CS 886: Multiagent Systems Fall 2016 Kate Larson

Review: Introduction to Social Choice

 Social choice is a mathematical theory which studies how to aggregate individual preferences

Voting Model

- Set of voters N={1,...,n}
- Set of alternatives A, |A|=m
- Each voter has a **ranking** over the alternatives (**preferences**)
- **Preference profile** is a collection of voters' rankings

1	2	3
а	b	С
b	а	а
С	С	b

Arrow's Theorem (1951)

If there are **at least three alternatives**, then any **universal social welfare function** that satisfies the **Pareto condition** and is **IIA** must be a **dictatorship**.

Manipulation of Voting Rules

• So far we have assumed that voters truthfully report their preferences

True Preferences

1	2	3
b	b	а
а	а	b
С	С	С
d	d	d

Reported Preferences

1	2	3
b	b	а
а	а	С
С	С	d
d	d	b

Strategyproofness

A voting rule is **strategyproof (SP)** if no voter can ever benefit by lying about its preferences.

Formally, let

- *f* be the voting rule
- >=(>₁, >₂,..., >_n)=(>_i, >_{-i}) be a preference profile

Then *f* is SP if

$$\forall \succ, \forall i \in N, \forall \succ'_i, f(\succ) \succeq_i f(\succ'_i, \succ_{-i})$$

Examples of Strategyproof Voting Rules

• Dictatorship

• There is a voter that always gets its most preferred alternative

Constant function

• The same outcome is chosen no matter how voters vote

Gibbard-Sattherthwaite Theorem

• A voting rule is **onto** if any alternative can be chosen.

If there are **at least three alternatives**, then any **universal** and **onto social welfare function** that is **strategyproof** must be a **dictatorship**.

Now what?

- Restrict to two alternatives
- Restrict the preferences
- Use computational complexity as a barrier to manipulation

Single-peaked preferences

• Assume there is a linear ordering L over alternatives. Then for any three candidates a,b,c

$(aLbLc \lor cLbLa) \Rightarrow (\forall v \in V)[a \succ_v b \Rightarrow b \succ_v c]$

Single-peaked preferences

- **Right-most peak rule**: return the right-most peak
- Mid-peak rule: return the average of the leftmost and rightmost peaks

Single-peaked preferences

• Median rule: return the median peak

- The median rule is
 - Onto
 - Non-dictatorial
 - Selects a Condorcet winner
 - Is strategy-proof

Now what?

- Restrict to two alternatives
- Restrict the preferences
- Use computational complexity as a barrier to manipulation

Complexity and Manipulation

- While manipulation is always possible in theory, what about in practice?
- Are there reasonable voting rules where manipulation is a hard computational problem? [Bartholdi, Tovey and Trick, 1989]

The Manipulation Problem

• Given

- A profile of votes cast by everyone but the manipulator
- A preferred alternative *p*
- Question
 - Is there a vote that the manipulator can cast so that p wins?

1	2	3
b	b	
а	а	
С	С	
d	d	

p=a?

Greedy Algorithm for Manipulation

- Place *p* at the top of the ranking
- While there are unranked alternatives
 - Select alternative a such that it can be put into the next spot in the ranking while still ensuring that p wins
 - If no such *a* exists, return false

Manipulating Borda (p=a)?

1	2	3
b	b	
а	а	
С	С	
d	d	

Manipulating Copeland (p=a)?

1	2	3	4	5
а	b	е	е	
b	а	С	С	
С	d	b	b	
d	е	а	а	
е	С	d	d	

BTT Conditions

- A voting rule satisfies BTT conditions if
 - It can run in polynomial time.
 - For every profile > and for every alternative a, the rule assigns a score S(>,a).
 - For every profile >, the alternative with the maximum score wins.
 - The following monotonicity condition holds

 $\forall v, \forall \succ_v, \succ'_v \text{ if } \{b | a \succ_v b\} \subseteq \{b | a \succ'_v b\} \text{ then } S(\succ_v, a) \leq S(\succ'_v, a)$

Bartholdi et al, (1989)

• **Theorem**: The manipulation problem can be solved in polynomial time for any rule satisfying the BTT conditions.

- Many voting rules are easy to manipulate:
 - Plurality, Plurality with runoff, Borda, Veto, Copeland, Maximin,...

What is Hard to Manipulate?

- STV is hard to manipulate
- Also
 - Nanson: Borda with elimination where in each round you eliminate all alternatives with less than the average Borda score
 - **Baldwin**: Borda with elimination where in each round you eliminate the alternative with the lowest Borda score
 - "Tweaked" versions of many voting rules (Conitzer and Sandholm, 2003)