Reinforcement Learning

CS 486/686: Introduction to Artificial Intelligence

Outline

- What is reinforcement learning
- Quick MDP review
- Passive learning
 - Temporal Difference Learning
- Active learning
 - Q-Learning

What is RL?

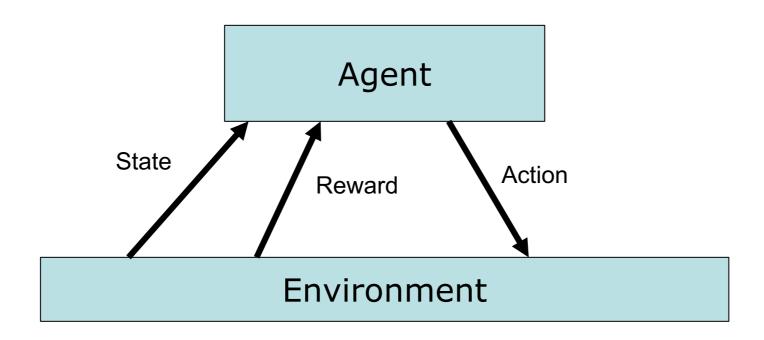
- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
- Learner is not told what actions to take
- Learner discovers value of actions by
 - Trying actions out
 - Seeing what the reward is

What is RL?

 Another common learning framework is supervised learning (we will see this later in the semester)

Reinforcement learning

Reinforcement Learning Problem



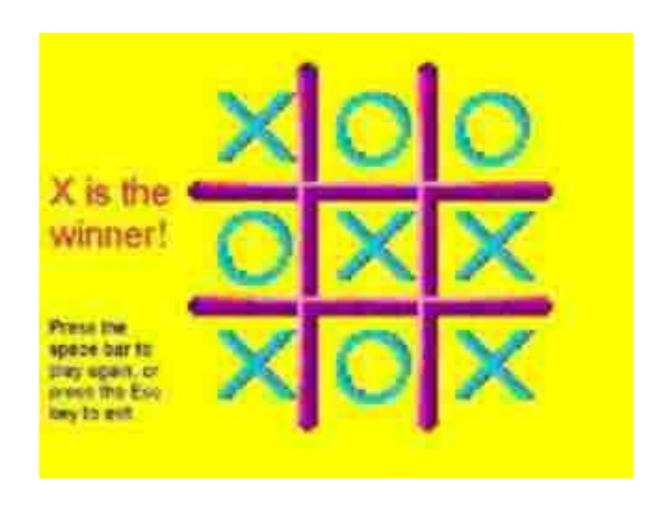
Goal: Learn to choose actions that maximize $r_0+\gamma$ $r_1+\gamma^2r_2+...$, where $0 < \gamma < 1$

Example: Slot Machine

- State: Configuration of slots
- Actions: Stopping time
- Reward: \$\$\$
- Problem: Find π: S → A
 that maximizes the
 reward

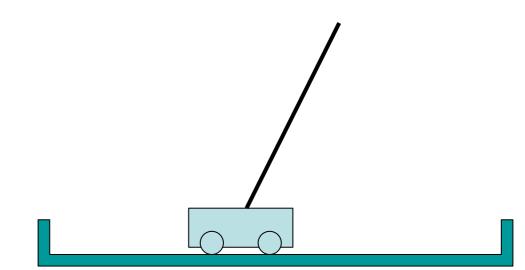
Example: Tic Tac Toe

- State: Board configuration
- Actions: Next move
- Reward: 1 for a win, -1 for a loss, 0 for a draw
- Problem: Find π: S → A
 that maximizes the
 reward



Example: Inverted Pendulem

- State: x(t), x'(t), $\theta(t)$, $\theta'(t)$
- Actions: Force F
- Reward: 1 for any step where the pole is balanced
- Problem: Find π: S → A
 that maximizes the
 reward



Example: Mobile Robot

- State: Location of robot, people
- Actions: Motion
- Reward: Number of happy faces
- Problem: Find π: S → A
 that maximizes the
 reward

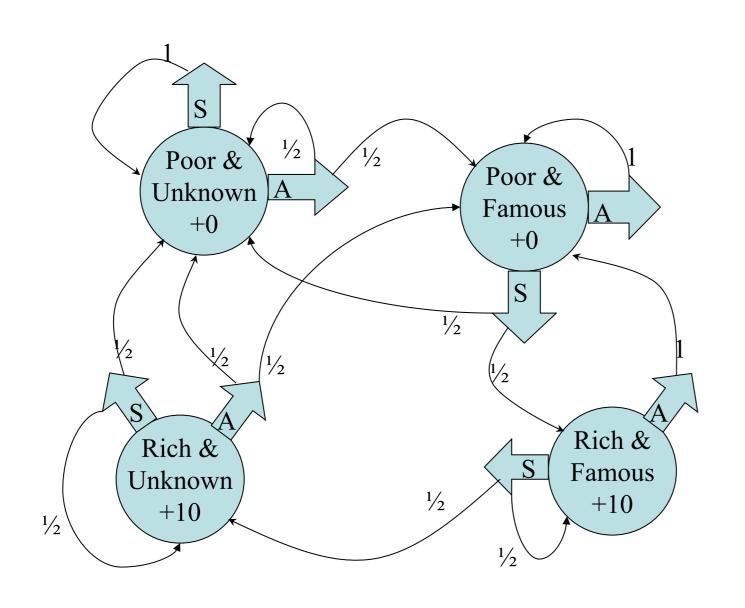
Reinforcement Learning Characteristics

- Delayed reward
 - Credit assignment problem
- Exploration and exploitation
- Possibility that a state is only partially observable
- Life-long learning

Reinforcement Learning Model

- Set of states S
- Set of actions A
- Set of reinforcement signals (rewards)
 - Rewards may be delayed

Markov Decision Process



$$y = 0.9$$

You own a company

In every state
you must choose
between Saving
money or
Advertising

Markov Decision Process

- Set of states $\{s_1, s_2, ..., s_n\}$
- Set of actions $\{a_1,...,a_m\}$
- Each state has a reward {r₁, r₂,...r_n}
- Transition probability function

$$P_{ij}^k = (\text{Next} = s_j | \text{This} = s_i \text{ and I take action } a_k)$$

- ON EACH STEP...
 - 0. Assume your state is s_i
 - 1. You get given reward r_i
 - 2. Choose action a_k
 - 3. You will move to state s_j with probability $P_{ij}^{\ k}$ 4. All future rewards are discounted by γ

MDPs and RL

- With an MDP our goal was to find the optimal policy given the model
 - Given rewards and transition probabilities
- In RL our goal is to find the optimal policy but we start without knowing the model
 - Not given rewards and transition probabilities

Agent's Learning Task

- Execute actions in the world
- Observe the results
- Learn policy $\pi:S\to A$ that maximizes $E[r_t+\Upsilon r_{t+1}+\Upsilon^2 r_{t+2}+...]$ from any starting state in S

Types of RL

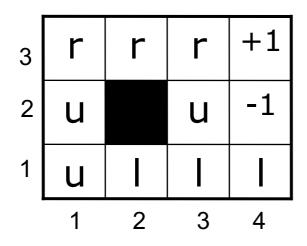
Model-based vs Model-free

- Model-based: Learn the model of the environment
- Model-free: Never explicitly learn P(s'ls,a)

Passive vs Active

- Passive: Given a fixed policy, evaluate it
- Active: Agent must learn what to do

Passive Learning



$$\gamma = 1$$

 $r_i = -0.04$ for non-terminal states

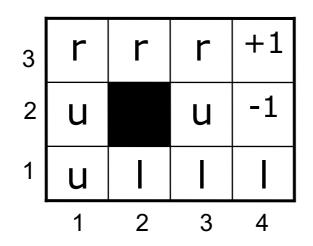
We do not know the transition probabilities

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

What is the value, $V^*(s)$ of being in state s?

Direct Utility Estimation (Sampling)



$$\gamma = 1$$

 $r_i = -0.04$ for non-terminal states

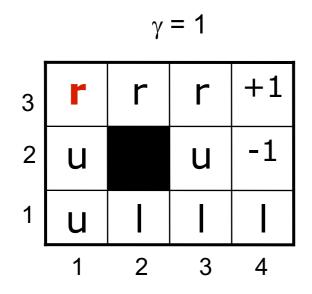
$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

What is the value, $V^*(s)$ of being in state s?

$$V^{\pi}(S) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right]$$

Adaptive Dynamic Programming (ADP)



 $r_i = -0.04$ for non-terminal states

$$V^{\pi}(s_i) = r(s_i) + \gamma \sum_{j} P_{ij}^{\pi} V^{\pi}(s_j)$$

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

$$P_{(1,3)(2,3)}^{r=2/3}$$
 Use this information in the Bellman equation $P_{(1,3)(1,2)}^{r=1/3}$

Temporal Difference

Key Idea: Use observed transitions to adjust values of observed states so that they satisfy Bellman equations

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r(s) + \gamma V^{\pi}(s') - V^{\pi}(s))$$
 Learning rate Temporal difference

Theorem: If α is appropriately decreased with the number of times a state is visited, then $V^{\pi}(s)$ converges to the correct value.

■ a must satisfy $\Sigma_n \alpha(n) -> \infty$ and $\Sigma_n \alpha^2(n) < 1$

Temporal Difference

- No explicit model of T or R
- Estimate V and expectation through samples
- Update from each experience
 - Update V(s) after each state transition
 - Likely outcomes s' will contribute updates more often

Temporal Difference

- Temporal difference learning of values
 - Policy is still fixed (doing evaluations)
 - Move values toward sample of V(s) (running average)

Sample of $V^{\pi}(s)$: sample= $R(s)+\gamma V^{\pi}(s')$

 $V^{\pi}(s)=(1-\alpha) V^{\pi}(s)+\alpha$ sample

TD-Lambda

Idea: Update from the whole training sequence, not just a single state transition

$$V^{\pi}(s_i) \to V^{\pi}(s_i) + \alpha \sum_{m=i}^{\infty} \lambda^{m-i} [r(s_m) + \gamma V^{\pi}(s_{m+1}) - V^{\pi}(s_m)]$$

Special cases:

- Lambda = 1 (basically ADP)
- Lambda=0 (TD)

Active Learning

Recall that real goal is to find a good policy

- If the transition and reward model is known then
 - $V^*(s)=max_a[r(s)+\gamma \Sigma_{s'}P(s'ls,a)V^*(s')]$

- If the transition and reward model is unknown
 - Improve policy as agent executes it

Q-Learning

Key idea: Learn a function Q:SxA->R

- Value of a state-action pair
- Optimal Policy: $\pi^*(s)$ =argmax_a Q(s,a)
- $V^*(s)=max_aQ(s,a)$
- Bellman's equation: Q(s,a)=r(s)+γ $\Sigma_{s'}$ P(s'ls,a)max_{a'}Q(s',a')

On-Policy/Off-Policy

An active RL agent can have two different types of policies

- Behaviour policy: used to generate actions and gather data
- Learning policy: target policy to learn

On policy learning: Behaviour = Learning

Off policy learning: Behaviour != Learning

On Policy Learning: SARSA

Agent learns policy being used, including exploration actions (policy used is usually non-deterministic so as to ensure exploration). E.g. epsilon-greedy

For each (s,a) initialize Q(s,a)

Observe current state S

Choose action a from s using policy

Loop

- Take action a, observe r and s'
- Choose a' from s' according to policy
- Update Q(s,a): $Q(s,a)=Q(s,a)+\alpha(r+\gamma Q(s',a')-Q(s,a))$
- **s**=s', a=a'

Off Policy: Q-Learning

Target policy is learned regardless of actions chosen from exploring (agent follows a policy but learns the value of a different policy)

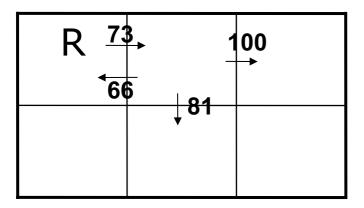
For each (s,a) initialize Q(s,a)

Observe current state

Loop

- Select action a and execute it
- Observe r and s'
- Update Q(s,a): Q(s,a)=Q(s,a)+α(r+ γ max_a,Q(s',a')-Q(s,a))
- **-** s=s'

Example: Q-Learning



r=0 for non-terminal states γ =0.9

 $\alpha = 0.5$

Exploration vs Exploitation

Exploiting: Taking greedy actions (those with highest value)

Exploring: Randomly choosing actions Need to balance the two

Common Exploration Methods

- Use an optimistic estimate of utility
- Chose best action with probability p and a random action otherwise
- Boltzmann exploration

$$P(a) = \frac{e^{Q(s,a)/T}}{\sum_{a} e^{Q(s,a)/T}}$$

Exploration and Q-Learning

Q-Learning converges to the optimal Q-values if

- Every state is visited infinitely often (due to exploration)
- The action selection becomes greedy as time approaches infinity
- The learning rate is decreased appropriately

Summary

- Active vs Passive Learning
- Model-Based vs Model-Free
- TD
- Q-learning
 - Exploration-Exploitation tradeoff