
Constraints and
Local Search

CS 486/686: Introduction to Artificial Intelligence
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Overview

• Uninformed Search

• Very general: assumes no knowledge about the problem

• BFS, DFS, IDS

• Informed Search

• Heuristics

• A* search and variations

• Search and Optimization

• What are the problem features?

• Iterative improvement: hill climbing, simulated annealing

• Genetic algorithms
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Introduction

Both uninformed and 
informed search 
systematically explore the 
search space

Keep 1 or more paths in 
memory

Solution is a path to the 
goal
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For many problems the path is unimportant



Examples
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AV ~B V C

~A V C V D

B V D V ~E

~C V ~D V ~E

…



Informal Characterization

Combinatorial structure being optimized

Constraints have to be satisfied

There is a cost function

We want to find a good solution

Search all possible states is infeasible

Often easy to find some solution to the problem

Often provably hard (NP-complete) to find the best solution
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Typical Example: 4 Queens

Start with a “complete” state

Operators reassign variables
Choose variable at random
Choose value using min-conflicts heuristic

Continue until solved
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Performance for N-Queens

Given a random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (n=10,000,000)!

This seems to hold for almost any randomly generated CSP except for a 
small set!
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Typical Example: TSP

Goal is to minimize the length of the 
route
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Constructive method: Start from 
scratch and build up a solution 
(using A* etc)

Iterative improvement 
method: Start with 
solution (may be 
suboptimal or broken) and 
improve it



Iterative Improvement Methods

Idea: Imagine all possible solutions laid out on a 
landscape

Goal: find the highest (or lowest) point
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Iterative Improvement Methods

Start at some random point 
(potential solution)

Generate all possible points to 
move to

If the set is not empty, choose 
a point and move to it

If you are stuck (set is empty), 
then restart

10



Hill Climbing (Gradient Descent)

Main idea: Always take a step in the direction that 
improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms
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“…like trying to find the top of Mt 
Everest in a thick fog while 
suffering from amnesia”, Russell 
and Norvig



Hill Climbing
(Discrete Version)
1. Start with some initial configuration S, with value V(S)

2. Generate Moveset(S)= {S1,…,Sn}

3. Smax=argmaxSi V(Si)

4. If V(Smax)<V(S) return S (local optimium)

5. Let S←Smax Go to 2
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Judging Hill Climbing

Good news
Easy to program!
Requires no memory of where we have been!
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Judging Hill Climbing

Good news
Easy to program!

Requires no memory of 
where we have been!
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Bad news

Not necessarily complete

Not optimal

It can get stuck in local 
optima/plateaus



Improving Hill Climbing

Plateaus

• Allow for sideways 
moves

• But be careful since might move 
sideways forever

Local Maxima

• Random restarts:

If at first you do not 
succeed, try, try again!
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Simulated Annealing
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1. Start with some initial configuration S, with value V(S)

2. Generate Moveset(S)= {S1,…,Sn}

3. Choose Si randomly from Moveset(S)

4. Define ΔV=V(Si)-V(S)

5. If ΔV>0 then S←Si

else with probability p, S←Si

6. Go to 2

Escape local maxima by 

allowing “downhill moves”



What About p?

Main Issue: How should we choose the probability of 
making a “bad” move?

Ideas:

p=0.1 (or some fixed value)?

Decrease p with time?

Make p a function of |V-Vi|?

…
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Selecting Moves in Simulated 
Annealing

• If new value Vi is better than old value V then definitely
move to new solution

• If new value Vi is worse than old value V then move to 
new solution with some probability
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Boltzmann Distribution



Selecting Moves in Simulated 
Annealing
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Vi stayed the sameNew Vi much worse

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high 
and decreases over time towards 0. If T is close to 0 then the prob. of making 
a bad move is almost 0.

High Temperature



Properties to Simulated Annealing

When T is high:

Exploratory phase: even bad moves have a chance of being 
picked (~ random walk)

When T is low:

Exploitation phase: “bad” moves have low probability of being 
chosen (randomized hill climbing)

If T is decreased slowly enough then simulated 
annealing is (theoretically) guaranteed to reach optimal 
solution
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Genetic Algorithms
• Populations are encoded into a representation which allows 

certain operations to occur

• An encoded candidate solution is an individual

• Each individual has a fitness

• Numerical value associated with its quality of solution

• A population is a set of individuals

• Populations change over generations by applying operators 
to them

• Operations: selection, mutation, crossover
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Typical Genetic Algorithm
• Initialize: Population P←N random individuals

• Evaluate: For each x in P, compute fitness(x)

• Loop

• For i=1 to N 

• Select 2 parents each with probability proportional to fitness scores

• Crossover the 2 parents to produce a new bitstring (child)

• With some small probability mutate child

• Add child to population

• Until some child is fit enough or you get bored

• Return best child in the population according to fitness function

22



Selection

• Fitness proportionate selection:

• Can lead to overcrowding

• Tournament selection

• Pick i, j at random with uniform probability

• With probability p select fitter one

• Rank selection

• Sort all by fitness

• Probability of selection is proportional to rank

• Softmax (Boltzmann) selection:
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Crossover

• Combine parts of individuals to create new ones

• For each pair, choose a random crossover point

• Cut the individuals there and swap the pieces
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101|0101                 011|1110

Cross over

011|0101                 101|1110

Implementation: use a crossover mask m

Given two parents a and b the offspring are

(a^m)V(b^~m) and (a^~m)V (b^m)



Mutation

• Mutation generates new features that 
are not present in original population

• Typically means flipping a bit in the 
string

• Can allow mutation in all individuals or 
just in new offspring
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100111 mutates to 100101



Example
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Summary

Useful for optimization problems

Often the second-best way to solve a problem

If you can, use A* or linear programming or ...

But there are cool applications: Scheduling umpires for US Open, 
solving jigsaw puzzles,…

Need to think about how to escape from local optima

Random restarts

Allowing for bad moves

...
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