Constraint Satisfaction

CS 486/686: Introduction to Artificial Intelligence

Outline

- What are Constraint Satisfaction Problems (CSPs)?
- Standard Search and CSPs
- Improvements
 - Backtracking
 - Backtracking + heuristics
 - Forward Checking

Introduction

Standard search

State is a "black box": arbitrary data structure

Goal test: any function over states

Successor function: anything that lets you move from one state to another

Constraint satisfaction problems (CSPs)

A special subset of search problems

States are defined by *variables* X_i with values from *domains* D_i

Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Example: Map Colouring

Variables

- V={T, V, NSW, Q, NT, WA, SA}
- Domains
 - D={red, blue, green}

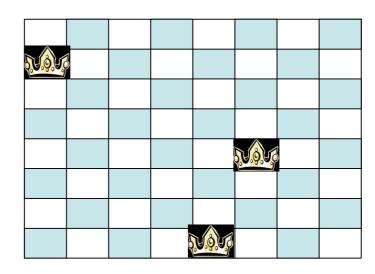
- Constraints: adjacent regions must have different colours
 - Implicit: WA≠NT
 - Explicit: (WA, NT)∈ {(red, blue), (red, green), (blue, red)...}
- Solution is an assignment satisfying all constraints
 - {WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

N Queens Problem

Variables: X_{i,j}

• **Domains**: {0,1}

Constraints:



$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

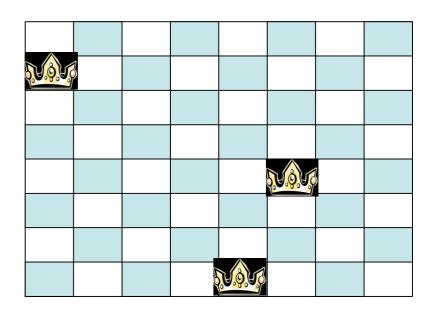
N Queens Problem

- Variables: Qi
- **Domains**: {1,2,...,N}
- Constraints:
 - Implicit:

$$\forall i, j \text{ non-threatening}(Q_i, Q_j)$$

Explict:

$$(Q_1,Q_2) \in \{(1,3),(1,4),\ldots\}$$



3 Sat

- Variables: V₁,..., V_n
- **Domains**: {0,1}
- Constraints:
 - K constraints of the form V_i*vV_j*vV_k* V_i* where V_i* is either V_i or ¬V_i

$$A \neg B \lor \neg C$$
 $\neg A \lor B \lor D$
 $D \lor B \lor E$
 $\neg A \lor \neg B \lor C$

A canonical NP-complete problem

Types of CSPs

Discrete Variables

- Finite domains
 - If domain has size d, then there are O(dⁿ) complete assignments
 - Boolean CSPs (including 3-SAT)
- Infinite domains (e.g. integers)
 - Constraint languages
 - Linear constraints are solvable but non-linear are undecidable

Continuous Variables

Linear programming (linear constraints solvable in polynomial time)

Types of CSPs

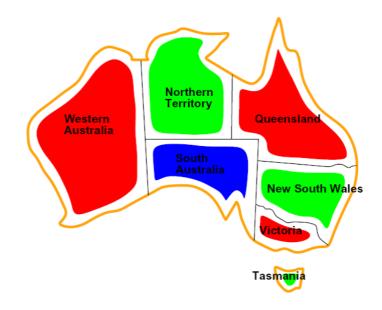
- Varieties of Constraints
 - Unary constraints: involve a single variable
 - NSW≠red
 - Binary constraints: involve a pair of variables
 - NSW≠Q
 - Higher-order constraints: involve more than two variables
 - AllDiff($V_1,...,V_n$)
- Soft Constraints (preferences)
 - red "is better than" green
 - Constrained optimization problems

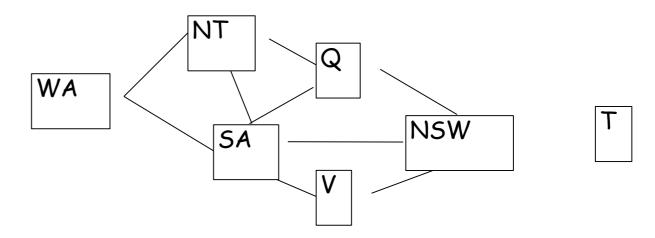
Constraint Graphs

You can represent binary constraints with a constraint graph

Nodes are variables

Edges are constraints





CSPs and Search

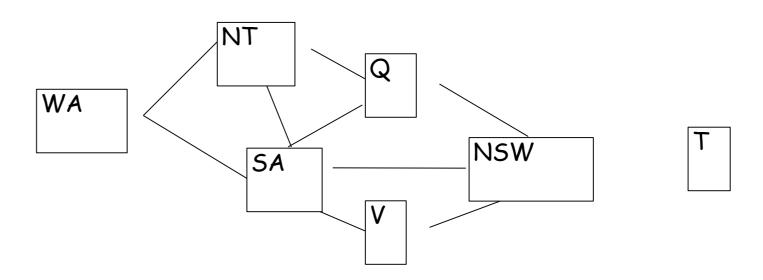
We can use standard search to solve CSPs

States:

Initial State:

Successor Function:

Goal Test:



CSPs and Search

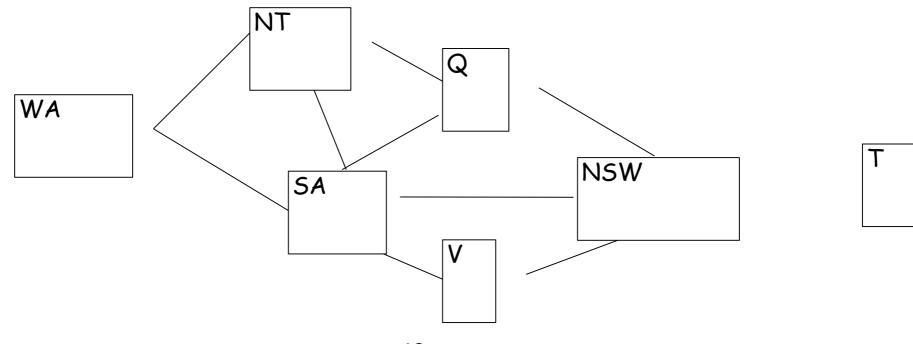
States:

Initial State:

Successor Function:

Goal Test:

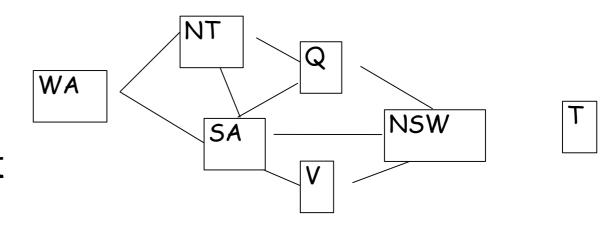
What happens if we run something like BFS?



Commutativity

Key Insight:

- CSPs are commutative
 - Order of actions taken does not effect outcome
 - Can assign variables in any order
- CSP algorithms take advantage of this
 - Consider possible assignments for a single variable at each node in the search tree



{WA=red, NT=blue} is equivalent to {NT=blue, WA=red}

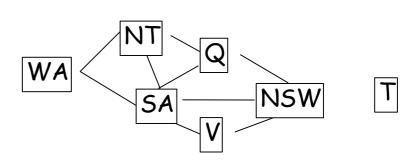
Backtracking Search

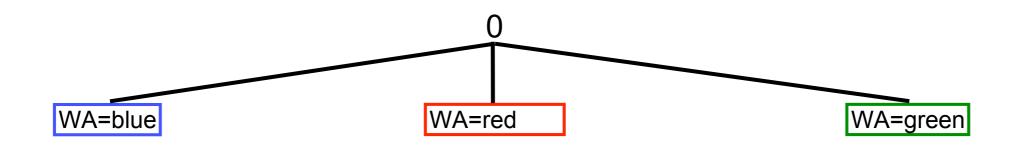
Backtracking search is the basic algorithm for CSPs

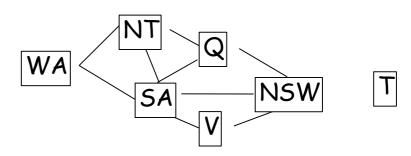
Select unassigned variable X

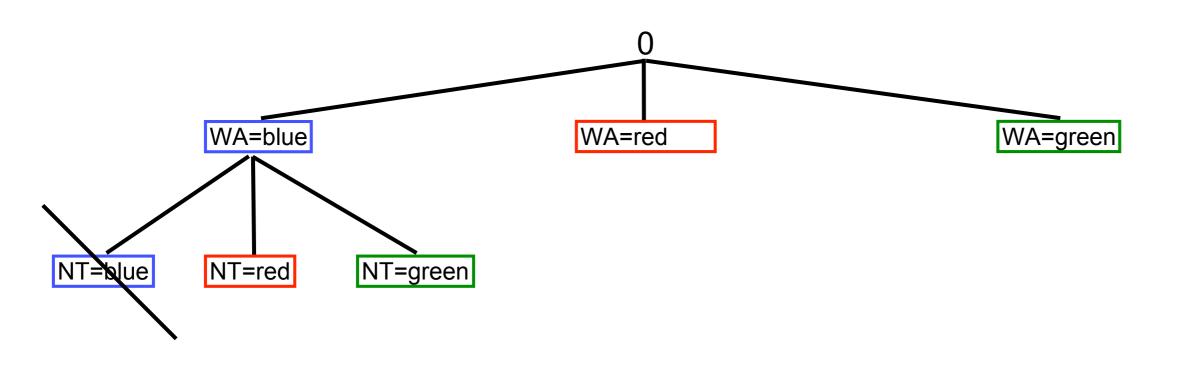
- One variable at a time
- For each value {x₁,...,x_n} in domain of X
 - If value satisfies constraints, assign X=x_i and exit loop
- If an assignment is found
 - Move to next variable
- If no assignment found
 - Back up to preceding variable and try a different assignment for it

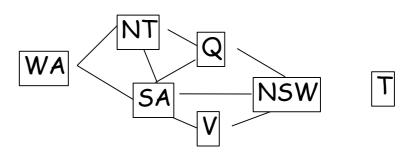
Check constraints as you go

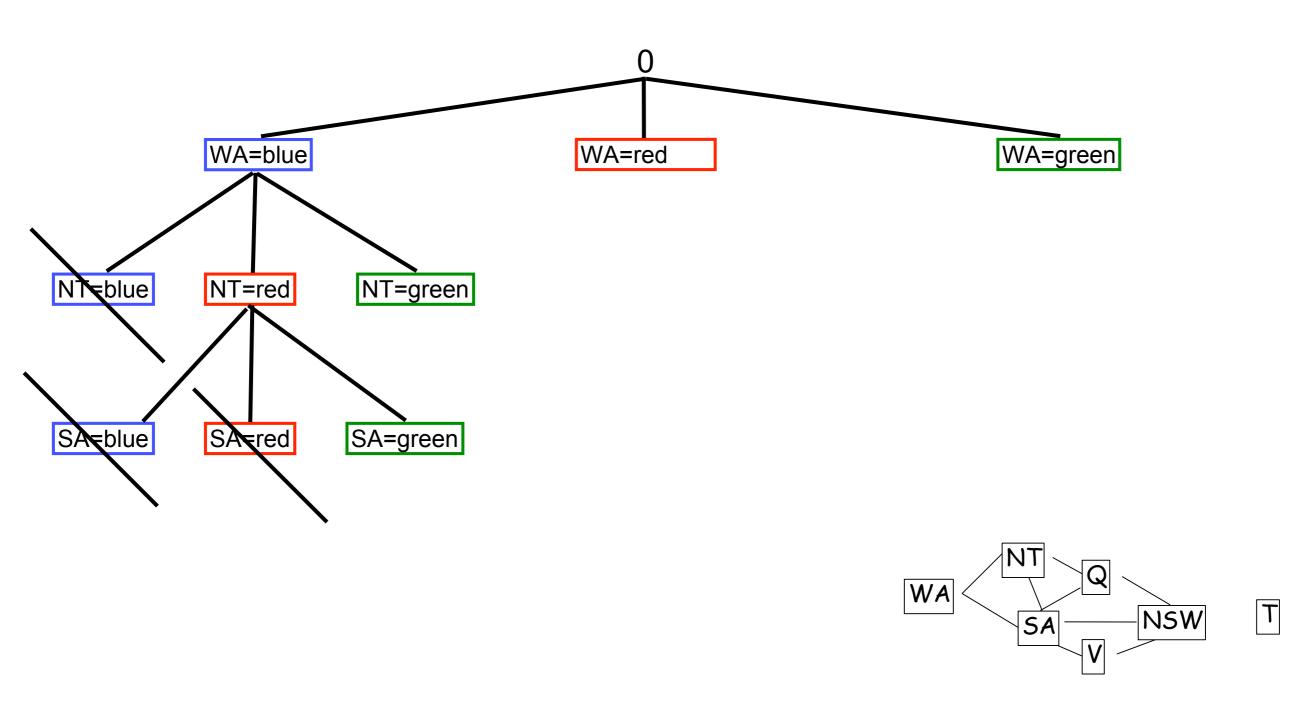












Backtracking and Efficiency

Note that backtracking search is basically DFS with some small improvements. Can we improve on it further?

Ordering:

- Which variables should be tried first?
- In what order should a variable's values be tried?

Filtering:

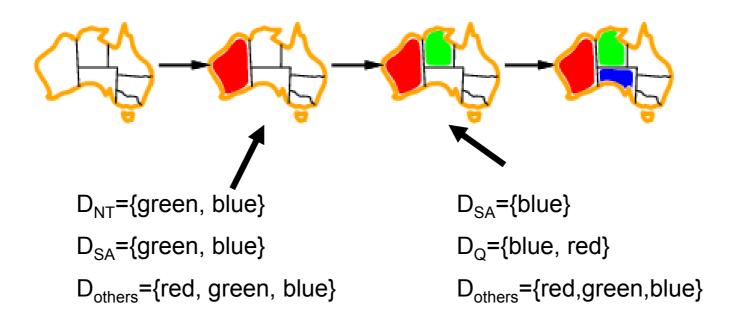
Can we detect failure early?

Structure:

Can we exploit the problem structure?

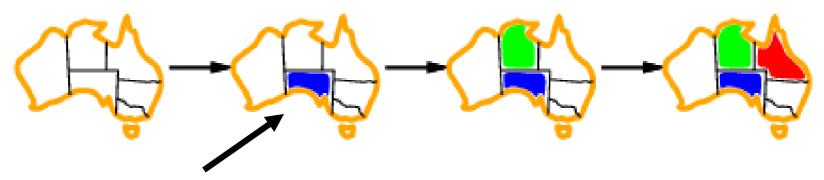
Ordering: Most Constrained Variable

- Choose the variable which has the fewest "legal" moves
 - AKA minimum remaining values (MRV)



Ordering: Most Constraining Variable

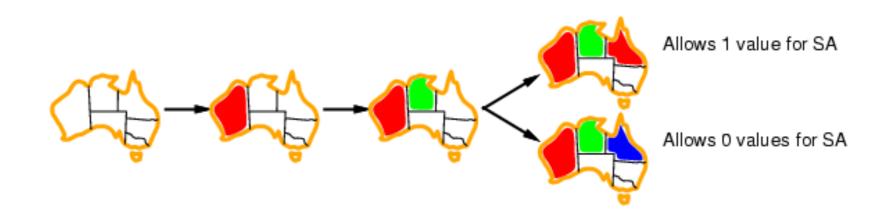
- Most constraining variable:
 - Choose variable with most constraints on remaining variables
- Tie-breaker among most constrained variables



SA is involved in 5 constraints

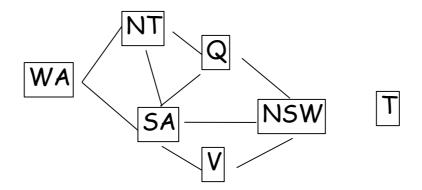
Ordering: Least-Constraining Value

- Given a variable, choose the least constraining value:
 - The one that rules out the fewest values in the remaining variables

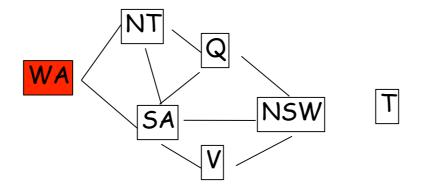


Filtering: Forward Checking

- Forward checking:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

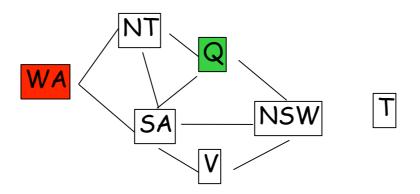


WA	NT	Q	NSW	V	SA	Т
RGB						

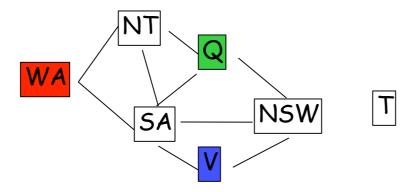


WA	NT	Q	NSW	V	SA	Т
RGB						
R	KGB	RGB	RGB	RGB	RGB	RGB

Forward checking removes the value Red of NT and of SA



WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	ØB	G	RGB	RGB	GΒ	RGB



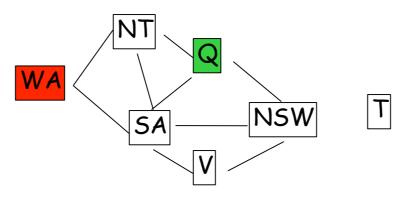
WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB,	RGB	В	RGB
R	В	G	RB	В	P	RGB

Empty set: the current assignment $\{(WA \leftarrow R), (Q \leftarrow G), (V \leftarrow B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	B	RGB
R	В	G	R/	В	8	RGB

Filtering: Arc Consistency

Forward checking propagates information from assigned to unassigned variables, but it can not detect all future failures early



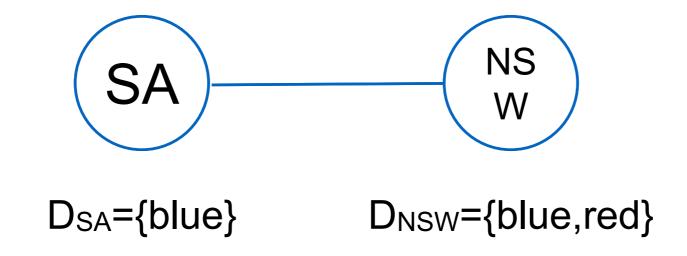
WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB

NT and SA can not both be blue!

Need to reason about constraints

Filtering: Arc Consistency

Given domains D_1 and D_2 , an arc is consistent if for all x in D_1 there is a y in D_2 such that x and y are consistent.

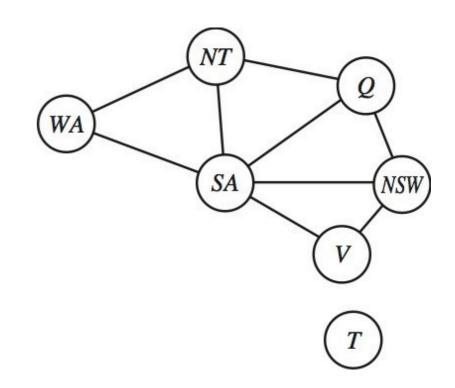


Is the arc from SA to NSW consistent? Is the arc from NSW to SA consistent?

Structure: Independent Subproblems

Tasmania does not interact with the rest of the problem

Idea: Break down the graph into its connected components. Solve each component separately.

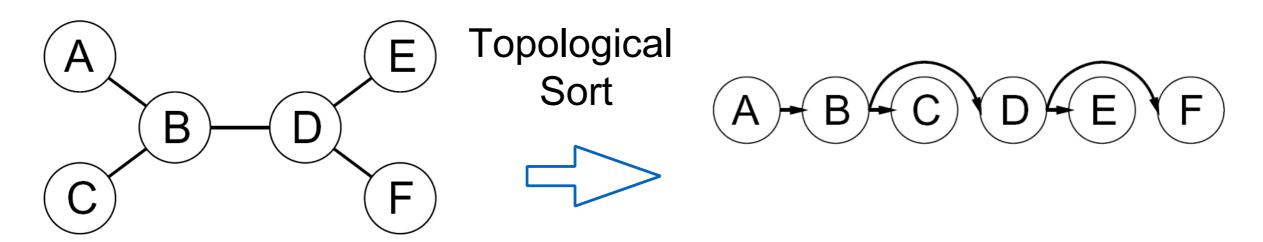


Significant potential savings:

- Assume n variables with domain size d: O(dⁿ)
- Assume each component involves c variables (n/c components) for some constant c: O(d^c n/c)

Structure: Tree Structures

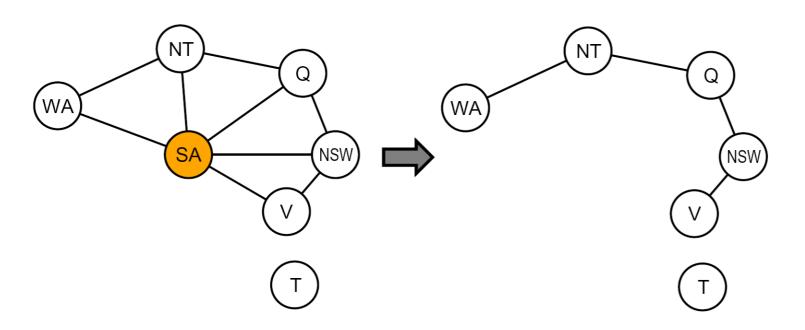
CSPs can be solved in O(nd²) if there are no loops in the constraint graph



Step 1: For i=n to 1, make-consistent(X_i,parent(X_i))

Step 2: For i=1 to n, assign value to X_i consistent with parent(X_i) [Note: No backtracking!]

Structure: Non-Trees?



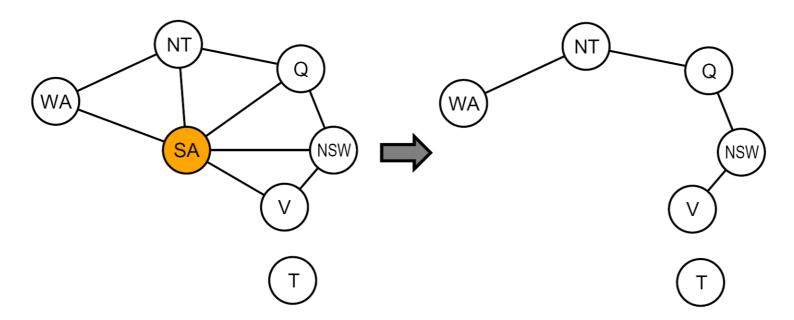
If we assign SA a colour and then remove that colour from the domains all other variables, then we have a tree

Step 1: Choose a subset S of variables such that the constraint graph becomes a tree when S is removed (S is the cycle cutset)

Step 2: For each possible valid assignment to the variables in S

- 1. Remove from the domains of remaining variables, all values that are inconsistent with S
- 2. If the remaining CSP has a solution, return it

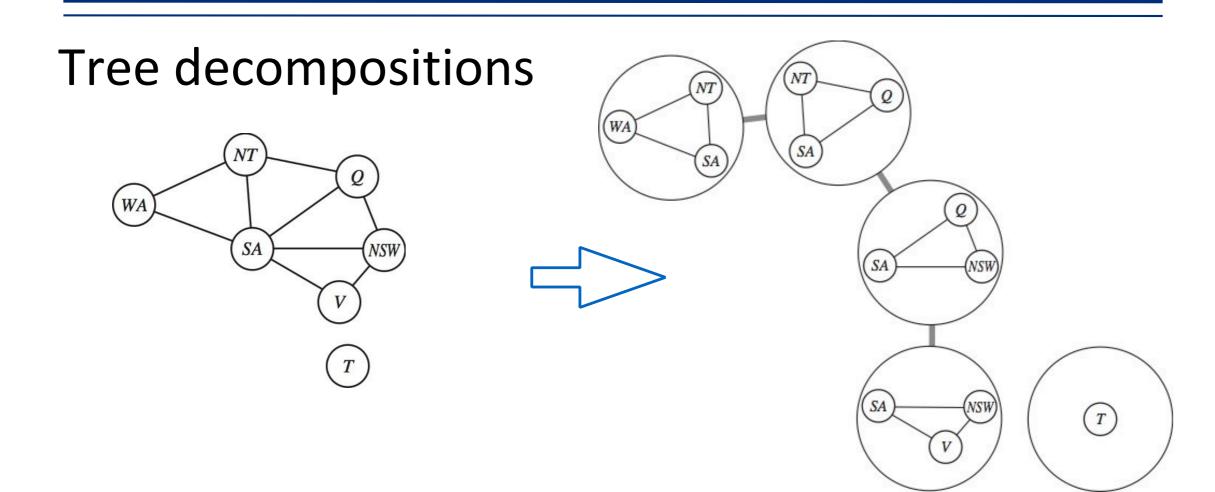
Structure: Cutsets



Running time:

- Let c be the size of the cutset then
 - d^c combinations of variables in S
 - For each combination must solve a tree problem of size n-c (O(n-c)d²)
 - Therefore, running time is O(d^c(n-c)d²)
- Finding smallest cutset is NP-hard but efficient approximations exist

Structure: Non-Trees?

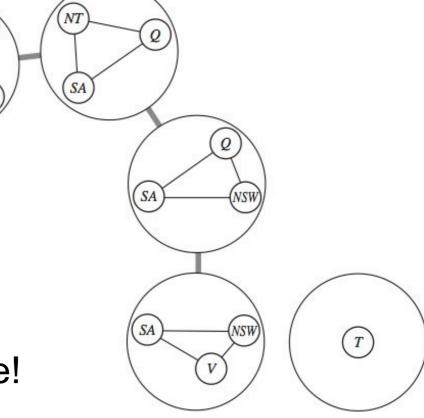


- 1. Each variable appears in at least one subproblem
- 2. If two variables are connected by a constraint, then they (and the constraint) must appear together in at least one subproblem
- 3. If a variable appears in two subproblems in the tree, it must appear in every subproblem along the path connecting those subproblems

Structure: Tree Decompositions

- Solve each subproblem independently
 - e.g {(WA=r,NT=g,SA=b),(WA=b, NT=g,SA=r),...}
- Solve constraints connecting the subproblems using tree-based algorithn (to make sure that subproblems with shared variables agree)

Want to make the subproblems as small as possible! **Tree width**: w= Size of largest subproblem-1 Running time O(nd^{w+1})



Finding tree decomposition with min tree-width is NP-hard, but good heuristics exist

Summary

- How to formalize problems as CSPs
- Backtracking search
- Improvements using
 - Ordering
 - Filtering
 - Structure