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Introduction

Introduction

Game Theory
Given a game we are able to
analyse the strategies agents
will follow

Social Choice
Given a set of agents’
preferences we can choose
some outcome
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Introduction

Introduction

Today Mechanism Design
Game Theory + Social Choice

Goal of Mechanism Design is to
Obtain some outcome (function of agents’ preferences)
But agents are rational

They may lie about their preferences

Goal
Define the rules of a game so that in equilibrium the agents do what
we want.

Kate Larson (University of Waterloo) Mechanism Design 3 / 28



Introduction Fundamentals

Fundamentals

Set of possible outcomes O
Set of agents N, |N| = n

Each agent i has type θi ∈ Θi
Type captures all private information that is relevent to the agent’s
decision making

Utility ui(o, θi) over outcome o ∈ O
Recall: goal is to implement some system wide solution

Captured by a social choice function

f : Θ1 × . . .×Θn → O

where f (θ1, . . . , θn) = o is a collective choice
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Introduction Fundamentals

Examples of Social Choice Functions

Voting:
Choose a candidate among a group

Public project:
Decide whether to build a swimming pool whose cost must be
funded by the agents themselves

Allocation:
Allocate a single, indivisible item to one agent in a group
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Introduction Fundamentals

Mechanisms

Recall that we want to implement a social choice function
Need to know agents’ preferences
They may not reveal them to us truthfully

Example:
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Mechanisms Mechanism Design Problem

Mechanism Design Problem

By having agents interact through an institution we might be able
to solve the problem
Mechanism:

M = (S1, . . . ,Sn,g(·))

where
Si is the strategy space of agent i
g : S1 × . . .× Sn → O is the outcome function
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Mechanisms Mechanism Design Problem

Implementation

Definition
A mechanism M = (S1, . . . ,Sn,g(·)) implements social choice
function f (Θ) if there is an equilibrium strategy profile

s∗ = (s∗1(θ1, . . . , s∗n(θn))

of the game induced by M such that

g(s∗1(θ1), . . . , s∗n(θn)) = f (θ1, . . . , θn)

for all
(θ1, . . . , θn) ∈ Θ1 × . . .×Θn
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Mechanisms Mechanism Design Problem

Implementation

We did not specify the type of equilibrium in the definition
Nash

ui(g(s∗i (θi), s∗−i(θ−i)), θi) ≥ ui(g(s′i (θi), s∗−i(θ−i)), θi)

∀i , ∀θi ,∀s′i 6= s∗i
Bayes-Nash

E [ui(g(s∗i (θi), s∗−i(θ−i)), θi)] ≥ E [ui(g(s′i (θi), s∗−i(θ−i)), θi)]

∀i , ∀θi ,∀s′i 6= s∗i
Dominant

ui(g(s∗i (θi), s∗−i(θ−i)), θi) ≥ ui(g(s′i (θi), s∗−i(θ−i)), θi)

∀i , ∀θi ,∀s′i 6= s∗i , ∀s−i
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Mechanisms Mechanism Design Problem

Direct Mechanisms

Definition
A direct mechanism is a mechanism where

Si = Θi for all i

and
g(θ) = f (θ) for all θ ∈ Θ1 × . . .×Θn
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Mechanisms Mechanism Design Problem

Incentive Compatibility

Definition
A direct mechanism is incentive compatible if it has an equilibrium s∗

where
s∗i (θi) = θi

for all θi ∈ Θi and for all i . That is, truth-telling by all agents is an
equilibrium.

Definition
A direct mechanism is strategy-proof if it is incentive compatible and
the equilibrium is a dominant strategy equilibrium.
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Mechanisms Revelation Principle

Revelation Principle

Theorem
Suppose there exists a mechanism M = (S1, . . . ,Sn,g(·)) that
implements social choice function f in dominant strategies. Then there
is a direct strategy-proof mechanism M ′ which also implements f .
[Gibbard 73; Green & Laffont 77; Myerson 79]

“The computations that go on within the mind of any bidder in
the nondirect mechanism are shifted to become part of the
mechanism in the direct mechanism.”
[McAfee & McMillan 87]
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Mechanisms Revelation Principle

Revelation Principle: Intuition
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Mechanisms Revelation Principle

Theoretical Implications

Literal interpretation: Need only study direct mechanisms
A modeler can limit the search for an optimal mechanism to the
class of direct IC mechanisms
If no direct mechanism can implement social choice function f then
no mechanism can
Useful because the space of possible mechanisms is huge
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Mechanisms Revelation Principle

Practical Implications

Incentive-compatibility is “free”
Any outcome implemented by mechanism M can be implemented
by incentive-compatible mechanism M ′

“Fancy” mechanisms are unneccessary
Any outcome implemented by a mechanism with complex strategy
space S can be implemented by a direct mechanism

BUT Lots of mechanisms used in practice are not direct and
incentive-compatible!
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Mechanisms Gibbard-Satterthwaite

Quick Review

We now know
What a mechanism is
What it means for a SCF to be dominant-strategy implementable
Revelation Principle

We do not yet know
What types of SCF are dominant-strategy implementable
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Mechanisms Gibbard-Satterthwaite

Gibbard-Satterthwaite Impossibility

Theorem
Assume that

O is finite and |O| ≥ 3,
each o ∈ O can be achieved by SCF f for some θ, and
Θ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof) if and
only if it is dictatorial.

Definition
SCF f is dictatorial if there is an agent i such that for all θ

f (θ) ∈ {o ∈ O|ui(o, θi) ≥ ui(o′, θi)∀o′ ∈ O}
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Mechanisms Gibbard-Satterthwaite

Circumventing Gibbard-Satterthwaite

Use a weaker equilibrium concept
Design mechanisms where computing a beneficial manipulation is
hard
Randomization
Restrict the structure of agents’ preferences
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Mechanisms Single-Peaked Preferences

Single-Peaked Preferences

Define A = [0,1] be the outcome space
Each agent i ∈ N has a preference �i over A such that ∃pi ∈ A
such that for all {x} ∈ A \ {pi} and for all λ ∈ [0,1),
(λx + (1− λ)pi) �i x .

political decisions
facility location
temperature settings

The Median-Voter rule is strategy-proof.
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Mechanisms Quasi-Linear Preferences

Quasi-linear preferences

Outcome o = (x , t1, . . . , tn)

x is a “project choice”
ti ∈ R are transfers (money)

Utility function of agent i

ui(o, θi) = vi(x , θi)− ti

Quasi-linear mechanism

M = (S1, . . . ,Sn,g(·))

where
g(·) = (x(·), t1(·), . . . , tn(·))
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Mechanisms Quasi-Linear Preferences

Social Choice Functions and Quasi-linearity

SCF is efficient if for all θ
n∑

i=1

vi(x(θ), θi) ≥
n∑

i=1

vi(x ′(θ), θi)∀x ′(θ)

This is also known as social welfare maximizing
SCF is budget-balanced if

n∑
i=1

ti(θ) = 0

Weakly budget-balanced if

n∑
i=1

ti(θ) ≥ 0

Kate Larson (University of Waterloo) Mechanism Design 21 / 28



Mechanisms Groves Mechanisms

Groves Mechanisms [Groves 73]

A Groves mechanism M = (S1, . . . ,Sn, (x , t1, . . . , tn)) is defined by
Choice rule

x∗(θ) = arg max
x

∑
i

vi(x , θi)

Transfer rules

ti(θ) = hi(θ−i)−
∑
j 6=i

vj(x∗(θ), θj)

where hi(·) is an (arbitrary) function that does not depend on the
reported type θ′i of agent i .

Kate Larson (University of Waterloo) Mechanism Design 22 / 28



Mechanisms Groves Mechanisms

Groves Mechanisms

Theorem
Groves mechanisms are strategy-proof and efficient.

We have gotten around Gibbard-Satterthwaite.
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Mechanisms Groves Mechanisms

Proof

Agent i ’s utility for strategy θ̂i , given θ̂−i from agents j 6= i is

ui(θ̂i) = vi(x∗(θ̂, θi)− ti(θ̂)

= vi(x∗(θ̂, θi) +
∑
j 6=i

vj(x∗(θ̂, θ̂j)− hi(θ̂−i)

Ignore hi(θ̂−i) and notice x∗(θ̂) = arg maxx
∑

i vi(x , θ̂i)
i.e it maximizes the sum of reported values. Therefore, agent i should
announce θ̂i = θi to maximize its own payoff.

Thm: Groves mechanisms are unique (up to hi(θ−i)).
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Mechanisms Groves Mechanisms

Vickrey-Clarke-Groves Mechanism
aka Clarke mechansism, aka Pivotal mechanism

Implement efficient outcome

x∗ = arg max
x

∑
i

vi(x , θi)

Compute transfers

ti(θ) =
∑
j 6=i

vj(x−i , θj)−
∑
j 6=i

vj(x∗, θj)

where x−i = arg maxx
∑

j 6=i vj(x , θj)

VCG are efficient and strategy-proof.
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Mechanisms Groves Mechanisms

VCG Mechanism

Agent’s equilibrium utility is

ui((x∗, t), θi) = vi(x∗, θi)−

∑
j 6=i

vj(x−i , θj)−
∑
j 6=i

vj(x∗, θj)


=

n∑
j=1

vj(x∗, θj)−
∑
j 6=i

vj(x−i , θj)

= marginal contribution to the welfare of the system
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Mechanisms Groves Mechanisms

Examples
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