Constraints and Local Search

CS 486/686: Introduction to Artificial Intelligence
Overview

- **Uninformed Search**
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS

- **Informed Search**
 - Heuristics
 - A* search and variations

- **Search and Optimization**
 - What are the problem features?
 - Iterative improvement: hill climbing, simulated annealing
 - Genetic algorithms
Introduction

Both uninformed and informed search systematically explore the search space

Keep 1 or more paths in memory

Solution is a path to the goal

For many problems the path is unimportant
Examples

AV ~B V C
~A V C V D
B V D V ~E
~C V ~D V ~E
...

Agents = dispatch centers

Diagram showing trucks and depots with connections.

Diagram showing a network with various nodes and edges.
Informal Characterization

Combinatorial structure being optimized
Constraints have to be satisfied
There is a cost function
 We want to find a good solution
Search all possible states is infeasible
 Often easy to find some solution to the problem
 Often provably hard (NP-complete) to find the best solution
Typical Example: 4 Queens

Start with a “complete” state
Operators reassign variables
 Choose variable at random
 Choose value using min-conflicts heuristic
Continue until solved
Performance for N-Queens

Given a random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (n=10,000,000)!

This seems to hold for almost any randomly generated CSP except for a small set!
Typical Example: TSP

Goal is to minimize the length of the route

Constructive method: Start from scratch and build up a solution (using A* etc)

Iterative improvement method: Start with solution (may be suboptimal or broken) and improve it
Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a landscape

Goal: find the highest (or lowest) point
Iterative Improvement Methods

Start at some random point (potential solution)

Generate all possible points to move to

If the set is not empty, choose a point and move to it

If you are stuck (set is empty), then restart
Hill Climbing (Gradient Descent)

Main idea: Always take a step in the direction that improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

“...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia”, Russell and Norvig
Hill Climbing
(Discrete Version)

1. Start with some initial configuration S, with value $V(S)$
2. Generate $\text{Moveset}(S) = \{S_1, \ldots, S_n\}$
3. $S_{\text{max}} = \text{argmax}_{i} V(S_i)$
4. If $V(S_{\text{max}}) < V(S)$ return S (local optimum)
5. Let $S \leftarrow S_{\text{max}}$ Go to 2
Judging Hill Climbing

Good news
Easy to program!
Requires no memory of where we have been!
Judging Hill Climbing

Good news

Easy to program!
Requires no memory of where we have been!

Bad news

Not necessarily complete
Not optimal
It can get stuck in local optima/plateaus
Improving Hill Climbing

Plateaus

• Allow for sideways moves
 • But be careful since might move sideways forever

Local Maxima

• Random restarts:

 If at first you do not succeed, try, try again!
Simulated Annealing

Escape local maxima by allowing “downhill moves”

1. Start with some initial configuration S, with value V(S)
2. Generate Moveset(S)= \{S_1,\ldots,S_n\}
3. Choose S_i \textbf{randomly} from Moveset(S)
4. Define $\Delta V=V(S_i)-V(S)$
5. If $\Delta V>0$ then $S \leftarrow S_i$

 \textbf{else with probability} p, $S \leftarrow S_i$
6. Go to 2
What About p?

Main Issue: How should we choose the probability of making a “bad” move?

Ideas:

$p=0.1$ (or some fixed value)?

Decrease p with time?

Make p a function of $|V-V_i|$?

...
Selecting Moves in Simulated Annealing

• If new value \(V_i \) is **better** than old value \(V \) then **definitely** move to new solution

• If new value \(V_i \) is **worse** than old value \(V \) then move to new solution with *some probability*

Boltzmann Distribution

\[
e^{-\frac{\Delta V}{T}}
\]
Selecting Moves in Simulated Annealing

Boltzmann Distribution: $T > 0$ is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the probability of making a bad move is almost 0.

$$e^{\frac{\Delta V}{T}}$$

![Graph showing the Boltzmann distribution with different temperatures and the probability of accepting a move.](image)
Properties to Simulated Annealing

When T is high:

- **Exploratory phase**: even bad moves have a chance of being picked (~ random walk)

When T is low:

- **Exploitation phase**: “bad” moves have low probability of being chosen (randomized hill climbing)

If T is decreased slowly enough then simulated annealing is (theoretically) guaranteed to reach optimal solution
Genetic Algorithms

• Populations are encoded into a representation which allows certain operations to occur
• An encoded candidate solution is an individual
• Each individual has a fitness
 • Numerical value associated with its quality of solution
• A population is a set of individuals
• Populations change over generations by applying operators to them
 • Operations: selection, mutation, crossover
Typical Genetic Algorithm

- Initialize: Population $P \leftarrow N$ random individuals
- Evaluate: For each x in P, compute fitness(x)
- Loop
 - For $i=1$ to N
 - Select 2 parents each with probability proportional to fitness scores
 - Crossover the 2 parents to produce a new bitstring (child)
 - With some small probability mutate child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function
Selection

• **Fitness proportionate selection:**
 • Can lead to overcrowding

• **Tournament selection**
 • Pick i, j at random with uniform probability
 • With probability p select fitter one

• **Rank selection**
 • Sort all by fitness
 • Probability of selection is proportional to rank

• **Softmax (Boltzmann) selection:**

\[
P(i) = \frac{e^{\text{fitness}(i)/T}}{\sum_j e^{\text{fitness}(j)/T}}
\]
Crossover

• Combine parts of individuals to create new ones
• For each pair, choose a random crossover point
• Cut the individuals there and swap the pieces

<table>
<thead>
<tr>
<th>101</th>
<th>0101</th>
<th>011</th>
<th>1110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross over</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>0101</td>
<td>101</td>
<td>1110</td>
</tr>
</tbody>
</table>

Implementation: use a crossover mask m
Given two parents a and b the offspring are
\[(a^m)\lor(b^{\sim m})\text{ and } (a^{\sim m})\lor(b^m)\]
Mutation

• Mutation generates new features that are not present in original population
• Typically means flipping a bit in the string

100111 mutates to 100101

• Can allow mutation in all individuals or just in new offspring
Example
Summary

Useful for optimization problems

Often the **second-best way** to solve a problem

 If you can, use A* or linear programming or ...

 But there are cool applications: Scheduling umpires for US Open, solving jigsaw puzzles,...

Need to think about how to escape from local optima

 Random restarts

 Allowing for bad moves

...