CS 886: Multiagent Systems

Fall 2016

Kate Larson

Review: Introduction to Social Choice

- Social choice is a mathematical theory which studies how to aggregate individual preferences
- Voting Model
- Set of voters $\mathrm{N}=\{1, \ldots, \mathrm{n}\}$

1	2	3
a	b	c
b	a	a
c	c	b

- Set of alternatives $A,|A|=m$
- Each voter has a ranking over the alternatives (preferences)
- Preference profile is a collection of voters' rankings

Arrow's Theorem (1951)

If there are at least three alternatives, then any universal social welfare function that satisfies the Pareto condition and is IIA must be a dictatorship.

Manipulation of Voting Rules

- So far we have assumed that voters truthfully report their preferences

True Preferences

1	2	3
b	b	a
a	a	b
c	c	c
d	d	d

Reported Preferences

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

Strategyproofness

A voting rule is strategyproof (SP) if no voter can ever benefit by lying about its preferences.

Formally, let

- f be the voting rule
- $\left.\left.\left.>=\left(>_{1},\right\rangle_{2}, \ldots,\right\rangle_{n}\right)=\left(>_{i},\right\rangle_{-i}\right)$ be a preference profile

Then f is SP if

$$
\forall \succ, \forall i \in N, \forall \succ_{i}^{\prime}, f(\succ) \succeq_{i} f\left(\succ_{i}^{\prime}, \succ_{-i}\right)
$$

Examples of Strategyproof Voting Rules

- Dictatorship
- There is a voter that always gets its most preferred alternative
- Constant function
- The same outcome is chosen no matter how voters vote

Gibbard-Sattherthwaite Theorem

- A voting rule is onto if any alternative can be chosen.

If there are at least three alternatives, then any universal and onto social welfare function that is strategyproof must be a dictatorship.

Now what?

- Restrict to two alternatives
- Restrict the preferences
- Use computational complexity as a barrier to manipulation

Single-peaked preferences

- Assume there is a linear ordering L over alternatives. Then for any three candidates a, b, c

$$
(a L b L c \vee c L b L a) \Rightarrow(\forall v \in V)\left[a \succ_{v} b \Rightarrow b \succ_{v} c\right]
$$

Single-peaked preferences

- Right-most peak rule: return the right-most peak
- Mid-peak rule: return the average of the leftmost and rightmost peaks

Single-peaked preferences

- Median rule: return the median peak

- The median rule is
- Onto
- Non-dictatorial
- Selects a Condorcet winner
- Is strategy-proof

Now what?

- Restrict to two alternatives
- Restrict the preferences
- Use computational complexity as a barrier to manipulation

Complexity and Manipulation

- While manipulation is always possible in theory, what about in practice?
- Are there reasonable voting rules where manipulation is a hard computational problem? [Bartholdi, Tovey and Trick, 1989]

The Manipulation Problem

- Given

- A profile of votes cast by everyone but the manipulator
- A preferred alternative p
- Question
- Is there a vote that the manipulator can cast so that p wins?

1	2	3
b	b	
a	a	
c	c	
d	d	

$$
\mathrm{p}=\mathrm{a} \text { ? }
$$

Greedy Algorithm for Manipulation

- Place p at the top of the ranking
- While there are unranked alternatives
- Select alternative a such that it can be put into the next spot in the ranking while still ensuring that p wins
- If no such a exists, return false

Manipulating Borda ($\mathrm{p}=\mathrm{a}$)?

1	2	3
b	b	
a	a	
c	c	
d	d	

Manipulating Copeland ($\mathrm{p}=\mathrm{a}$)?

1	2	3	4	5
a	b	e	e	
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

BTT Conditions

- A voting rule satisfies BTT conditions if
- It can run in polynomial time.
- For every profile $>$ and for every alternative a, the rule assigns a score $S(>, a)$.
- For every profile $>$, the alternative with the maximum score wins.
- The following monotonicity condition holds

$$
\forall v, \forall \succ_{v}, \succ_{v}^{\prime} \text { if }\left\{b \mid a \succ_{v} b\right\} \subseteq\left\{b \mid a \succ_{v}^{\prime} b\right\} \text { then } S\left(\succ_{v}, a\right) \leq S\left(\succ_{v}^{\prime}, a\right)
$$

Bartholdi et al, (1989)

- Theorem: The manipulation problem can be solved in polynomial time for any rule satisfying the BTT conditions.
- Many voting rules are easy to manipulate:
- Plurality, Plurality with runoff, Borda, Veto, Copeland, Maximin,...

What is Hard to Manipulate?

- STV is hard to manipulate
- Also
- Nanson: Borda with elimination where in each round you eliminate all alternatives with less than the average Borda score
- Baldwin: Borda with elimination where in each round you eliminate the alternative with the lowest Borda score
- "Tweaked" versions of many voting rules (Conitzer and Sandholm, 2003)

