $f_{5}(C)=\Sigma_{B} f_{3}(B, C)$ $\mathrm{f}_{4}(\mathrm{~B})$

Variable Elimination: No Evidence

$f_{1}(A)$		$f_{2}(A, B)$		$f_{3}(B, C)$		$f_{4}(B)$		$f_{5}(C)$	
a	0.9	ab	0.9	bc	0.7	b	0.85	c	0.625
$\sim \mathrm{a}$	0.1	$\mathrm{a} \sim \mathrm{b}$	0.1	$\mathrm{~b} \mathrm{\sim c}$	0.3	$\sim \mathrm{~b}$	0.15	$\sim c$	0.375
		$\sim \mathrm{ab}$	0.4	$\sim \mathrm{bc}$	0.2				
		$\sim \mathrm{a} \mathrm{\sim b}$	0.6	$\sim \mathrm{~b} \mathrm{\sim c}$	0.8				

Variable Elimination: No Evidence

$$
\begin{aligned}
P(D) & =\Sigma_{A, B, C} P(D \mid C) P(C \mid B, A) P(B) P(A) \\
& =\Sigma_{C} P(D \mid C) \Sigma_{B} P(B) \Sigma_{A} P(C \mid B, A) P(A) \\
& =\Sigma_{C} f_{4}(C, D) \Sigma_{B} f_{2}(B) \Sigma_{A} f_{3}(A, B, C) f_{1}(A) \\
& =\Sigma_{C} f_{4}(C, D) \Sigma_{B} f_{2}(B) f_{5}(B, C) \\
& =\Sigma_{C} f_{4}(C, D) f_{6}(C) \\
& =f_{7}(D)
\end{aligned}
$$

Define new factors: $f_{5}(B, C), f_{6}(C), f_{7}(D)$, in the obvious way

Variable Elimination: One View

- Write out desired computation using chain rule, exploiting independence relations in networks
- Arrange terms in convenient fashion
- Distribution each sum (over each variable) in as far as it will go
- Apply operations "inside out", repeatedly elimination and creating new factors
- Note that each step eliminates a variable

The Algorithm

- Given query variable Q, remaining variables Z. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.


```
2. For each }\mp@subsup{\textrm{Z}}{\textrm{j}}{}--\mathrm{ - in the order given -- eliminate }\mp@subsup{\textrm{Z}}{\textrm{j}}{}\in\mathbf{Z
    as follows:
    (a) Compute new factor g}\mp@subsup{g}{j}{}=\mp@subsup{\Sigma}{Zj}{}\mp@subsup{f}{1}{}\times\mp@subsup{f}{2}{}\times\ldots\times\mp@subsup{f}{k}{}
        where the fi are the factors in F that include Z }\mp@subsup{\textrm{Z}}{\textrm{j}}{
    (b) Remove the factors fi (that mention Z \ ) from F
        and add new factor gj to F
3. The remaining factors refer only to the query variable Q
    Take their product and normalize to produce P(Q)
```


Example Again

Factors: $f_{1}(A) f_{2}(B) f_{3}(A, B, C)$ $\mathrm{f}_{4}(\mathrm{C}, \mathrm{D})$
Query: $P(D)$?
Elim. Order: A, B, C

Step 1: Add $f_{5}(B, C)=\Sigma_{A} f_{3}(A, B, C) f_{1}(A)$ Remove: $f_{1}(A), f_{3}(A, B, C)$
Step 2: Add $f_{6}(C)=\Sigma_{B} f_{2}(B) f_{5}(B, C)$
Remove: $\mathrm{f}_{2}(\mathrm{~B}), \mathrm{f}_{5}(\mathrm{~B}, \mathrm{C})$
Step 3: $\operatorname{Add~}_{7}(D)=\Sigma_{C} f_{4}(C, D) f_{6}(C)$
Remove: $\mathrm{f}_{4}(\mathrm{C}, \mathrm{D}), \mathrm{f}_{6}(\mathrm{C})$
Last factor $f_{7}(D)$ is (possibly unnormalized) probability $P(D)$

Variable Elimination: Evidence

- Computing posterior of query variable given evidence is similar; suppose we observe $\mathrm{C}=\mathrm{c}$:

$$
\begin{aligned}
P(A \mid c) & =\alpha P(A) P(c \mid A) \\
= & \alpha P(A) \Sigma_{B} P(c \mid B) P(B \mid A) \\
= & \alpha f_{1}(A) \Sigma_{B} f_{3}(B, c) f_{2}(A, B) \\
= & \alpha f_{1}(A) \Sigma_{B} f_{4}(B) f_{2}(A, B) \\
= & \alpha f_{1}(A) f_{5}(A) \\
= & \alpha f_{6}(A)
\end{aligned}
$$

New factors: $f_{4}(B)=f_{3}(B, c) ; f_{5}(A)=\Sigma_{B} f_{2}(A, B) f_{4}(B)$;

$$
f_{6}(A)=f_{1}(A) f_{5}(A)
$$

The Algorithm (with Evidence)

- Given query variable \mathbf{Q}, evidence variables \mathbf{E} (observed to be \mathbf{e}), remaining variables \mathbf{Z}. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.

1. Replace each factor $f \in F$ that mentions a variable(s) in E with its restriction $\mathrm{f}_{\mathrm{E}=\mathrm{e}}$ (somewhat abusing notation)
2. Choose an elimination ordering Z_{1}, \ldots, Z_{n} of variables in Z.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q .

Take their product and normalize to produce $\mathrm{P}(\mathrm{Q})$

Example

```
Factors: f
    f
Query: P(A)?
Evidence: D = d
Elim. Order: C, B
```


Some Notes on VE

- After each iteration j (elimination of Z_{j}) factors remaining in set F refer only to variables Z_{j+1}, \ldots, Z_{n} and Q
- No factor mentions an evidence variable after the initial restriction
- Number of iterations is linear in number of variables

Some Notes on VE

- Complexity is linear in number of variables and exponential in size of the largest factor
- Recall each factor has exponential size in its number of variables
- Can't do any better than size of BN (since its original factors are part of the factor set)
- When we create new factors, we might make a set of variables larger

Elimination Ordering: Polytrees

- Inference is linear in size of the network
- Ordering: eliminate only "singly-connected" nodes
- Result: no factor ever larger than original CPTs
- What happens if we eliminate B first?

Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
- A,F,H,G,B,C,E: Good
- E,C,A,B,G,H,F: Bad

Relevance

- Certain variables have no impact on the query
- In ABC network, computing $P(A)$ with no evidence requires elimination of B and C
- But when you sum out these variables, you compute a trivial factor
- Eliminating $C: g(C)=\sum c f(B, C)=\sum c \operatorname{Pr}(C \mid B)$.
- Note that $P(c \mid b)+P(\sim c \mid b)=1$ and $P(c \mid \sim b)+P(\sim c \mid \sim b)=1$

Relevance: A Sound Approximation

- Can restrict our attention to relevant variables
- Given query Q, evidence E
- $\quad \mathrm{Q}$ is relevant
- If any node Z is relevant, its parents are relevant
- If $E \in E$ is a descendant of a relevant node, then E is relevant

Example

- $P(F)$
- $P(F \mid E)$
- P(F|E,C)

Probabilistic Inference

- Applications of BN in AI are virtually limitless
- Examples
- mobile robot navigation
- speech recognition
- medical diagnosis, patient monitoring
- fault diagnosis (e.g. car repairs)
- etc

Where do BNs Come From?

- Handcrafted
- Interact with a domain expert to
- Identify dependencies among variables (causal structure)
- Quantify local distributions (CPTs)
- Empirical data, human expertise often used as a guide

Where do BNs Come From?

- Recent emphasis on learning BN from data
- Input: a set of cases (instantiations of variables)
- Output: network reflecting empirical distribution
- Issues: identifying causal structure, missing data, discovery of hidden (unobserved) variables, incorporating prior knowledge (bias) about structure

