
Adversarial Search

CS 486/686: Introduction to Artificial Intelligence
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Introduction
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So far we have only been concerned with a single 
agent

Today, we introduce an adversary!



Outline

Games

Minimax search

Alpha-beta pruning

Evaluation functions

Coping with chance
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Games

Games are the oldest, most well-studied domain in AI

Why?

They are fun

Easy to represent, rules are clear

State spaces can be very large

In chess, the search tree has ~10154 nodes

Like the “real world” in that decisions have to be made 
and time is important

Easy to determine when a program is doing well
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Types of Games

Perfect vs Imperfect Information

Perfect information: You can see the entire state of the game

Imperfect information:

Deterministic vs Stochastic

Deterministic: change in state is fully controlled by the players

Stochastic: change in state is partially determined by chance
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Game Search Challenge
What makes game search challenging?

There is an opponent

The opponent is malicious

it wants to win (by making you lose)

We need to take this into account when choosing 
moves

Notation:

MAX player wants to maximize its utility

MIN player wants to minimize its utility
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Example
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MAX’s job is to use the 
search tree to 
determine the best 
move



Optimal Strategies

In standard search

Optimal solution is sequence of moves leading to a goal 
state

Strategy (from MAX’s perspective)

Specify a move for the initial state

Specify a move for all possible states arising from MIN’s 
response

Then all possible responses to all of MIN’s responses to 
MAX’s previous moves

...
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Optimal Strategies
Goal: Find optimal strategy

What do we mean by optimal?

Strategy that leads to outcomes at least as good as 
any other strategy, given that MIN is playing 
optimally

Equilibrium (game theory)

Today we focus mainly on zero-sum games of 
perfect information

Easy games according to game theory
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Game Theory Detour
Game theory is a formal way of reasoning about 
interactions between multiple agents

To define a game we need the following components:
• The players, N
• Their possible strategies (or actions), Si

• Their utility functions: ui(s1,…,sn)



Game Theory Detour
(Nash) Equilibrium: Mutual best-response

s*=(s1*,…,sn*) if a NE if for all i in N

For (2-player) zero sum games you can compute 
NE using linear programming BUT….



Extensive Form Games
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Subgame Perfect 
Equilibria
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Subgame Perfect Equilibria 

s* must be a Nash equilibrium in 
all subgames



Existence of SPE

Theorem (Kuhn): Every finite extensive form 
game has an SPE.

Compute the SPE using backward induction

Identify equilibria in the bottom most subtrees

Work upwards
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Minimax Value
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Utility(n)  if n is a terminal state

Maxs in Succ(n) MINIMAX-VALUE(s) if n is a MAX node

Mins in Succ(n) MINIMAX-VALUE(s) is n is a MIN node

MINIMAX-VALUE(n) =

ply



Properties of Minimax

Complete:

Time complexity: 

Space complexity: 

Optimal:
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Minimax and Multi-Player Games
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Question

Can we now write a program that will play 
chess reasonably well?
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Question

Can we now write a program that will play 
chess reasonably well?

For chess b~35 and m~100
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Alpha-Beta Pruning

If we are smart (and lucky) we can do pruning

Eliminate large parts of the tree from consideration

Alpha-beta pruning applied to a minimax tree
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Alpha-Beta Pruding
Alpha:

Value of best (highest value) choice we have found so far on 
path for MAX

Beta:

Value of best (lowest value) choice we have found so far on 
path for MIN

Update alpha and beta as search continues

Prune as soon as value of current node is known to be 
worse than current alpha or beta values for MAX or 
MIN
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Example
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MAX

MIN

12 83 2 14 5 230 12



Properties of Alpha-Beta
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• Can pruning result in a different outcome than 
minimax search?

• How much can be pruned when searching?



Real-Time Decisions

Alpha-Beta can be a huge improvement over minimax

Still not good enough

Need to search to terminal states for at least part of search space

Need to make decisions quickly

Solution

Heuristic evaluation function + cutoff tests
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Evaluation Functions

Apply an evaluation function to a state
If terminal state, function returns actual 
utility

If non-terminal, function returns estimate 
of the expected utility

Function must be fast to compute
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Evaluation Functions

How do we get evaluation functions?
Expert knowledge
Learned from experience

Look for features of states
Weighted linear function Eval(s)=∑i wifi(s)
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Cutting Off Search
Do we have to search to terminal states?

No! Cut search early and apply evaluation function

When?

Arbitrarily (but deeper is better)

Quiescent states
States that are “stable”

Singular extensions
Searching deeper when you have a move that is “clearly better”

Can be used to avoid the horizon effect
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Cutting Off Search

How deep?

Novice player
• 5-ply (minimax)

Master player
• 10-ply (alpha-beta)

Grandmaster
• 14-ply + fantastic evaluation function, opening and endgame 

databases,...
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Stochastic Games
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Stochastic Games

Need to consider best/worst cases + 
probability they will occur

Recall: Expected value of a random variable x 
E[x]=∑x in X P(x)x

Expectiminimax: minimax but at chance 
nodes compute the expected value
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Expectiminimax
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Expectiminimax
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WARNING: exact values do matter!  Order-preserving 
transformations of the evaluation function can change the choice 
of moves.  Must have positive linear transformations only



What about Go?
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b=250, d=150



What about Go?

Monte-Carlo Tree Search (MCTS)

• Build search tree according to outcomes of simulated 
plays
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Upper Confidence 

Bounds for Trees 

(UCT): “Minimax 

search” using UCB



MCTS

Selection:

Starting at the root, traverse tree following a policy using Upper 
Confidence Bounds (UCB) until you run out of statistics needed

i.e. treat the problem as a Multi-Armed Bandit
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Upper Confidence 

Bounds for Trees 

(UCT): “Minimax 

search” using UCB



MCTS

Expansion:

Once you reach a node on which you have no statistics, select a 
random child node
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MCTS

Simulation:

Using a rollout policy (possibly a random policy or something 
lightweight) play out to the end of the game.
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MCTS

Backpropagation:

Using the outcome of the rollout in the simulation phase (i.e. was 
it a win or a loss), update the statistics for all nodes from the child
you expanded back up to the root.
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Summary

Games pose lots of fascinating challenges for AI 
researchers

Minimax search allows us to play optimally against an 
optimal opponent

Alpha-beta pruning allows us to reduce the search 
space

MCTS is needed for large games

A good evaluation function is key to doing well

Games are fun!
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