
Constraints and
Local Search

CS 486/686: Introduction to Artificial Intelligence

1

Overview

• Uninformed Search

• Very general: assumes no knowledge about the problem

• BFS, DFS, IDS

• Informed Search

• Heuristics

• A* search and variations

• Search and Optimization

• What are the problem features?

• Iterative improvement: hill climbing, simulated annealing

• Genetic algorithms

2

Introduction

Both uninformed and
informed search
systematically explore the
search space

Keep 1 or more paths in
memory

Solution is a path to the
goal

3

S

B

A

G
S

A B

GB G

G

For many problems the path is unimportant

Examples

4

AV ~B V C

~A V C V D

B V D V ~E

~C V ~D V ~E

…

Informal Characterization

Combinatorial structure being optimized

Constraints have to be satisfied

There is a cost function

We want to find a good solution

Search all possible states is infeasible

Often easy to find some solution to the problem

Often provably hard (NP-complete) to find the best solution

5

Typical Example: 4 Queens

Start with a “complete” state

Operators reassign variables
Choose variable at random
Choose value using min-conflicts heuristic

Continue until solved

6

Performance for N-Queens

Given a random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (n=10,000,000)!

This seems to hold for almost any randomly generated CSP except for a
small set!

7

Constraints
Variables

=

Typical Example: TSP

Goal is to minimize the length of the
route

8

Constructive method: Start from
scratch and build up a solution
(using A* etc)

Iterative improvement
method: Start with
solution (may be
suboptimal or broken) and
improve it

Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a
landscape

Goal: find the highest (or lowest) point

9

Iterative Improvement Methods

Start at some random point
(potential solution)

Generate all possible points to
move to

If the set is not empty, choose
a point and move to it

If you are stuck (set is empty),
then restart

10

Hill Climbing (Gradient Descent)

Main idea: Always take a step in the direction that
improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

11

“…like trying to find the top of Mt
Everest in a thick fog while
suffering from amnesia”, Russell
and Norvig

Hill Climbing
(Discrete Version)
1. Start with some initial configuration S, with value V(S)

2. Generate Moveset(S)= {S1,…,Sn}

3. Smax=argmaxSi V(Si)

4. If V(Smax)<V(S) return S (local optimium)

5. Let S←Smax Go to 2

12

Judging Hill Climbing

Good news
Easy to program!
Requires no memory of where we have been!

13

Judging Hill Climbing

Good news
Easy to program!

Requires no memory of
where we have been!

14

Bad news

Not necessarily complete

Not optimal

It can get stuck in local
optima/plateaus

Improving Hill Climbing

Plateaus

• Allow for sideways
moves

• But be careful since might move
sideways forever

Local Maxima

• Random restarts:

If at first you do not
succeed, try, try again!

15

Simulated Annealing

16

1. Start with some initial configuration S, with value V(S)

2. Generate Moveset(S)= {S1,…,Sn}

3. Choose Si randomly from Moveset(S)

4. Define ΔV=V(Si)-V(S)

5. If ΔV>0 then S←Si

else with probability p, S←Si

6. Go to 2

Escape local maxima by

allowing “downhill moves”

What About p?

Main Issue: How should we choose the probability of
making a “bad” move?

Ideas:

p=0.1 (or some fixed value)?

Decrease p with time?

Make p a function of |V-Vi|?

…

17

Selecting Moves in Simulated
Annealing

• If new value Vi is better than old value V then definitely
move to new solution

• If new value Vi is worse than old value V then move to
new solution with some probability

18

Boltzmann Distribution

Selecting Moves in Simulated
Annealing

19

P
r(

 a
cc

ep
t

m
o

ve
)

Vi stayed the sameNew Vi much worse

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high
and decreases over time towards 0. If T is close to 0 then the prob. of making
a bad move is almost 0.

High Temperature

Properties to Simulated Annealing

When T is high:

Exploratory phase: even bad moves have a chance of being
picked (~ random walk)

When T is low:

Exploitation phase: “bad” moves have low probability of being
chosen (randomized hill climbing)

If T is decreased slowly enough then simulated
annealing is (theoretically) guaranteed to reach optimal
solution

20

Genetic Algorithms
• Populations are encoded into a representation which allows

certain operations to occur

• An encoded candidate solution is an individual

• Each individual has a fitness

• Numerical value associated with its quality of solution

• A population is a set of individuals

• Populations change over generations by applying operators
to them

• Operations: selection, mutation, crossover

21

Typical Genetic Algorithm
• Initialize: Population P←N random individuals

• Evaluate: For each x in P, compute fitness(x)

• Loop

• For i=1 to N

• Select 2 parents each with probability proportional to fitness scores

• Crossover the 2 parents to produce a new bitstring (child)

• With some small probability mutate child

• Add child to population

• Until some child is fit enough or you get bored

• Return best child in the population according to fitness function

22

Selection

• Fitness proportionate selection:

• Can lead to overcrowding

• Tournament selection

• Pick i, j at random with uniform probability

• With probability p select fitter one

• Rank selection

• Sort all by fitness

• Probability of selection is proportional to rank

• Softmax (Boltzmann) selection:

23

Crossover

• Combine parts of individuals to create new ones

• For each pair, choose a random crossover point

• Cut the individuals there and swap the pieces

24

101|0101 011|1110

Cross over

011|0101 101|1110

Implementation: use a crossover mask m

Given two parents a and b the offspring are

(a^m)V(b^~m) and (a^~m)V (b^m)

Mutation

• Mutation generates new features that
are not present in original population

• Typically means flipping a bit in the
string

• Can allow mutation in all individuals or
just in new offspring

25

100111 mutates to 100101

Example

26

Summary

Useful for optimization problems

Often the second-best way to solve a problem

If you can, use A* or linear programming or ...

But there are cool applications: Scheduling umpires for US Open,
solving jigsaw puzzles,…

Need to think about how to escape from local optima

Random restarts

Allowing for bad moves

...

27

