Reinforcement
Learning

CS 486/686: Introduction to Artificial Intelligence

Outline

®* What is reinforcement learning
® Quick MDP review
® Passive learning

®* Temporal Difference Learning

® Active learning

* Q-Learning

What is RL?

® Reinforcement learning is learning what
to do so as to maximize a numerical
reward signal

® Learner is not told what actions to take

® Learner discovers value of actions by
= Trying actions out

= Seeing what the reward is

What is RL?

®* Another common learning framework is
supervised learning (we will see this
later in the semester)

Supervised learning

Don't
touch. You
will get

Reinforcement learning

Reinforcement Learning Problem

Agent

State .
/ / Reward \:tmn

Environment

a0 al a2
sO s1 S2 >
0 r1 r2

Goal: Learn to choose actions that maximize ry+y ri+y2ro+..., where 0-<y <1

Example: Slot Machine

® State: Configuration of
slots
THE WINNING WAY
___To THE C_._asmo!
® Actions: Stopping time e ooy
| == i
* Reward: $$$ '. m. l‘

® Problem: Find: S >A
that maximizes the
reward

Example: Tic Tac Toe

State: Board
configuration

Actions: Next move

Reward: 1 for a win, -1
for a loss, O for a draw

Problem: Find : S A
that maximizes the
reward

xrsme_

winner!

mnwt

e T
et e b

oy 12

x|m|<”"=
(‘\

S

Example: Inverted Pendulem

® State: x(t), x'(t), 6(t), 6°(t)
Actions: Force F

Reward: 1 for any step
where the pole is

balanced | M |

® Problem: Findm: S A
that maximizes the
reward

Example: Mobile Robot

® State: Location of robot,
people

® Actions: Motion

®* Reward: Number of
happy faces

® Problem: Findm: S A
that maximizes the
reward

Reinforcement Learning
Characteristics

® Delayed reward

= Credit assignment problem
® Exploration and exploitation

® Possibility that a state is only partially
observable

* Life-long learning

Reinforcement Learning Model

® Set of states S
® Set of actions A

® Set of reinforcement signals (rewards)

= Rewards may be delayed

Markov Decision Process

S
%]
Poor & 2 %)
Unknown |A Foor
10 Famous |A
+0
S
V2
2 1 5 1/2 4 .
S
Rich & Rich &
Unknown S | Famous
Y +10
v, +10
V2

You own a
company

In every state
you must choose
between Saving
money or
Advertising

Markov Decision Process

Set of states {s, S,,...S,}

Set of actions {a,,...,a,}

Each state has a reward {r4, r»,...r}
Transition probability function

Pi’;- = (Next:sj| This=s; and I take action ay)

ON EACH STEP...

0. Assume your state Is s,

1. You get given reward r;

2. Choose action a,

3. You will move to state s; with probability P;
4. All future rewards are discounted by vy

MDPs and RL

®* With an MDP our goal was to find the
optimal policy given the model

= Given rewards and transition probabilities

® In RL our goal is to find the optimal
policy but we start without knowing
the model

= Not given rewards and transition probabilities

Agent’'s Learning Task

® Execute actions in the world

® Observe the results

® Learn policy :S>A that maximizes
E[r+Yr14Y?rio+...] from any starting

state in S

Types of RL

Model-based vs Model-free
= Model-based: Learn the model of the environment
= Model-free: Never explicitly learn P(s’ls,a)
Passive vs Active

= Passive: Given a fixed policy, evaluate it

= Active: Agent must learn what to do

Passive Learning

y =1

r. = -0.04 for non-terminal states

I We do not know the
4 transition probabilities

(1,1)=>(1,2)>(1,3)>(1,2)>(1,3)—(2,3)>(3,3)>(4,3).1
(1,1)->(1,2)>(1,3)>(2,3)>(3,3)>(3,2)>(3,3)>(4,3)
(1,1)>(2,1)>(3,1)>(3,2)>(4,2) 4

What is the value, V*(s) of being in state s?

Direct Utility Estimation
(Sampling)

sl r|r|r|+l r=
r. = -0.04 for non-terminal states

21 U u | -1
L IO T
1 2 3 4
(1,1)=>(1,2)=>(1,3)>(1,2)>(1,3)—(2,3)=>(3,3)>(4,3)..
(1,1)->(1,2)->(1,3)>(2,3)=>(3,3)~>(3,2)~>(3,3)>(4,3).4
(1,1)->(2,1)->(3,1)~>(3,2)~>(4,2)._,

What is the value, V*(s) of being in state s?

Vi(S) = E[XiZo Y R(S)]

Adaptive Dynamic Programming
(ADP)

r. = -0.04 for non-terminal states

U
1l ul | | | V7T(s;) = r(s;) + ’yZ P,Z;VW(Sj)
J
1

(1,1)->(1,2)-> (1,3) > (1,2)>(1,3)— (2,3)>(3,3)~>(4,3).4
(1,1)>(1,2)>(1,3)—(2,3)>(3,3)>(3,2)>(3,3)>(4,3).1
(1,1)=>(2,1)=>(3,1)=>(3,2)>(4,2) 4

P(113)(213)r‘: 2/3

. Use this information in the Bellman equation
P(113)(112) :1/3

Temporal Difference

Key Idea: Use observed transitions to adjust
values of observed states so that they satisty
Bellman equations

VT(s) = V™(s) + a(r(s) +yV7(s") = V7(s))
— — _
Learning rate Temporal difference

Theorem: If a is appropriately decreased with the number of times a state is visited,
then V7(s) converges to the correct value.

= a must satisfy Zna(n)-> % and >na?(n)<1

20

Temporal Difference

®* No explicit model of T or R

® Estimate V and expectation through
samples

® Update from each experience

= Update V(s) after each state transition

= Likely outcomes s’ will contribute updates
more often

Temporal Difference

* Temporal difference learning of values
= Policy is still fixed (doing evaluations)

= Move values toward sample of V(s) (running
average)

Sample of V'(s): sample=R(s)+yV ™(s’)

V(s)=(1-a) V(s)+ a sample

TD-Lambda

Idea: Update from the whole training sequence,
not just a single state transition

Ve(si) = V7(si)4a), _ A" (s)V (85020) -V (5]

Special cases:
= Lambda = 1 (basically ADP)
= Lambda=0 (TD)

23

Active Learning

Recall that real goal is to find a good policy

= |f the transition and reward model is known then
= V*(s)=maxa[r(s)+y2sP(s’ls,a)V*(s’)]

= |f the transition and reward model is unknown

= Improve policy as agent executes it

24

Q-Learning

Key idea: Learn a function Q:SxA->R
= Value of a state-action pair
= Optimal Policy: 1*(s)=argmaxa Q(s,a)
= V*(s)=maxaQ(s,a)

= Bellman’s equation:
Q(s,a)=r(s)+yZsP(s’ls,a)maxa'Q(s’,a’)

25

On-Policy/Off-Policy

An active RL agent can have two different types
of policies

= Behaviour policy: used to generate actions and
gather data

= Learning policy: target policy to learn
On policy learning: Behaviour = Learning

Off policy learning: Behaviour != Learning

On Policy Learning: SARSA

Agent learns policy being used, including exploration actions
(policy used is usually non-deterministic so as to ensure
exploration). E.g. epsilon-greedy

For each (s,a) initialize Q(s,a)
Observe current state S
Choose action a from s using policy
Loop
= Take action a, observe r and s’
= Choose a’ from s’ according to policy
= Update Q(s,a): Q(s,a)=Q(s,a)+a(r+y Q(s’,a’)-Q(s,a))
= s=S’, a=a’

Off Policy: Q-Learning

Target policy is learned regardless of actions chosen from
exploring (agent follows a policy but learns the value of a
different policy)

For each (s,a) initialize Q(s,a)
Observe current state
Loop
= Select action a and execute it
= Observerand s’
= Update Q(s,a): Q(s,a)=Q(s,a)+a(r+y max_.Q(s’,a’)-Q(s,a))
S

28

Example: Q-Learning

R 73, 100 815 R 100
4_6_6_ | Q4 4_6_6_ | o4
¢0I ‘OI

r=0 for non-terminal states
v=0.9
a=0.b

29

Exploration vs Exploitation

Exploiting: Taking greedy actions (those
with highest value)

Exploring: Randomly choosing actions
Need to balance the two

30

Common Exploration Methods

® Use an optimistic estimate of utility

®* Chose best action with probability p and
a random action otherwise

® Boltzmann exploration

eQ(S,a)/T

z eQ(S,a)/T
a

P(a) =

31

Exploration and Q-Learning

Q-Learning converges to the optimal Q-
values if

= Every state is visited infinitely often (due to
exploration)

= The action selection becomes greedy as
time approaches infinity

= The learning rate is decreased appropriately

32

Summary

Active vs Passive Learning
Model-Based vs Model-Free
TD

Q-learning

= Exploration-Exploitation tradeoff

33

