Adversarial Search

CS 486/686: Introduction to Artificial Intelligence
Introduction

• So far we have only been concerned with a single agent

• Today, we introduce an adversary!
Outline

• Games
• Minimax search
• Alpha-beta pruning
• Evaluation functions
• Coping with chance
Games

• Games are the oldest, most well-studied domain in AI

• Why?
 - They are fun
 - Easy to represent, rules are clear
 - State spaces can be very large
 - In chess, the search tree has $\sim 10^{154}$ nodes
 - Like the “real world” in that decisions have to be made and time is important
 - Easy to determine when a program is doing well
Types of Games

• **Perfect vs Imperfect Information**
 - Perfect information: You can see the entire state of the game
 - Imperfect information:

• **Deterministic vs Stochastic**
 - Deterministic: change in state is fully controlled by the players
 - Stochastic: change in state is partially determined by chance
Games as Search Problems

2-player perfect information game

• State:
• Successor function:
• Terminal state:
• Utility function:
• Solution:
Game Search Challenge

What makes game search challenging?

- There is an opponent
- The opponent is malicious
 - it wants to win (by making you lose)
- We need to take this into account when choosing moves

Notation:

- \textbf{MAX} player wants to maximize its utility
- \textbf{MIN} player wants to minimize its utility
Example

MAX’s job is to use the search tree to determine the best move.
Optimal Strategies

In standard search

- Optimal solution is sequence of moves leading to a goal state

Strategy (from MAX’s perspective)

- Specify a move for the initial state
- Specify a move for all possible states arising from MIN’s response
- Then all possible responses to all of MIN’s responses to MAX’s previous moves
- ...
Optimal Strategies

Goal: Find optimal strategy

- What do we mean by optimal?
 - Strategy that leads to outcomes at least as good as any other strategy, *given that MIN is playing optimally*
 - Equilibrium (game theory)

Today we focus mainly on **zero-sum games of perfect information**

- Easy games according to game theory
MINIMAX-VALUE(n) =

\[
\begin{cases}
\text{Utility}(n) & \text{if } n \text{ is a terminal state} \\
\max_{s \in \text{Succ}(n)} \text{MINIMAX-VALUE}(s) & \text{if } n \text{ is a MAX node} \\
\min_{s \in \text{Succ}(n)} \text{MINIMAX-VALUE}(s) & \text{is } n \text{ is a MIN node}
\end{cases}
\]
Properties of Minimax

- Complete:
- Time complexity:
- Space complexity:
- Optimal:
Minimax and Multi-Player Games
Can we now write a program that will play chess reasonably well?
Question

Can we now write a program that will play chess reasonably well?

For chess b~35 and m~100
Alpha-Beta Pruning

If we are smart (and lucky) we can do **pruning**

- Eliminate large parts of the tree from consideration

Alpha-beta pruning applied to a minimax tree
Alpha-Beta Pruning

• **Alpha:**
 - Value of best (highest value) choice we have found so far on path for MAX

• **Beta:**
 - Value of best (lowest value) choice we have found so far on path for MIN

• Update alpha and beta as search continues

• Prune as soon as value of current node is known to be worse than current alpha or beta values for MAX or MIN
Example
Properties of Alpha-Beta

• Can pruning result in a different outcome than minimax search?

• How much can be pruned when searching?
Real-Time Decisions

Alpha-Beta can be a huge improvement over minimax

- Still not good enough
 - Need to search to terminal states for at least part of search space
 - Need to make decisions quickly

Solution

- Heuristic evaluation function + cutoff tests
Evaluation Functions

• Apply an evaluation function to a state
 - If terminal state, function returns actual utility
 - If non-terminal, function returns estimate of the expected utility

• Function must be fast to compute
Evaluation Functions

• How do we get evaluation functions?
 - Expert knowledge
 - Learned from experience

• Look for features of states
 - Weighted linear function $\text{Eval}(s) = \sum_i w_i f_i(s)$
Cutting Off Search

Do we have to search to terminal states?
- No! Cut search early and apply evaluation function

When?
- Arbitrarily (but deeper is better)
- Quiescent states
 - States that are “stable”
- Singular extensions
 - Searching deeper when you have a move that is “clearly better”
 - Can be used to avoid the horizon effect
Cutting Off Search

How deep?

Novice player
- 5-ply (minimax)

Master player
- 10-ply (alpha-beta)

Grandmaster
- 14-ply + fantastic evaluation function, opening and endgame databases,...
Stochastic Games
Stochastic Games

• Need to consider **best/worst cases** + probability they will occur

• Recall: Expected value of a random variable $x \ E[x]=\sum_{x \ in \ X} P(x)x$

• **Expectiminimax**: minimax but at chance nodes compute the expected value
Expectiminimax
Warning: exact values do matter! Order-preserving transformations of the evaluation function can change the choice of moves. Must have **positive linear transformations** only
What about Go?
What about Go?

Monte-Carlo Tree Search (MCTS)

- Build search tree according to outcomes of simulated plays

Upper Confidence Bounds for Trees (UCT): “Minimax search” using UCB

\[v_i + C \sqrt{\frac{\ln N}{n_i}} \]
Summary

• Games pose lots of fascinating challenges for AI researchers
• Minimax search allows us to play optimally against an optimal opponent
• Alpha-beta pruning allows us to reduce the search space
• A good evaluation function is key to doing well
• Games are fun!