Constraint Satisfaction

CS 486/686: Introduction to Artificial Intelligence

Outline

What are Constraint Satisfaction Problems (CSPs)?

Standard Search and CSPs

Improvements

Backtracking

Backtracking + heuristics

Forward Checking

Introduction

Standard search

State is a "black box": arbitrary data structure

Goal test: any function over states

Successor function: anything that lets you move from one state to another

Constraint satisfaction problems (CSPs)

A special subset of search problems

States are defined by *variables* X_i with values from *domains* D_i

Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Example: Map Colouring

Variables

V={T, V, NSW, Q, NT, WA, SA}

Domains

D={red, blue, green}

Constraints: adjacent regions must have different colours

Implicit: WA≠NT

Explicit: (WA, NT) = {(red, blue), (red, green), (blue, red)...}

Solution is an assignment satisfying all constraints

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

N Queens Problem

Variables: Xi,j

Domains: {0,1}

Constraints:

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

N Queens Problem

Variables: Qi

Domains: {1,2,...,N}

Constraints:

Implicit:

 $\forall i, j \text{ non-threatening}(Q_i, Q_j)$

Explict:

$$(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$$

• • •

3 Sat

Variables: V₁,..., V_n

Domains: {0,1}

Constraints:

K constraints of the form $V_i^* \vee V_j^* \vee V_k^* V_i^*$ where V_i^* is either V_i or $\neg V_i$

$$A \neg B \lor \neg C$$
 $\neg A \lor B \lor D$
 $D \lor B \lor E$
 $\neg A \lor \neg B \lor C$

A canonical NP-complete problem

Types of CSPs

Discrete Variables

Finite domains

If domain has size d, then there are O(dⁿ) complete assignments Boolean CSPs (including 3-SAT)

Infinite domains (e.g. integers)

Constraint languages

Linear constraints are solvable but non-linear are undecidable

Continuous Variables

Linear programming (linear constraints solvable in polynomial time)

Types of CSPs

Varieties of Constraints

```
Unary constraints: involve a single variable
```

NSW≠red

Binary constraints: involve a pair of variables

NSW≠Q

Higher-order constraints: involve more than two variables

AllDiff($V_1,...,V_n$)

Soft Constraints (preferences)

red "is better than" green Constrained optimization problems

Constraint Graphs

You can represent binary constraints with a constraint graph

Nodes are variables

Edges are constraints

CSPs and Search

We can use standard search to solve CSPs

States:

Initial State:

Successor Function:

Goal Test:

CSPs and Search

States:

Initial State:

Successor Function:

Goal Test:

What happens if we run something like BFS?

Commutativity

Key Insight: CSPS are commutative

- Order of actions does not effect outcome
- Can assign variables in any order

{WA=red, NT=blue} is equivalent to {NT=blue, WA=red}

CSP algorithms take advantage of this

 Consider assignment of a single variable at each node in the tree

Backtracking Search

Backtracking search is the basic algorithm for CSPs

Select unassigned variable X

For each value $\{x_1,...,x_n\}$ in domain of X

One variable at a time

If value satisfies constraints, assign X=xi and exit loop

If an assignment is found

Move to next variable

If no assignment found

Check constraints as

Back up to preceding variable and try a different assignment for it

Backtracking and Efficiency

Note that backtracking search is basically DFS with some small improvements. Can we improve on it further?

Ordering:

- Which variables should be tried first?
- In what order should a variable's values be tried?

Filtering:

Can we detect failure early?

Structure:

Can we exploit the problem structure?

Ordering: Most Constrained Variable

Choose the variable which has the fewest "legal" moves

AKA minimum remaining values (MRV)

Ordering: Most Constraining Variable

Most constraining variable:

Choose variable with most constraints on remaining variables

Tie-breaker among most constrained variables

SA is involved in 5 constraints

Ordering: Least-Constraining Value

Given a variable, choose the least constraining value:

The one that rules out the fewest values in the remaining variables

Filtering: Forward Checking

Forward checking:

Keep track of remaining legal values for unassigned variables

Terminate search when any variable has no legal values

WA	NT	Q	NSW	V	SA	Т
RGB						

WA	NT	Q	NSW	V	SA	Т
RGB						
R	KGB	RGB	RGB	RGB	KGB	RGB

Forward checking removes the value Red of NT and of SA

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	ØB	G	RGB	RGB	βB	RGB

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB,	RGB	В	RGB
R	В	G	RA	В	₽	RGB

Empty set: the current assignment $\{(WA \leftarrow R), (Q \leftarrow G), (V \leftarrow B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	B	RGB
R	В	G	R.Z	В	8	RGB

Filtering: Arc Consistency

Forward checking propagates information from assigned to unassigned variables, but it can not detect all future failures early

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB

NT and SA can not both be blue!

Need to reason about constraints

Filtering: Arc Consistency

Given domains D_1 and D_2 , an arc is consistent if for all x in D_1 there is a y in D_2 such that x and y are consistent.

Is the arc from SA to NSW consistent?

Is the arc from NSW to SA consistent?

Structure: Independent Subproblems

Tasmania does not interact with the rest of the problem

Idea: Break down the graph into its connected components. Solve each component separately.

Significant potential savings:

- Assume n variables with domain size d: O(dⁿ)
- Assume each component involves c variables (n/c components) for some constant c: O(d^c n/c)

Structure: Tree Structures

CSPs can be solved in O(nd²) if there are no loops in the constraint graph

Step 1: For i=n to 1, make-consistent(Xi,parent(Xi))

Step 2: For i=1 to n, assign value to X_i consistent with parent(X_i) [Note: No backtracking!]

Structure: Non-Trees?

If we assign SA a colour and then remove that colour from the domains all other variables, then we have a tree

Step 1: Choose a subset S of variables such that the constraint graph becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S

- 1. Remove from the domains of remaining variables, all values that are inconsistent with S
- 2. If the remaining CSP has a solution, return it

Structure: Cutsets

Running time:

- Let c be the size of the cutset then
 - d^c combinations of variables in S
 - For each combination must solve a tree problem of size n-c (O(n-c)d²)
 - Therefore, running time is O(d^c(n-c)d²)
- Finding smallest cutset is NP-hard but efficient approximations exist

Structure: Non-Trees?

- 1. Each variable appears in at least one subproblem
- 2. If two variables are connected by a constraint, then they (and the constraint) must appear together in at least one subproblem
- 3. If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems

Structure: Tree Decompositions

Solve each subproblem independently

e.g {(WA=r,NT=g,SA=b),(WA=b, NT=g,SA=r),...}

Solve constraints connecting the subproblems using tree-based algorithm (to make sure that subproblems with shared variables agree)

Want to make the subproblems as small as possible! Tree width: w= Size of largest subproblem-1 Running time O(nd^{w+1})

> Finding tree decomposition with min treewidth is NP-hard, but good heuristics exist

Summary

Formalize problems as CSPs

Backtracking search

Improvements using

Ordering

Filtering

Structure