Introduction to Bayes Nets

CS 486/686: Introduction to Artificial Intelligence

Introduction

Review probabilistic inference, independence and conditional independence

Bayesian Networks
What they are
What they mean

Example: Joint Distribution

sunny		
	cold	\sim cold
headache	0.108	0.012
\sim headache	0.016	0.064

~sunny

	cold	\sim cold
headache	0.072	0.008
~headache	0.144	0.576

$P($ headache^sunny^cold $)=0.108 \quad P(\sim$ headache^sunny^^~cold $)=0.064$
$P($ headache V sunny $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$
$P($ headache $)=0.108+0.012+0.072+0.008=0.2$

Example: Joint Distribution

| sunny | |
| :--- | :--- | :--- |
| cold \sim cold
 headache 0.108 0.012
 \sim headache 0.016 0.064 | |

| \sim sunny | |
| :--- | :--- | :--- |
| cold \sim cold
 headache 0.072 0.008
 ~headache 0.144 0.576 | |

$P($ headache ^ cold \mid sunny $)=P\left(\right.$ headache ^ cold ${ }^{\wedge}$ sunny) $/ P$ (sunny)

$$
\begin{aligned}
& =0.108 /(0.108+0.012+0.016+0.064) \\
& =0.54
\end{aligned}
$$

$P($ headache ^ cold $\mid \sim$ sunny $)=P($ headache ^ cold ^ ~sunny $) / P(\sim$ sunny $)$

$$
\begin{aligned}
& =0.072 /(0.072+0.008+0.144+0.576) \\
& =0.09
\end{aligned}
$$

Issue 1

How do we specify the full joint distribution over a set of random variables $X_{1}, X_{2}, \ldots, X_{n}$?

- What are the difficulties?

Issue 2

Inference in this representation is very slow

Independence

Two variables A and B are independent if knowledge of A does not change uncertainty of B (and vice versa)

- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A \wedge B)=P(A) P(B)$
- In general: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=\prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)$

Variable Independence

Two variables X and Y are conditionally independent given variable Z iff x, y are conditionally independent given z for all x in $\operatorname{Dom}(X), y$ in $\operatorname{Dom}(Y)$ and z in $\operatorname{Dom}(Z)$

Also applies to sets of variables $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$
If you know the value of Z (whatever it is) nothing you learn about Y will influence your beliefs about X

What good is independence?

Suppose (boolean) random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent

Specify the full joint using only n parameters instead of $2^{n}-1$
How?

Conditional Independence

- Two variables A and B are conditionally independent given C if
- $\mathrm{P}(\mathrm{a} \mid \mathrm{b}, \mathrm{c})=\mathrm{P}(\mathrm{a} \mid c)$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$
- i.e. knowing the value of B does not change the prediction of A if the value of C is known

Value of Independence

Fortunately, most domains do exhibit a fair amount of conditional independence

Exploit conditional independence for both representation and inference

Bayesian networks do just this

Notation

$P(X)$ for variable X (or set of variables) refers to (marginal) distribution over X

Distinguish between $\mathrm{P}(\mathrm{X})$ (distribution) and $\mathrm{P}(\mathrm{x})$ (numbers)
Think of $\mathrm{P}(\mathrm{X})$ as a function that accepts any x_{i} in $\operatorname{Dom}(\mathrm{X})$ and returns a number
$P(X \mid Y)$ is the family of conditional distributions over X (one for each y in $\operatorname{Dom}(\mathrm{Y})$

Think of $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ as a function that accepts any x_{i} and y_{k} and returns $P\left(x_{i} \mid y_{k}\right)$

Exploiting Conditional Independence

- Consider the following story
- If Kate woke up too early (E), she probably needs coffee (C); if Kate needs coffee (C), she is likely to be grumpy (G). If she is grumpy, then it's possible that the lecture won't go smoothly (L). If the lecture does not go smoothly, then the students will likely be sad (S).

E-Kate woke too early G - Kate is grumpy S - Students are sad C - Kate needs coffee L - The lecture did not go smoothly

Conditional Independence

- If you learned any of E, C, G, or L then your assessment of $P(S)$ would change
- if any of these are seen to be true, you would increase $\mathrm{P}(\mathrm{s})$ and decrease P(~s)
- So S is not independent of E, C, G, or L

Conditional Independence

- But if you knew the value of L (true or false) then learning the values of E, C, or G would not influence $P(S)$
- Students are not sad because Kate did not have a coffee, they are sad because of the lecture
- So S is independent of E, C, and G, given L

Conditional Independence

- S is independent of E, and C and G given L
- Similarly
- L is independent of E and C, given G
- G is independent of E given C
- This means that
- P(S|L,\{G,C,E\})=
- P(L|G,\{C,E\})=
- $P(G \mid C,\{E\})=$
- $P(C \mid E)=$
- $P(E)=$

Conditional Independence

- By the chain rule
- $\quad P(S, L, G, C, E)=$?
- By our independence assumptions
- P(S,L,G,C,E)=?
- We can specify the full joint by specifying five conditional distributions: $P(S \mid L), P(L \mid G), P(G \mid C), P(C \mid E)$ and $P(E)$

Example Quantification

- Specifying the joint requires only 9 parameters instead of 31 for explicit representation
- linear in number of vars instead of exponential
- linear in general if dependence has a chain structure

Inference is easy

- Want to know $\mathrm{P}(\mathrm{g})$? Use marginalization!

These are all terms specified in our local distributions!

Inference is Easy

- Computing $\mathrm{P}(\mathrm{g})$ in more concrete terms

Bayesian Networks

The structure just introduced is a Bayesian Network
Graphical representation of direct dependencies over a set of variables + a set of conditional probability distributions (CPTs) quantifying the strength of the influences

Bayesian Networks

(aka belief networks, causal networks, probabilistic networks...)

- A BN over a set of variables $\left\{X_{1}, \ldots, X_{n}\right\}$ consists of
- A directed acyclic graph whose nodes are the variables
- A set of CPTs (P($\left.X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ for each X_{i}

Bayesian Networks

- Key notions
- parents of a node: $\operatorname{Par}\left(X_{i}\right)$
- children of a node
- descendents of a node
- ancestors of a node
- family: set of nodes consisting of X_{i} and its parents
- CPT are defined over families

$$
\begin{aligned}
& \text { Parents }(C)=\{A, B\} \\
& \text { Children }(A)=\{C\} \\
& \text { Descendents }(B)=\{C, D\} \\
& \text { Ancestors }\{D\}=\{A, B, C\} \\
& \text { Family }\{C\}=\{C, A, B\}
\end{aligned}
$$

Bayes Net Example

- A couple CPTS are "shown"
- Explicit joint requires $2^{11}-1$ $=2047$ params
- BN requires only 27 parms (the number of entries for each CPT is listed)

Semantics

The structure of the BN means: every X_{i} is conditionally independent of all of its nondescendents given its parents

$$
\operatorname{Pr}\left(X_{i} \mid \mathrm{S} \cup \operatorname{Par}\left(X_{i}\right)\right)=\operatorname{Pr}\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right)\right)
$$

for any subset S of the NonDescendants $\left(X_{i}\right)$

Semantics

Imagine we make the query $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& =P\left(x_{n} \mid x_{n-1}, \ldots, x_{1}\right) P\left(x_{n-1} \mid x_{n-2}, \ldots, x_{1}\right) \ldots P\left(x_{1}\right) \\
& =P\left(x_{n} \mid \operatorname{Par}\left(x_{n}\right)\right) P\left(x_{n-1} \mid \operatorname{Par}\left(x_{n-1}\right)\right) \ldots P\left(x_{1}\right)
\end{aligned}
$$

Constructing a BN

Given any distribution over variables $X_{1}, X_{2}, \ldots, X_{n}$, we can construct a BN that faithfully represents that distribution

Take any ordering of the variables (say, the order given), and go through the following procedure for X_{n} down to X_{1}. Let $\operatorname{Par}\left(X_{n}\right)$ be any subset $\mathrm{S} \square$ $\left\{X_{1}, \ldots, X_{n-1}\right\}$ such that X_{n} is independent of $\left\{X_{1}, \ldots, X_{n-1}\right\}$ - S given S. Such a subset must exist. Then determine the parents of X_{n-1} in the same way, finding a similar $S \square\left\{X_{1}, \ldots, X_{n-2}\right\}$, and so on. In the end, a DAG is produced and the BN semantics must hold by construction.

Causal Intuitions

The construction of a BN is simple

Works with arbitrary orderings of variable set
But some orderings are much better than others
Generally, if ordering/dependence structure reflects causal intuitions, we get a more compact BN

- In this BN, we've used the ordering Malaria, Cold, Flu, Aches to build BN for distribution P for Aches
- Variable can only have parents that come earlier in the ordering

Causal Intuitions

We could have used a different ordering

Aches, Cold, Flu, Malaria

- Mal depends on Aches; but it also depends on Cold, Flu given Aches
- Cold, Flu explain away Mal given Aches
- Flu depends on Aches; but also on Cold given Aches
- Cold depends on Aches

Compactness

In general, if each random variable is directly influenced by at most k others then each CPT will be at most 2^{k}. Thus the entire network of n variables can be specified by $\mathrm{n} 2^{\mathrm{k}}$

$1+1+1+8=11$ numbers

$1+2+4+8=15$ numbers

Testing Independence

Given a BN, how we do determine if two variables X and Y are independent given evidence E ?

We use a simple graphical property
D-separation: A set of variables $E d$-separates X and Y if it blocks every undirected path between X and Y
X and Y are conditionally independent given E if $E d-$ separates X and Y

Blocking

- P is an undirected path from X to Y in $B N$. Let E be evidence set. E blocks path P iff there is some node in Z on the path such that
- Case 1: one arc on P goes into Z and one goes out of Z and Z in E, or
- Case 2: both arcs on P leave Z and Z in \mathbf{E}, or
- Case 3: both arcs on P enter Z and neither Z, nor any of its descendents, are in \mathbf{E}

Blocking

(1)

If Z in evidence, the path between X and Y blocked
(2)

If Z in evidence, the path between X and Y blocked
(3)

If Z is not in evidence andno descendent of Z is in evidence, then the path between X and Y is blocked

Examples

1. Subway and Thermometer?
2. Aches and Fever?
3. Aches and Thermometer?
4. Flu and Malaria?
5. Subway and ExoticTrip?

Other ways of determining conditional independence

- Non-descendents

A node is conditionally independent of its non-descendents, given its parents.
X is conditionally independent of the $\mathrm{Z}_{\mathrm{ij}} \mathrm{s}$ given $\mathrm{U}_{\mathrm{i}} \mathrm{s}$

Example

Fever is conditionally independent of Jaundice given Malaria and Flu

Markov Blanket

A node is conditionally independent of all other nodes in the network, given its parents, children and children's parents (Markov blanket).

Markov Blanket

Next Class

- Inference in Bayes Nets!

