Constraints and Local Search

CS 486/686: Introduction to Artificial Intelligence

Overview

- Uninformed Search
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS
- Informed Search
 - Heuristics
 - A* search and variations
- Search and Optimization
 - What are the problem features?
 - Iterative improvement: hill climbing, simulated annealing
 - Genetic algorithms

Introduction

Both uninformed and informed search systematically explore the search space

Keep 1 or more paths in memory

Solution is a path to the goal

For many problems the path is unimportant

Examples

AV ~B V C ~A V C V D B V D V ~E ~C V ~D V ~E

- -

Informal Characterization

- Combinatorial structure being optimized
- Constraints have to be satisfied
- There is a cost function
 - We want to find a **good** solution
- Search all possible states is infeasible
 - Often easy to find **some solution** to the problem
 - Often provably hard (NP-complete) to find the best solution

Typical Example: 4 Queens

Start with a "complete" state

Operators reassign variables

Choose variable at random

Choose value using **min-conflicts** heuristic

Continue until solved

Performance for N-Queens

Given a random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (n=10,000,000)!

This seems to hold for almost any randomly generated CSP except for a small set!

Typical Example: TSP

Goal is to minimize the length of the route

Constructive method: Start from scratch and build up a solution (using A* etc)

Iterative improvement method: Start with solution (may be suboptimal or broken) and improve it

Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a landscape

Goal: find the highest (or lowest) point

Iterative Improvement Methods

Start at some random point (potential solution)

Generate all possible points to move to

If the set is not empty, choose a point and move to it

If you are stuck (set is empty), then restart

Hill Climbing (Gradient Descent)

Main idea: Always take a step in the direction that improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

"...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia", Russell and Norvig

Hill Climbing (Discrete Version)

- 1. Start with some initial configuration S, with value V(S)
- 2. Generate Moveset(S)= {S₁,...,S_n}
- 3. S_{max}=argmax_{Si} V(S_i)
- 4. If V(S_{max})<V(S) return S (local optimium)
- 5. Let $S \leftarrow S_{max}$ Go to 2

Judging Hill Climbing

Good news

Easy to program!

Requires no memory of where we have been!

Judging Hill Climbing

Good news

Easy to program!

Requires no memory of where we have been!

Bad news

Not necessarily complete

Not optimal

It can get stuck in local optima/plateaus

Improving Hill Climbing

Plateaus

- Allow for sideways moves
 - But be careful since might move sideways forever

Local Maxima

Random restarts:

If at first you do not succeed, try, try again!

Simulated Annealing

Escape local maxima by allowing "downhill moves"

- 1. Start with some initial configuration S, with value V(S)
- 2. Generate Moveset(S)= {S₁,...,S_n}
- 3. Choose S_i randomly from Moveset(S)
- 4. Define $\Delta V = V(S_i) V(S)$
- 5. If $\Delta V > 0$ then $S \leftarrow S_i$

else with probability p, $S \leftarrow S_i$

6. Go to 2

What About p?

Main Issue: How should we choose the probability of making a "bad" move?

Ideas:

p=0.1 (or some fixed value)?

Decrease p with time?

Make p a function of $|V-V_i|$?

Selecting Moves in Simulated Annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with some probability

Boltzmann Distribution

$$e^{\frac{\Delta V}{T}}$$

Selecting Moves in Simulated Annealing

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is almost 0.

Properties to Simulated Annealing

When T is high:

Exploratory phase: even bad moves have a chance of being picked (~ random walk)

When T is low:

Exploitation phase: "bad" moves have low probability of being chosen (randomized hill climbing)

If T is decreased slowly enough then simulated annealing is (theoretically) guaranteed to reach optimal solution

Genetic Algorithms

- Populations are encoded into a representation which allows certain operations to occur
- An encoded candidate solution is an **individual**
- Each individual has a **fitness**
 - Numerical value associated with its quality of solution
- A **population** is a set of individuals
- Populations change over generations by applying operators to them
 - Operations: selection, mutation, crossover

Typical Genetic Algorithm

- Initialize: Population P←N random individuals
- Evaluate: For each x in P, compute fitness(x)
- Loop
 - For i=1 to N
 - **Select** 2 parents each with probability proportional to fitness scores
 - **Crossover** the 2 parents to produce a new bitstring (child)
 - With some small probability **mutate** child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function

Selection

- Fitness proportionate selection:
 - Can lead to overcrowding
- Tournament selection
 - Pick i, j at random with uniform probability
 - With probability p select fitter one
- Rank selection
 - Sort all by fitness
 - Probability of selection is proportional to rank
- Softmax (Boltzmann) selection:

 $P(i) = \frac{\text{fitness}(i)}{\sum_{i} \text{fitness}(j)}$

 $P(i) = \frac{e^{\text{fitness}(i)/T}}{\sum_{i} e^{\text{fitness}(j)/T}}$

Crossover

- Combine parts of individuals to create new ones
- For each pair, choose a random crossover point
 - Cut the individuals there and swap the pieces

101 0101	011 1110
Cross over	
011 0101	101 1110

Implementation: use a crossover mask m Given two parents a and b the offspring are (a^m)V(b^~m) and (a^~m)V (b^m)

Mutation

- Mutation generates new features that are not present in original population
- Typically means flipping a bit in the string
- Can allow mutation in all individuals or just in new offspring

Example

Summary

Useful for optimization problems

Often the **second-best way** to solve a problem

If you can, use A* or linear programming or ...

But there are cool applications: Scheduling umpires for US Open, solving jigsaw puzzles,...

Need to think about how to escape from local optima

Random restarts

. . .

Allowing for bad moves