Multiagent Systems: Intro to Mechanism Design

CS 486/686: Introduction to Artificial Intelligence

Are you thinking of going to graduate school?

2nd, 3rd, and 4th year undergraduates are invited to a graduate information session.

You will get an overview of Graduate Studies, including a brief description from:

Applied Mathematics
Combinatorics & Optimization
Computational Mathematics
Computer Science
Pure Mathematics
Statistics & Actuarial Science

You will have the chance to speak with department representatives and ask questions.

Refreshments will be served.

Wednesday, November 8, 2017 DC 1301 (The "fishbowl") 4:30 - 6pm

Introduction

- So far almost everything we have looked at has been in a single-agent setting
 - Today Multiagent Decision Making!
- For participants to act optimally, they must account for how others are going to act
- We want to
 - Understand the ways in which agents interact and behave
 - Design systems so that agents behave the way we would like them to

Hint for the final exam: MAS is my main research area. I like MAS problems. I even enjoy marking MAS questions. Two of the TAs for this course do MAS research. They also like marking MAS questions. There *will* be an MAS question on the final exam.

Mechanism Design

- Game Theory asks
 - Given a game, what should rational agents do?
- Mechanism Design asks
 - Given rational agents, what sort of games should we design?
 - Can we guarantee that agents will reach an outcome with properties we want

Fundamentals

- Set of possible outcomes: O
- Set of agents: N, |N|=n
 - Each agent has a type θ_i from θ_i
 - The type captures all private information relevant to the agent's decision making
- Utility functions: $u_i(o, \theta_i)$
- Social choice function: f: $\theta_1 X ... X \theta_n \rightarrow O$

Examples of Social Choice Functions

Voting

Choose a candidate from amongst a group

Public Project

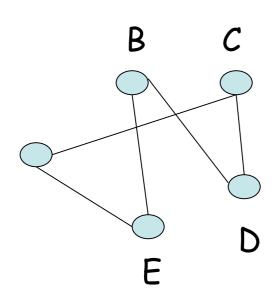
 Decide whether to build a road whose cost must be funded by the agents themselves

Allocation

Allocate an item or resource to one agent in the group

Scenario

 Network routing problem to allocate resources to minimize the total cost of delay over all agents

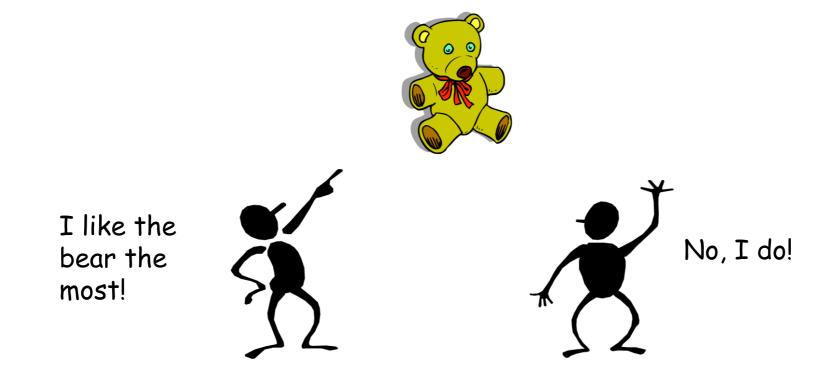


My unit cost of delay for sending messages from A to D is \$1

My unit cost of delay for sending messages between E and D is \$5

A Potential Problem

 Agents' types are not public, and agents are acting in their own selfinterest



Mechanism Design Problem

- By having agents interact through an "institution" we might be able to solve this problem
- Mechanism

$$M = (S_1, \ldots, S_n, g(\cdot))$$

- S_i is the strategy space of agent i
- g:S₁ × ... × S_n \rightarrow O is the outcome function

Implementation

• A mechanism $M=(S_1,...,S_n,g())$ implements social choice function $f(\theta)$ if there is an equilibrium s^*

$$s^* = (s_1^*(\theta_1), \dots, s_n^*(\theta_n))$$

such that

$$g(s_1^*(\theta_1),\ldots,s_n^*(\theta_n))=f(\theta_1,\ldots,\theta_n)$$

for all
$$(\theta_1, \dots, \theta_n) \in \Theta_1 \times \Theta_n$$

Direct Mechanisms

A direct mechanism is a mechanism where

$$S_i = \Theta_i$$
 for all i

and

$$g(\theta) = f(\theta)$$
 for all $\theta \in \Theta_1 \times \Theta_n$

Incentive Compatibility

 A direct mechanism is incentive compatible if it has an equilibrium s* where

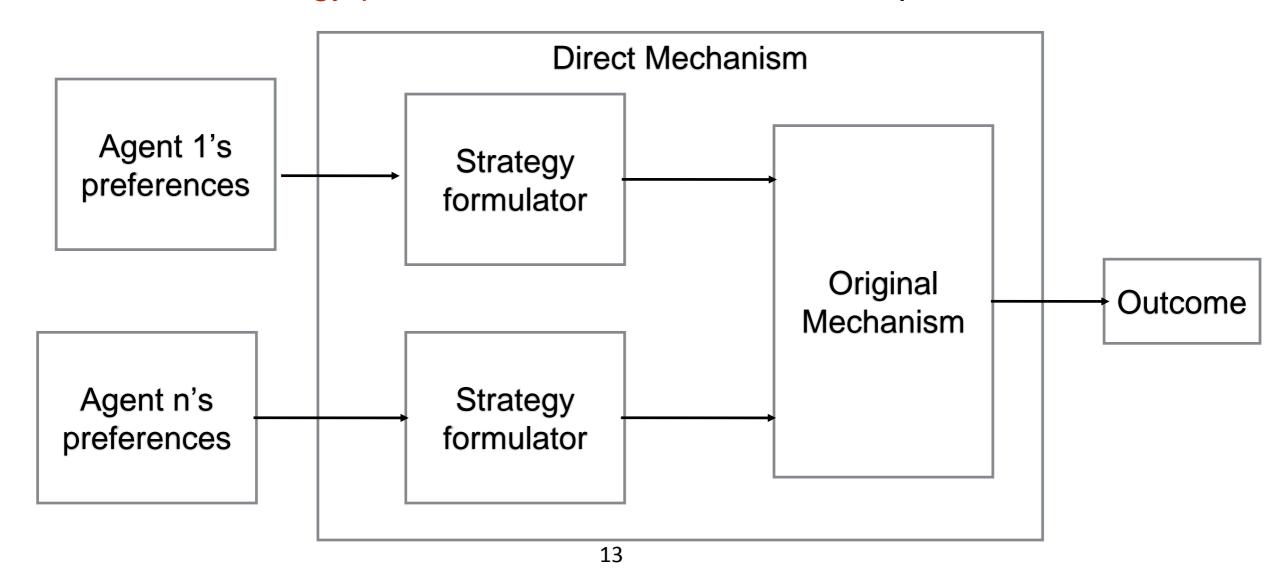
$$s_i^*(\theta_i) = \theta_i$$

for all θ_i in θ_i and for all i.

 A direct mechanism is strategy proof if the equilibrium above is a dominant strategy equilibrium

Revelation Principle

• Theorem: Suppose there exists a mechanism M that implements social choice function f in dominant strategies. Then there is a direct strategy-proof mechanism M' which also implements f.



Quick Review

- We know
 - What a mechanism is
 - What it means for a SCF to be (dominantstrategy) implementable
 - Revelation Principle
- We do not yet know
 - What types of SCF are dominant-strategy implementable

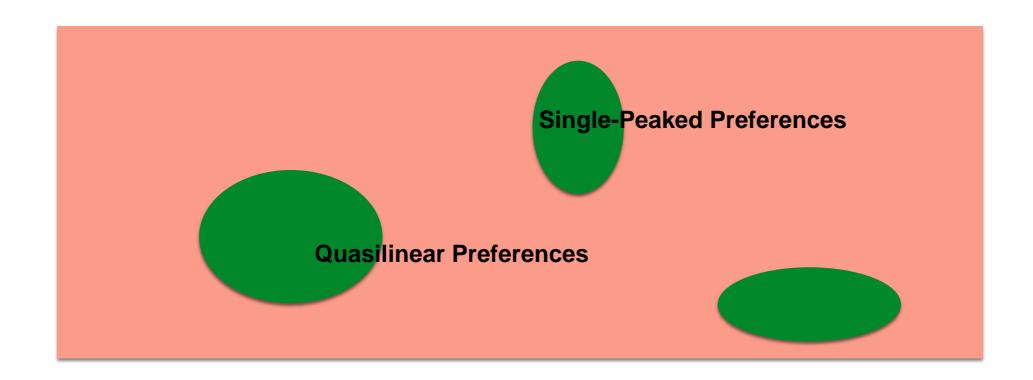
Gibbard-Satterthwaite Theorem

- Theorem: Assume that
 - $\overline{}$ O is finite and |O|>2
 - Each o in O can be achieved by SCF f for some θ
 - \blacksquare θ includes all possible strict orderings over Θ

Then *f* is implementable in dominant strategies if and only if *f* is *dictatorial*.

Circumventing Gibbard-Satterthwaite

- Use a weaker equilibrium concept
- Design mechanisms where computing manipulations is computationally hard
- Restrict the structure of agents' preferences



Single-Peaked Preferences

Median-Voter rule is strategy proof for single-peaked preferences

Quasilinear Preferences

- Outcome $o=(x,t_1,...,t_n)$
 - x is a "project choice"
 - $\overline{}$ t_i in \mathbb{R} are transfers ("money")
- Utility functions: $u_i(o,\theta_i)=v_i(x,\theta_i)-t_i$
- Quasilinear mechanism M=(S₁,...,S_n,g())
 where
 - $-g()=(x(),t_1,...,t_n)$

Groves Mechanisms

Choice rule

$$x^*(\theta) = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfer rules

$$t_i(\theta) = h_i(\theta_{-i}) - \sum_{j \neq i} v_j(x^*(\theta), \theta_j)$$

Groves Mechanisms

• Theorem: Groves mechanisms are strategy-proof and efficient.

• Theorem: Groves mechanisms are unique (up to $h_i(\theta_{-i})$)

Vickrey-Clarke-Groves Mechanism

Outcome

$$x^* = \arg\max_{x} \sum_{i} v_i(x, \theta_i)$$

Transfers

$$t_i(\theta) = \sum_{j \neq i} v_j(x^{-i}, \theta_j) - \sum_{j \neq i} v_j(x^*(\theta), \theta_j)$$

- VCG is an example of a Groves mechanism
 - Efficient and strategy-proof
 - Agents' equilibrium utility is their marginal contribution to the welfare of the system

Example: Allocation Problem

- Social choice function
 - Maximize social welfare (i.e. give item to agent who values it the most)
- Utility functions: u_i=v_i(o)-t_i
- Mechanism (Vickrey Auction)
 - S_i: a bid of any non-negative number
 - Outcome function g:
 - Give item to agent who submits highest bid
 - Highest bidder pays amount of second highest bid, all else pay nothing

Vickrey Auction

$$V_1 = $6$$

Another Application: Sponsored Search

Slot 1

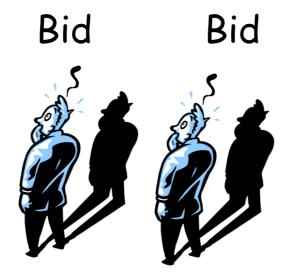
Slot 2

Slot 3

Slot 4

Slot 5

<Keyword>



- 1. Advertisers are ranked and assigned slots based on the ranking.
- 2. If an ad is clicked on, only then does the advertiser pay.

Ranking

- Rank-by-relevance
 - Assign slots of order of (quality score)*(bid)

Bidder	Bid	Quality Score	Ranking
Α	1.50	0.5	C (1.25)
В	1.00	0.9	B (0.9)
С	0.75	1.5	A (0.75)

Pricing

- An advertiser only pays when its ad is clicked on
- How much does it pay?
 - The lowest price it could have bid and still been in the same position

Example

Bidder	Bid	Quality Score		Ranking
Α	1.50	0.5		C (1.25)
В	1.00	0.9		B (0.9)
С	0.75	1.5		A (0.75)

C will pay p=0.9/1.5=0.6B will pay p=0.75/0.9=0.83

How much will A pay?

Sponsored Search

- How would you design a bidding agent for sponsored search?
- Different from the Vickrey auction
 - There is no single best strategy
 - It depends on the strategies of others

Summary

- Definition of a mechanism
- What it means for a mechanism to implement a social choice function
- Revelation Principle
- Gibbard-Satterthwaite Theorem
- Possibility results
 - Groves mechanisms