CS 886: Multiagent Systems Fall 2016 Kate Larson

Multiagent Systems

- We will study the mathematical and computational foundations of multiagent systems, with a focus on the analysis of systems where agents can not be guaranteed to behave cooperatively (self-interested multiagent systems)
- Topics include
 - Computational Social Choice
 - Mechanism Design
 - Game-theoretic Analysis
 - Applications

Let's make this a little more concrete...

Bipartite Matching Problem

A Perfect Match

Figure from Shahab Bahrami

Matching Mechanisms

Agents may have preferences over whom they are matched

- What is a "good" matching?
- Can we compute "good matchings"?
- How much information do agents need to reveal to find matchings?
- Will they reveal correct information?Can they?

2015 Main Residency Match[®] Largest in History

41,334 Registered Applicants **30,212** Positions

↑ 940 from 2014

↑ 541 from 2014

National Resident Matching Program[®] www.nrmp.org

Other Examples and Applications

- How do you make a decision for a group? (Voting)
 - What is the best voting rule?
 - What is the computational cost of different voting rules?
 - Are some rules more subject to manipulation than others?
 - What information should voters provide? What if they can not?

 How do you decide how to deploy resources against poachers?

From Teamcore@usc

This Course

- Introduction to social choice, game theory and mechanism design
- We will study
 - Computational issues arising in these areas
 - How these ideas are used in computer science
- Course structure
 - Background lectures for the first few weeks
 - Research papers

Logistics

- Tues/Thurs 11:30-12:50 in DC2568
- Seminar course covering recent research papers
 - Several lectures introducing relevant background information
- Marking Scheme
 - Presentations: 20%
 - Participation: 20%
 - Course Project: 60%
- Any questions?
 - Kate Larson klarson@uwaterloo.ca
 - www.cs.uwaterloo.ca/~klarson/teaching/F16-886

Prerequisites: No Formal Prerequisites

- Students should be comfortable with formal mathematical proofs
- Some familiarity with probability
- Ideally students will have an AI course but I will try to cover relevant background material
- I will quickly cover the basic social choice and game theory

Presentations

- Every student is responsible for presenting a research paper in class
 - Short survey + a critique of the work
 - Everyone in class will provide feedback on the presentation
 - Marks given on coverage of material + organization + presentation

Class Participation

- You must participate!
- Before each class (before 10:30 am) you must submit a review of at least one of the papers being discussed that day
 - What is the main contribution?
 - Is it important? Why?
 - What assumptions did the paper make?
 - What applications might arise from the results?
 - How can is be extended?
 - What was unclear?

Project

- The goal of the project is to develop a deep understanding of a topic related to the course
- The topic is open
 - Theoretical, experimental, in-depth literature review, ...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come talk to me
- Proposal due October 21
 - 1-2 page discussion of topic of interest and preliminary literature review
- Final project due December 16
 - Projects will also be presented in class at the end of the semester

Introduction to Social Choice

 Social choice is a mathematical theory which studies how to aggregate individual preferences

Voting Model

- Set of voters N={1,...,n}
- Set of **alternatives** A, |A|=m
- Each voter has a **ranking** over the alternatives (**preferences**)
- Preference profile is a collection of voters' rankings

1	2	3
а	b	С
b	а	а
С	С	b

Voting Rules

• A voting rule is a function from preference profiles to alternatives that specifies the winner of the election

• Plurality

- Each voter assigns one point to their most preferred alternative
- Alternative with the most points wins
 - Common voting rule, used in many political elections (including Canada)

1	2	3
а	b	b
b	а	С
С	С	а

Alt.	Points
а	1
b	2
С	0

Voting Rules

• Borda Rule

- Each voter awards m-k points to its kth ranked alternative
- Alternative with the most points wins
- Used for elections to the national assembly of Slovenia
- Quite similar to the rule used in the Eurovision song context

1	2	3
а	b	С
b	а	а
С	С	b

Alt.	Points	
а	2+1+1=4	
b	1+2+0=3	
С	0+0+2=2	

Voting Rules

• Scoring Rules (Positional Rules)

- Defined by a vector (s₁,...,s_m)
- Add up scores for each alternative
- Plurality (1,0,...,0)
- Borda (m-1,m-2,...,0)
- Veto (1,1,...,1,0)

1	2	3
а	b	С
b	а	а
С	С	b

Alt.	Points	
а	1+1+1=3	
b	1+1+0=2	
С	0+0+1=1	

We can also have multi-stage voting rules

- *x* beats *y* in a pairwise election of the majority of voters prefer *x* to
- Plurality with runoff
 - Round 1: Eliminate all alternatives except the two with the highest plurality scores
 - Round 2: Pairwise election between these two alternatives

• Single Transferable Vote (STV)

- m-1 rounds
- In each round, alternative with the lowest plurality score is eliminated
- Last remaining alternative is the winner
- Used in Ireland, Australia, New Zealand, Malta

How do we choose which voting rule to use?

- We are usually interested in using rules with "good" properties
- Majority consistency
 - If a majority of voters rank alternative x first, then x should be the winner

Condorcet Principle and Condorcet Winners

- If an alternative is preferred to all other alternatives, then it should be chosen
- Condorcet Winner: An

alternative that beats every other alternatives in pairways elections

10 voters	6 voters	5 voters
С	b	а
b	а	b
а	С	С

Pairwise Election	Winner
a vs b	b
a vs c	а
b vs c	b

Condorcet Paradox

• A Condorcet winner might not exist

• Condorcet consistency: Select a Condorcet winner if one exists

Even More Voting Rules!

- Copeland
 - Alternative's score is the number of alternatives it beats in pairwise elections
- Maximin
 - Score of alternative x is $\min_{y} |\{i \in \mathbb{N} \text{ such that } x > {}_{i}y\}|$

• Dodgson's Rule

- Define a distance function between profiles: number of swaps between adjacent candidates
- Dodgson Score of x: minimum distance from a profile where x is a Condorcet winner
- Select alternative with lowest Dodgson Score

Interesting Example

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
а	b	С	С	d	е
b	d	d	е	е	С
С	С	b	b	С	b
d	е	а	d	b	d
е	а	е	а	а	а

- Plurality: *a*
- Borda: *b*
- Condorcet Winner: *c*

- STV: *d*
- Plurality with runoff: *e*

Revisiting Voting Rule Properties

- A voting rule should produce an ordered list of alternatives (social welfare function)
- A voting rule should work with any set of preferences (universality)
- If all voters rank alternative *x* above *y* then our voting rule should rank *x* above *y* (**Pareto condition**)

Revisiting Voting Rule Properties

- If alternative x is socially preferred to y, then this should not change when a voter changes their ranking of alternative z (independence of irrelevant alternatives (IIA))
- There should not be a voter *i* such that the outcome of the voting rule always coincides with *i*'s ranking, irrespective of the preferences of the other voters (**no dictators**)

Arrow's Theorem (1951)

If there are at least three alternatives, then any universal social welfare function that satisfies the Pareto condition and is IIA must be a dictatorship.