CS 886: Multiagent Systems

Fall 2016

Kate Larson

Multiagent Systems

- We will study the mathematical and computational foundations of multiagent systems, with a focus on the analysis of systems where agents can not be guaranteed to behave cooperatively (self-interested multiagent systems)
- Topics include
- Computational Social Choice
- Mechanism Design
- Game-theoretic Analysis
- Applications

Let's make this a little more concrete...

Bipartite Matching Problem

A Perfect Match

Matching Mechanisms

Agents may have preferences over whom they are matched

- What is a "good" matching?
- Can we compute "good matchings"?
- How much information do agents need to reveal to find matchings?
- Will they reveal correct information? Can they?

Other Examples and Applications

- How do you make a decision for a group? (Voting)
- What is the best voting rule?
- What is the computational cost of different voting rules?
- Are some rules more subject to manipulation than others?
- What information should voters provide? What if they can not?

- How do you decide how to deploy resources against poachers?

This Course

- Introduction to social choice, game theory and mechanism design
- We will study
- Computational issues arising in these areas
- How these ideas are used in computer science
- Course structure
- Background lectures for the first few weeks
- Research papers

Logistics

- Tues/Thurs 11:30-12:50 in DC2568
- Seminar course covering recent research papers
- Several lectures introducing relevant background information
- Marking Scheme
- Presentations: 20\%
- Participation: 20\%
- Course Project: 60\%
- Any questions?
- Kate Larson klarson@uwaterloo.ca
- www.cs.uwaterloo.ca/~klarson/teaching/F16-886

Prerequisites: No Formal Prerequisites

- Students should be comfortable with formal mathematical proofs
- Some familiarity with probability
- Ideally students will have an Al course but I will try to cover relevant background material
- I will quickly cover the basic social choice and game theory

Presentations

- Every student is responsible for presenting a research paper in class
- Short survey + a critique of the work
- Everyone in class will provide feedback on the presentation
- Marks given on coverage of material + organization + presentation

Class Participation

- You must participate!
- Before each class (before 10:30 am) you must submit a review of at least one of the papers being discussed that day
- What is the main contribution?
- Is it important? Why?
- What assumptions did the paper make?
- What applications might arise from the results?
- How can is be extended?
- What was unclear?
- ...?

Project

- The goal of the project is to develop a deep understanding of a topic related to the course
- The topic is open
- Theoretical, experimental, in-depth literature review, ...
- Can be related to your own research
- If you have trouble coming up with a topic, come talk to me
- Proposal due October 21
- 1-2 page discussion of topic of interest and preliminary literature review
- Final project due December 16
- Projects will also be presented in class at the end of the semester

Introduction to Social Choice

- Social choice is a mathematical theory which studies how to aggregate individual preferences
- Voting Model
- Set of voters $N=\{1, \ldots, n\}$

1	2	3
a	b	c
b	a	a
c	c	b

- Set of alternatives $A,|A|=m$
- Each voter has a ranking over the alternatives (preferences)
- Preference profile is a collection of voters' rankings

Voting Rules

- A voting rule is a function from preference profiles to alternatives that specifies the winner of the election

1	2	3
a	b	b
b	a	c
c	c	a

- Plurality
- Each voter assigns one point to their most preferred alternative
- Alternative with the most points wins
- Common voting rule, used in many political elections (including Canada)

Alt.	Points
a	1
b	$\mathbf{2}$
c	0

Voting Rules

- Borda Rule

- Each voter awards m-k points to its $k^{\text {th }}$ ranked alternative
- Alternative with the most points wins
- Used for elections to the national assembly of Slovenia
- Quite similar to the rule used in the Eurovision song context

1	2	3
a	b	c
b	a	a
c	c	b

Alt.	Points
a	$\mathbf{2 + 1 + 1 = 4}$
b	$1+2+0=3$
c	$0+0+2=2$

Voting Rules

- Scoring Rules (Positional Rules)
- Defined by a vector ($\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{m}}$)
- Add up scores for each alternative
- Plurality (1,0,...,0)
- Borda (m-1,m-2,...,0)
- Veto (1,1,..., 1,0)

1	2	3
a	b	c
b	a	a
c	c	b

Alt.	Points
a	$\mathbf{1 + 1 + 1 = 3}$
b	$1+1+0=2$
c	$0+0+1=1$

We can also have multi-stage voting rules

- x beats y in a pairwise election of the majority of voters prefer x to y
- Plurality with runoff
- Round 1: Eliminate all alternatives except the two with the highest plurality scores
- Round 2: Pairwise election between these two alternatives

- Single Transferable Vote (STV)

- m-1 rounds
- In each round, alternative with the lowest plurality score is eliminated
- Last remaining alternative is the winner
- Used in Ireland, Australia, New Zealand, Malta

How do we choose which voting rule to use?

- We are usually interested in using rules with "good" properties
- Majority consistency
- If a majority of voters rank alternative x first, then x should be the winner

Condorcet Principle and Condorcet Winners

- If an alternative is preferred to all other alternatives, then it should be chosen

10 voters	6 voters	5 voters
c	b	a
b	a	b
a	c	c

- Condorcet Winner: An alternative that beats every other alternatives in pairways elections

Pairwise Election	Winner
a vs b	b
a vs c	a
b vs c	b

Condorcet Paradox

- A Condorcet winner might not exist

1	2	3
a	b	c
b	c	a
c	a	b

- Condorcet consistency: Select a Condorcet winner if one exists

Even More Voting Rules!

- Copeland
- Alternative's score is the number of alternatives it beats in pairwise elections
- Maximin
- Score of alternative x is $\min _{\mathrm{y}} \mid\left\{i \in N\right.$ such that $\left.\mathrm{x}>{ }_{i} y\right\} \mid$
- Dodgson's Rule
- Define a distance function between profiles: number of swaps between adjacent candidates
- Dodgson Score of x : minimum distance from a profile where x is a Condorcet winner
- Select alternative with lowest Dodgson Score

Interesting Example

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	c
c	c	b	b	c	b
d	e	a	d	b	d
e	a	e	a	a	a

- Plurality: a
- Borda: b
- STV: d
- Plurality with runoff: e
- Condorcet Winner: c

Revisiting Voting Rule Properties

- A voting rule should produce an ordered list of alternatives (social welfare function)
- A voting rule should work with any set of preferences (universality)
- If all voters rank alternative x above y then our voting rule should rank x above y (Pareto condition)

Revisiting Voting Rule Properties

- If alternative x is socially preferred to y, then this should not change when a voter changes their ranking of alternative z (independence of irrelevant alternatives (IIA))
- There should not be a voter i such that the outcome of the voting rule always coincides with i's ranking, irrespective of the preferences of the other voters (no dictators)

Arrow's Theorem (1951)

If there are at least three alternatives, then any universal social welfare function that satisfies the Pareto condition and is IIA must be a dictatorship.

