Constraints and Local Search

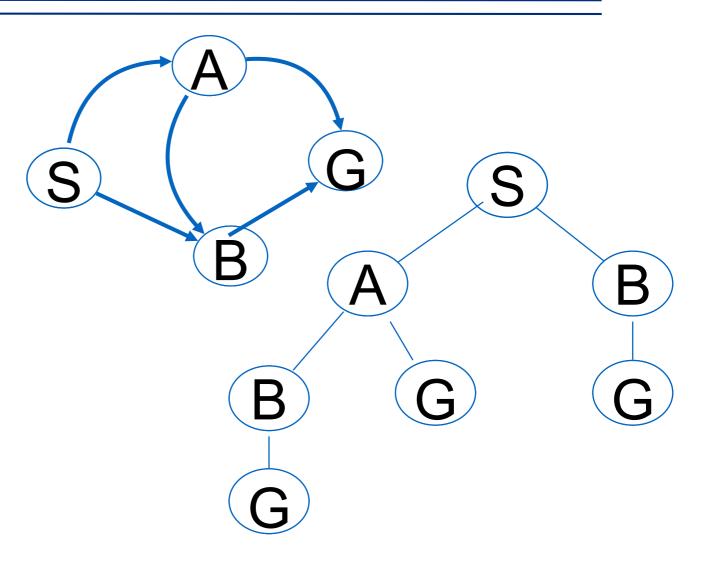
CS 486/686: Introduction to Artificial Intelligence

Overview

- Uninformed Search
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS
- Informed Search
 - Heuristics
 - A* search and variations
- Search and Optimization
 - What are the problem features?
 - Iterative improvement: hill climbing, simulated annealing
 - Genetic algorithms

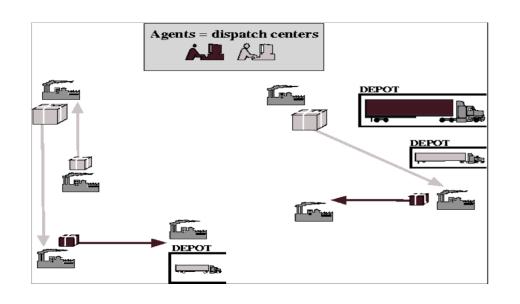
Introduction

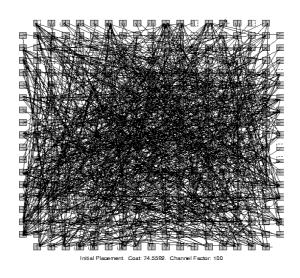
- Both uninformed and informed search systematically explore the search space
 - Keep 1 or more paths in memory
 - Solution is a path to the goal

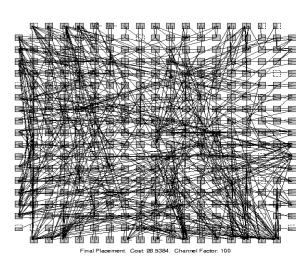


For many problems the path is unimportant

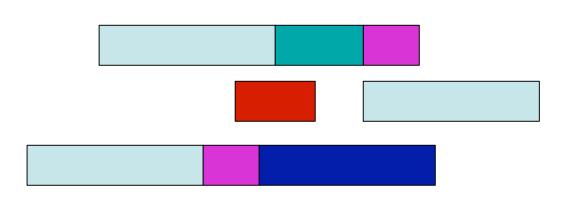
Examples







AV ~B V C
~A V C V D
B V D V ~E
~C V ~D V ~E

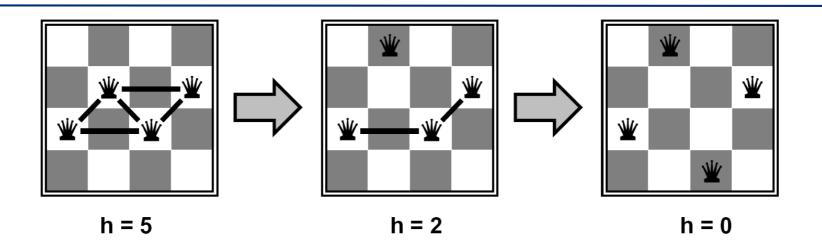


. . .

Informal Characterization

- Combinatorial structure being optimized
- Constraints have to be satisfied
- There is a cost function
 - We want to find a good solution
- Search all possible states is infeasible
 - Often easy to find some solution to the problem
 - Often provably hard (NP-complete) to find the best solution

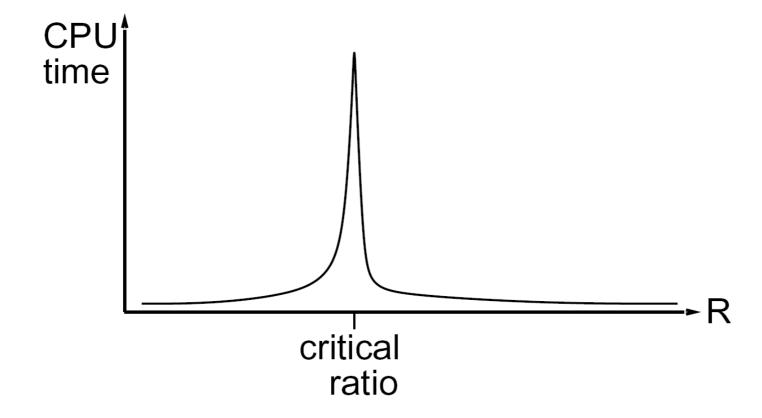
Typical Example: 4 Queens



- Start with a "complete" state
- Operators reassign variables
 - Choose variable at random
 - Choose value using min-conflicts heuristic
- Continue until solved

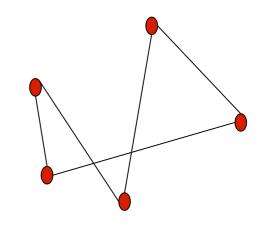
Performance for N-Queens

- Given a random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (n=10,000,000)!
- This seems to hold for almost any randomly generated CSP except for a small set!



Typical Example: TSP

Goal is to minimize the length of the route



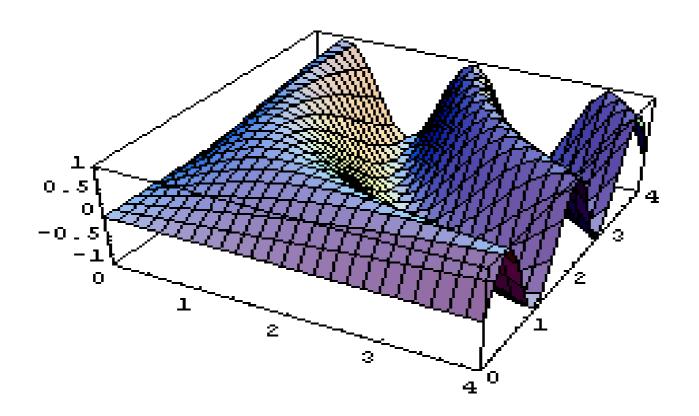
Constructive method: Start from scratch and build up a solution (using A* etc)

Iterative improvement method: Start with solution (may be suboptimal or broken) and improve it

Iterative Improvement Methods

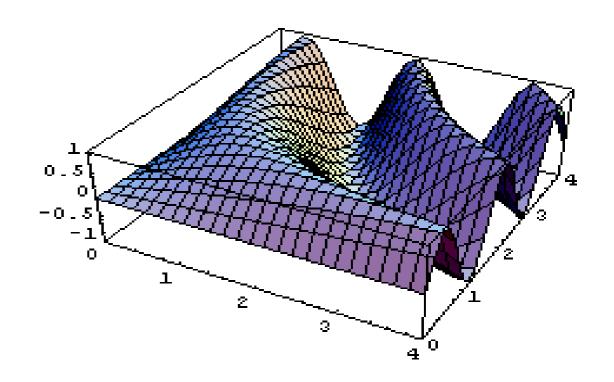
Idea: Imagine all possible solutions laid out on a landscape

Goal: find the highest (or lowest) point



Iterative Improvement Methods

- Start at some random point (potential solution)
- Generate all possible points to move to
- If the set is not empty, choose a point and move to it
- If you are stuck (set is empty), then restart



Hill Climbing (Gradient Descent)

Main idea: Always take a step in the direction that improves the current solution value the most

Note: Variation of best-first search

Application: Very popular for learning algorithms

"...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia", Russell and Norvig

Hill Climbing

- 1. Start with some initial configuration S, with value V(S)
- 2. Generate Moveset(S)= $\{S_1,...,S_n\}$
- 3. S_{max} =argmax_{Si} $V(S_i)$
- 4. If V(S_{max})<V(S) return S (local optimium)
- 5. Let S←S_{max} Go to 2

Judging Hill Climbing

Good news

Easy to program!

Requires no memory of where we have been!

Judging Hill Climbing

Good news

Easy to program!

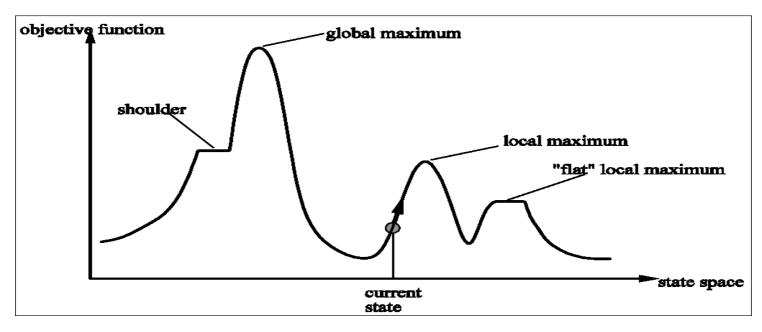
Requires no memory of where we have been!

Bad news

Not necessarily complete

Not optimal

It can get stuck in local optima/plateaus



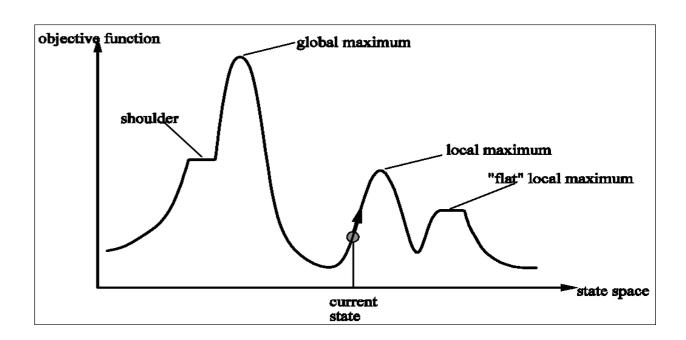
Improving Hill Climbing

Plateaus

- Allow for sideways moves
 - But be careful since might move sideways forever

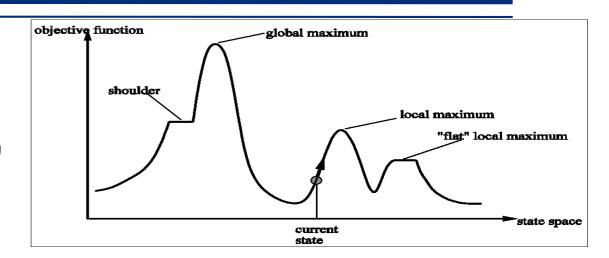
Local Maxima

- Random restarts: If at first you do not succeed, try, try again!



Simulated Annealing

Escape local maxima by allowing "downhill moves"



- 1. Start with some initial configuration S, with value V(S)
- 2. Generate Moveset(S)= $\{S_1,...,S_n\}$
- 3. Randomly choose S_i from Moveset(S)
- 4. Define $\Delta V = V(S_i) V(S)$
- 5. If $\Delta V > 0$ then $S \leftarrow S_i$ else with probability p $S \leftarrow S_i$
- 6. Go to 2

What About p?

Main Issue: How should we choose the probability of making a "bad" move?

Ideas:

p=0.1 (or some fixed value)?

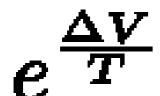
Decrease p with time?

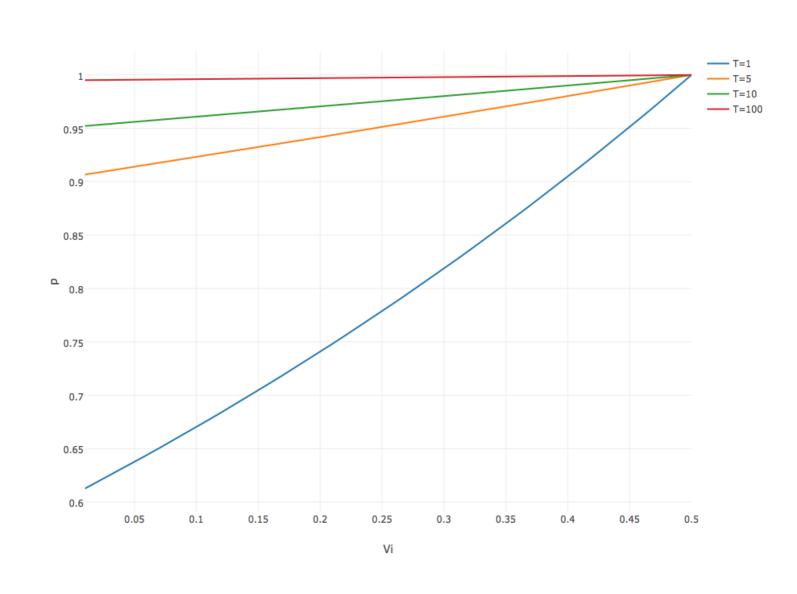
Make p a function of |V-V_i|?

. . .

Selecting Moves in Simulated Annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with probability





Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is almost 0.

Properties to Simulated Annealing

- When T is high:
 - Exploratory phase: even bad moveshave a chance of being picked (random walk)
- When T is low:
 - Exploitation phase: "bad" moves have low probability of being chosen (randomized hill climbing)
- If T is decreased slowly enough then simulated annealing is (theoretically) guaranteed to reach optimal solution

Genetic Algorithms

- Populations are encoded into a representation which allows certain operations to occur
- An encoded candidate solution is an individual
- Each individual has a fitness
 - Numerical value associated with its quality of solution
- A population is a set of individuals
- Populations change over generations by applying operators to them
 - Operations: selection, mutation, crossover

Typical Genetic Algorithm

- Initialize: Population P←N random individuals
- Evaluate: For each x in P, compute fitness(x)
- Loop
 - For i=1 to N
 - Select 2 parents each with probability proportional to fitness scores
 - Crossover the 2 parents to prodice a new bitstring (child)
 - With some small probability mutate child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function

Selection

- Fitness proportionate selection: $P(i) = \frac{\text{fitness}(i)}{\sum_{i} \text{fitness}(j)}$
 - Can lead to overcrowding
- Tournament selection
 - Pick i, j at random with uniform probability
 - With probability p select fitter one
- Rank selection
 - Sort all by fitness
 - Probability of selection is proportional to rank
- Softmax (Boltzmann) selection: $P(i) = \frac{e^{\text{fitness}(i)/T}}{\sum_{j} e^{\text{fitness}(j)/T}}$

Crossover

- Combine parts of individuals to create new ones
- For each pair, choose a random crossover point
 - Cut the individuals there and swap the pieces

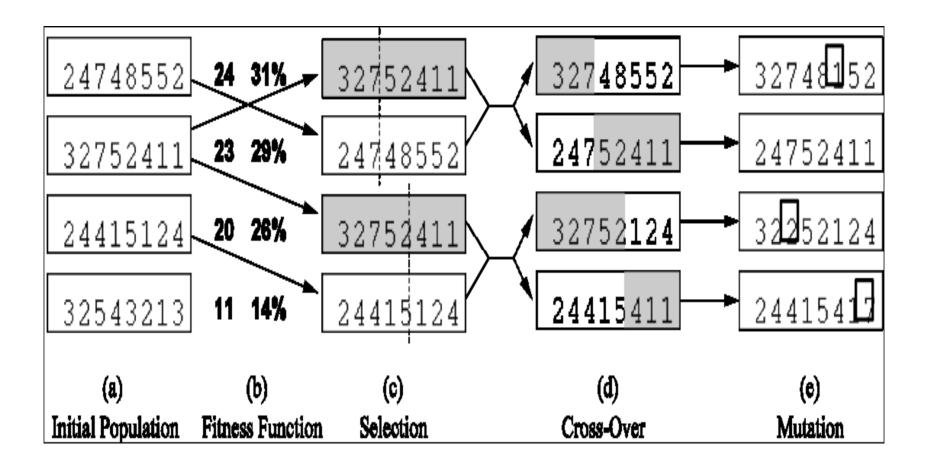
Implementation: use a crossover mask m Given two parents a and b the offspring are $(a^m)V(b^m)$ and $(a^m)V(b^m)$

Mutation

- Mutation generates new features that are not present in original population
- Typically means flipping a bit in the string
 100111 mutates to 100101

 Can allow mutation in all individuals or just in new offspring

Example



Summary

- Useful for optimization problems
- Often the second-best way to solve a problem
 - If you can, use A* or linear programming or ...
- Need to think about how to escape from local optima
 - Random restarts
 - Allowing for bad moves
 - **-** ...