Decision Networks (Influence Diagrams)

CS 486/686: Introduction to Artificial Intelligence

Outline

- Decision Networks
- Computing Policies
- Value of Information

Introduction

Decision networks (aka influence diagrams) provide a representation for sequential decision making

- Basic idea
 - Random variables like in Bayes Nets
 - Decision variables that you "control"
 - Utility variables which state how good certain states are

Example Decision Network

Chance Nodes

- Random variables (denoted by circles)
- Like as in a BN, probabilistic dependence on parents

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = .0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = .0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = .0
Pr(pos|D,~bt) = .0
Pr(neg|D,~bt) = .0
Pr(null|D,~bt) = .1

Decision Nodes

- Variables the decision maker sets (denoted by squares)
- Parents reflect information available at time of decision

Value Nodes

- Specifies the utility of a state (denoted by a diamond)
- Utility depends only on state of parents
- Generally, only one value node in a network

U(fludrug, flu) = 20 U(fludrug, mal) = -300 U(fludrug, none) = -5 U(maldrug, flu) = -30 U(maldrug, mal) = 10 U(maldrug, none) = -20 U(no drug, flu) = -10 U(no drug, mal) = -285 U(no drug, none) = 30

Assumptions

- Decision nodes are totally ordered
 - Given decision variables D₁,..., D_n, decisions are made in sequence
- No forgetting property
 - Any information available for decision D_i remains available for decision
 D_j where j>i
 - All parents of D_i are also parents for D_j

Policies

- Let Par(D_i) be the parents of decision node D_i
 - Dom(Par(D_i)) is the set of assignments to Par(D_i)
- A policy δ is a set of mappings δ_i, one for each decision node D_i
 - $= \delta_i(D_i)$ associates a decision for each parent assignment
 - δ_i :Dom(Par(D_i))→Dom(D_i)

$$\delta_{BT}(c,f)=bt$$
 $\delta_{BT}(c,\sim f)=\sim bt$
 $\delta_{BT}(\sim c,f)=bt$
 $\delta_{BT}(\sim c,\sim f)=\sim bt$

Value of a Policy

Given assignment \mathbf{x} to random variables \mathbf{X} , let $\delta(\mathbf{x})$ be the assignment to decision variables dictated by δ

Value of δ

$$EU(\delta) = \sum_{\mathbf{x}} P(\mathbf{x}, \delta(\mathbf{x})) U(\mathbf{x}, \delta(\mathbf{x}))$$

Optimal Policy

An optimal policy δ^* is such that EU(δ^*) \geq EU(δ) for all δ .

- Dynamic Programming
- BN structure and VE to aid the computation

Computing the Optimal Policy

- Work backwards as follows
 - Compute optimal policy for Drug
 - For each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), **compute the expected value** of choosing that value of D
 - Set policy choice for each value of parents to be the value of D that has max value

Computing the Optimal Policy

- Next compute policy for BT, given policy $\delta_D(C,F,BT,TR)$ just computed
 - Since δ_D is fixed, we treat D as a random variable with deterministic probabilities
 - Solve for BT just like you did for D

Computing Expected Utilities

- Computing expected utilities with BNs is straightforward
- Utility nodes are just factors that can be dealt with using variable elimination

$$\begin{split} \mathsf{E}\mathsf{U} &= \Sigma_{\mathsf{A},\mathsf{B},\mathsf{C}} \; \mathsf{P}(\mathsf{A},\mathsf{B},\mathsf{C}) \; \mathsf{U}(\mathsf{B},\mathsf{C}) \\ &= \Sigma_{\mathsf{A},\mathsf{B},\mathsf{C}} \; \mathsf{P}(\mathsf{C}|\mathsf{B}) \; \mathsf{P}(\mathsf{B}|\mathsf{A}) \; \mathsf{P}(\mathsf{A}) \; \mathsf{U}(\mathsf{B},\mathsf{C}) \end{split}$$

Optimizing Policies: Key Points

- If decision node D has no decisions that follow it, we can find its policy by instantiating its parents and computing the expected utility for each decision given parents
 - No-forgetting means that all other decision are instantiated
 - Easy to compute the expected utility using VE
 - Number of computations is large
 - We run expected utility calculations for each parent instantiation and each decision instantiation
 - Policy: Max decision for each parent instantiation

Example: Decision Network

- You want to buy a used car, but there is some chance it is a "lemon" (i.e. it breaks down often). Before deciding to buy it, you can take it to a mechanic for an inspection. S/he will give you a report, labelling the car as either "good" or "bad". A good report is positively correlated with the car not being a lemon while a bad report is positively correlated with the car being a lemon
- The report costs \$50. You could risk it and buy the car with no report.
- Owning a good car is better than no car, which is better than owning a lemon.

Example

Value of Information

- Information has value
 - To the extent it is likely to cause a change of plan
 - To the extent that the new plan will be significantly better than the old plan
- The value of information is non-negative
 - This is true for any decision-theoretic agent

Summary

- Definition of a Decision Network
- Definition of an Optimal Policy
- Computing Optimal Policies
- Value of Information