Constraint Satisfaction

CS 486/686: Introduction to Artificial Intelligence
Outline

What are Constraint Satisfaction Problems (CSPs)?

Standard Search and CSPs

Improvements

Backtracking

Backtracking + heuristics

Forward Checking
Introduction

Standard search

State is a “black box”: arbitrary data structure

Goal test: any function over states

Successor function: anything that lets you move from one state to another

Constraint satisfaction problems (CSPs)

A special subset of search problems

States are defined by variables X_i with values from domains D_i

Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
Example: Map Colouring

Variables

V={T, V, NSW, Q, NT, WA, SA}

Domains

D={red, blue, green}

Constraints: adjacent regions must have different colours

Implicit: WA≠NT

Explicit: (WA, NT) ∈ {(red, blue), (red, green), (blue, red)…}

Solution is an assignment satisfying all constraints

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}
N Queens Problem

Variables: X_{ij}

Domains: \{0, 1\}

Constraints:

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]

\[
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
N Queens Problem

Variables: Q_i

Domains: \{1,2,...,N\}

Constraints:

Implicit:

\[\forall i, j \text{ non-threatening}(Q_i, Q_j) \]

Explicit:

\[(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\} \]

\[\ldots \]
3 Sat

Variables: V_1, \ldots, V_n

Domains: $\{0, 1\}$

Constraints:

K constraints of the form $V_i^* \lor V_j^* \lor V_k^* V_i^*$ where V_i^* is either V_i or $\neg V_i$

$$\begin{align*}
A & \neg B \lor \neg C \\
\neg A & \lor B \lor D \\
D & \lor B \lor E \\
\neg A & \lor \neg B \lor C
\end{align*}$$

A canonical NP-complete problem
Types of CSPs

Discrete Variables

Finite domains
- If domain has size d, then there are $O(d^n)$ complete assignments
- Boolean CSPs (including 3-SAT)

Infinite domains (e.g. integers)
- Constraint languages
- Linear constraints are solvable but non-linear are undecidable

Continuous Variables
- Linear programming (linear constraints solvable in polynomial time)
Types of CSPs

Varieties of Constraints

Unary constraints: involve a single variable
NSW≠red

Binary constraints: involve a pair of variables
NSW≠Q

Higher-order constraints: involve more than two variables
AllDiff(V₁,...,Vₙ)

Soft Constraints (preferences)
red “is better than” green
Constrained optimization problems
Constraint Graphs

You can represent binary constraints with a constraint graph

Nodes are variables

Edges are constraints
We can use standard search to solve CSPs

States:
Initial State:
Successor Function:
Goal Test:
CSPs and Search

States:
Initial State:
Successor Function:
Goal Test:

What happens if we run something like BFS?
Commutativity

Key Insight: CSPS are commutative

- Order of actions does not effect outcome
- Can assign variables in any order

CSP algorithms take advantage of this

- Consider assignment of a single variable at each node in the tree

{WA=red, NT=blue} is equivalent to {NT=blue, WA=red}
Backtracking search is the basic algorithm for CSPs

Select unassigned variable X

For each value \{x_1,...,x_n\} in domain of X

If value satisfies constraints, assign \(X = x_i \) and exit loop

If an assignment is found

Move to next variable

If no assignment found

Back up to preceding variable and try a different assignment for it
Backtracking Example
Backtracking Example
Backtracking Example

```
0
/  \
/   \
WA=blue  WA=red  WA=green
\    /   /   /
/   /   /   /
NT=blue NT=red NT=green
```

```
WA
   /   \
   /     \
NT  Q  NSW
 `/   /`
 V   V
```

T
Backtracking Example

0

WA = blue

WA = red

WA = green

NT = blue

NT = red

NT = green

SA = blue

SA = red

SA = green
Backtracking and Efficiency

Note that backtracking search is basically DFS with some small improvements. Can we improve on it further?

Ordering:
- Which variables should be tried first?
- In what order should a variable’s values be tried?

Filtering:
- Can we detect failure early?

Structure:
- Can we exploit the problem structure?
Ordering: Most Constrained Variable

Choose the variable which has the fewest “legal” moves

AKA minimum remaining values (MRV)

D_{NT} = \{green, blue\}
D_{SA} = \{green, blue\}
D_{others} = \{red, green, blue\}

D_{SA} = \{blue\}
D_{Q} = \{blue, red\}
D_{others} = \{red, green, blue\}
Ordering: Most Constraining Variable

Most constraining variable:

Choose variable with most constraints on remaining variables

Tie-breaker among most constrained variables

SA is involved in 5 constraints
Ordering: Least-Constraining Value

Given a variable, choose the least constraining value:

The one that rules out the fewest values in the remaining variables
Filtering: Forward Checking

Forward checking:

Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values
Example: Forward Checking

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
</tbody>
</table>

WA → NT → Q → NSW → V → SA → T
Example: Forward Checking

Forward checking removes the value Red of NT and of SA
Example: Forward Checking

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>G</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
</tbody>
</table>

26
Example: Forward Checking

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>RGB</td>
<td>B</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>B</td>
<td>GB</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Example: Forward Checking

Empty set: the current assignment
\{(WA \leftarrow R), (Q \leftarrow G), (V \leftarrow B)\}
does not lead to a solution

<table>
<thead>
<tr>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>RGB</td>
<td>B</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>B</td>
<td>B</td>
<td>RGB</td>
</tr>
</tbody>
</table>
Filtering: Arc Consistency

Forward checking propagates information from assigned to unassigned variables, but it can not detect all future failures early

<table>
<thead>
<tr>
<th></th>
<th>WA</th>
<th>NT</th>
<th>Q</th>
<th>NSW</th>
<th>V</th>
<th>SA</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>GB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>R</td>
<td>B</td>
<td>G</td>
<td>RB</td>
<td>RGB</td>
<td>B</td>
<td>RGB</td>
<td>RGB</td>
</tr>
</tbody>
</table>

NT and SA can not both be blue!

Need to reason about constraints
Filtering: Arc Consistency

Given domains D_1 and D_2, an arc is consistent if for all x in D_1 there is a y in D_2 such that x and y are consistent.

$D_{SA} = \{\text{blue}\}$ \hspace{1cm} $D_{NSW} = \{\text{blue, red}\}$

Is the arc from SA to NSW consistent?

Is the arc from NSW to SA consistent?
Structure: Independent Subproblems

Tasmania does not interact with the rest of the problem

Idea: Break down the graph into its connected components. Solve each component separately.

Significant potential savings:

- Assume n variables with domain size d: \(O(d^n)\)
- Assume each component involves c variables (n/c components) for some constant c: \(O(d^c \frac{n}{c})\)
CSPs can be solved in $O(nd^2)$ if there are no loops in the constraint graph.

Step 1: For $i=n$ to 1, make-consistent(X_i,parent(X_i))

Step 2: For $i=1$ to n, assign value to X_i consistent with parent(X_i) [Note: No backtracking!]
Structure: Non-Trees?

Step 1: Choose a subset S of variables such that the constraint graph becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S
1. Remove from the domains of remaining variables, all values that are inconsistent with S
2. If the remaining CSP has a solution, return it

If we assign SA a colour and then remove that colour from the domains all other variables, then we have a tree
Structure: Cutsets

Running time:

• Let c be the size of the cutset then
 • \(d^c \) combinations of variables in S
 • For each combination must solve a tree problem of size n-c \((O(n-c)d^2) \)
 • Therefore, running time is \(O(d^c(n-c)d^2) \)
• Finding smallest cutset is NP-hard but efficient approximations exist
Structure: Non-Trees?

Tree decompositions

1. Each variable appears in at least one subproblem
2. If two variables are connected by a constraint, then they (and the constraint) must appear together in at least one subproblem
3. If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems
Structure: Tree Decompositions

Solve each subproblem independently
 e.g \{ (WA=r, NT=g, SA=b), (WA=b, NT=g, SA=r), \ldots \}

Solve constraints connecting the subproblems using tree-based algorithm (to make sure that subproblems with shared variables agree)

Want to make the subproblems as small as possible!
Tree width: \(w = \text{Size of largest subproblem} - 1 \)
Running time \(O(nd^{w+1}) \)

Finding tree decomposition with min tree-width is NP-hard, but good heuristics exist
Summary

Formalize problems as CSPs

Backtracking search

Improvements using

Ordering

Filtering

Structure