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What is game theory?

The study of games!
@ Bluffing in poker
@ What move to make in chess
@ How to play Rock-Scissors-Paper
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N
What is game theory?

The study of games!
@ Bluffing in poker
@ What move to make in chess
@ How to play Rock-Scissors-Paper

Also study of auction design,
strategic deterrence, election laws,
coaching decisions, routing
protocols,...
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What is game theory?

Game theory is a formal way to analyze interactions among a group
of rational agents who behave strategically.
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What is game theory?

Game theory is a formal way to analyze interactions among a group
of rational agents who behave strategically.

Group: Must have more than one decision maker
@ Otherwise you have a decision problem, not a game

ff Solitaire
Game Help

Solitaire is not a
game.
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What is game theory?

Game theory is a formal way to analyze interactions among a group
of rational agents who behave strategically.

Interaction: What one agent does directly affects at least one other
agent

Strategic: Agents take into account that their actions influence the
game

Rational: An agent chooses its best action (maximizes its expected
utility)
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Example

Pretend that the entire class is going to go for lunch:
@ Everyone pays their own bill
@ Before ordering, everyone agrees to split the bill equally

Which situation is a game?
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Normal Form Games

Normal Form

A normal form game is defined by
@ Finite set of agents (or players) N, [N| = n
@ Each agent i has an action space A;
@ A, is non-empty and finite

@ An outcome is defined by an action profile a = (a4, ..., an) where
a;j is the action taken by agent /

@ Each agent has a utility function u; : Ay x ... x Ap— R
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Normal Form Games

Examples

Prisoners’ Dilemma

| [C[D]
Cl| aal bec
D|cb|dd

c>a>d>b

Pure coordination game

v action profiles ae Ay x ... x A,
and Vi, j, ui(a) = uj(a).

L JL[R]
L[1,1]00
R 0,01,

Agents do not have conflicting

interests.
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Normal Form Games

Zero-sum games

Vae Ay x Az, us(a) + us(a) = 0.

Matching Pennies

Given the utility of one agent, the
other’s utility is known.
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Normal Form Games

More Examples

Most games have elements of both cooperation and competition.
Hawk-Dove

BoS
| [H[S ]|
H|21]0,0
S|00]1,2

| I D[H]
D33 14
H 4,100
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Strategies

Notation: Given set X, let AX be the set of all probability distributions
over X.

Definition
Given a normal form game, the set of mixed strategies for agent i is

S = AA;

The set of mixed strategy profilesis S =Sy x ... x Sj.
Definition

A strategy s; is a probability distribution over A;. si(a;) is the probability
action a; will be played by mixed strategy s;.
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Normal Form Games

Strategies

Definition
The support of a mixed strategy s; is

{a,-]s,-(a,-) > 0}

Definition
A pure strategy s; is a strategy such that the support has size 1, i.e.

[{ailsi(ai) > 0} =1

A pure strategy plays a single action with probability 1.
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Expected Utility

The expected utility of agent i given strategy profile s is

ui(s) = u(a)nf_s(a)

acA
Example
Given strategy profile s = ((3, 3), (15, 75))
‘ H C ‘ D ‘ what is the expected utility of the agents?
Cl-1,-1] 4,0
D|0,-4]|-3-3
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Best-response

Given a game, what strategy should an agent choose?
We first consider only pure strategies.

Definition
Given a_;, the best-response for agent i is a; € A; such that
ui(ar,a_j) > ui(a,a_)va; € A

Note that the best response may not be unique.
A best-response set is

Bi(a_;) = {aj € Ailui(aj,a_) > ui(&},a_j)Va; € A;}
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Nash Equilibrium

Definition
A profile a* is a Nash equilibrium if Vi, a; is a best response to a* ;.
That is

Viui(af,a*;) > ui(aj, a" ;) va; € A;

Equivalently, a* is a Nash equilibrium if /i

ai € B(a*))
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Normal Form Games Nash Equilibria

Examples
PD BoS
L fcfo} [ IH][T]
Cl-1,-1]-40 H[2170,0
D 0-4|-3-3 T 0012

Kate Larson (University of Waterloo)
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L [ H[T]
H1,-1]-1,1
T 1,111

16/67



Nash Equilibria

We need to extend the definition of a Nash equilibrium. Strategy profile
s* is a Nash equilibrium is for all /

ui(sf,s*;) > ui(sj, s*;) Vsj € S
Similarly, a best-response set is

B(s_j) = {si € Silui(sj,s-i) > U,'(S;, S_,')VS; € Si}
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Examples
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Normal Form Games Nash Equilibria

Characterization of Mixed Nash Equilibria

s* is a (mixed) Nash equilibrium if and only if
@ the expected payoff, given s*;, to every action to which s/ assigns
positive probability is the same, and

@ the expected payoff, given s*; to every action to which s} assigns
zero probability is at most the expected payoff to any action to
which s} assigns positive probability.
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Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.
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Normal Form Games Nash Equilibria

Existence

Theorem (Nash, 1950)
Every finite normal form game has a Nash equilibrium. }

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it
has nice properties (compact and convex).

Define f : X — 2% to be the best-response set function, i.e. given s,
f(s) is the set all strategy profiles s’ = (si,...,s,) such that s; is i’s
best response to s’ ;.

Show that f satisfies required properties of a fixed point theorem
(Kakutani’s or Brouwer’s).

Then, f has a fixed point, i.e. there exists s such that f(s) = s. This sis
mutual best-response — NE!
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Normal Form Games Nash Equilibria

Interpretations of Nash Equilibria

@ Consequence of rational inference
@ Focal point

@ Self-enforcing agreement

@ Stable social convention

-
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Computing Equilibria

Dominant and Dominated Strategies

For the time being, let us restrict ourselves to pure strategies.
Definition
Strategy s; is a strictly dominant strategy if for all s; # s; and for all s_;

ui(si,s—i) > ui(si,s_j)

Prisoner’s Dilemma

. [ S [ D |
Cl-1,-1] 40 Dominant-strategy equilibria
D|0,-4]-3,-3
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Dominated Strategies

Definition
A strategy s; is strictly dominated if there exists another strategy s;
such that for all s_;

U,'(S;, S_,') > U,'(S,', S_,')

Definition
A strategy s; is weakly dominated if there exists another strategy s;
such that for all s_;

U,'(S;, S_,') > U,'(S,', S_,')

with strict inequality for some s_;.
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Computing Equilibria

Example
[ I L]R]
Ujf1,-17]-1,1
M| -1,1 ] 1,
D -25]-32

D is strictly dominated

| JL[R]
UJ[51]4,0
M [ 6,0 3,1
D[ 64|44

U and M are weakly dominated

Kate Larson (University of Waterloo)

24 /67



Computing Equilibria

lterated Deletion of Strictly Dominated Strategies

Algorithm
@ Let R; be the removed set of strategies for agent /
o Ff,' = @
@ Loop
@ Choose i and s; such that s; € A; \ R; and there exists s; such that

U,'(S,I', S_,') > U,‘(S,‘, S_,') Vs_;

@ Add s;to R;
@ Continue
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Computing Equilibria

Example

= & = = E DA
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Some Results

Theorem

If a unique strategy profile s* survives iterated deletion then it is a
Nash equilibrium.

Theorem
If s* is a Nash equilibrium then it survives iterated elimination.

Weakly dominated strategies cause some problems.
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Domination and Mixed Strategies

The definitions of domination (both strict and weak) can be easily
extended to mixed strategies in the obvious way.

Theorem

Agent i’s pure strategy s; is strictly dominated if and only if there exists
another (mixed) strategy o such that

ui(oi, S—i) > ui(Si, S-)

for all s_;.
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Computing Equilibria

Example
Strategy (3,0, 3) strictly dominates
‘ H L ‘ R ‘ pure strategy M.
Uiy 10,1 | 0,4
M| 42 | 43
D 05 |102
Theorem

If pure strategy s; is strictly dominated, then so is any (mixed) strategy
that plays s; with positive probability.
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Computing Equilibria

Maxmin and Minmax Strategies

@ A maxmin strategy of player i is one that maximizes its worst
case payoff in the situation where the other agent is playing to
cause it the greatest harm

arg max r?in ui(si, S—i)
Sj —i

@ A minmax strategy is the one that minimizes the maximum
payoff the other player can get

arg msin max s_;u_;(sj, 5_;)
i
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Computing Equilibria

Example

In 2-player games, maxmin value of one player is equal to the minmax

value of the other player.

Kate Larson (University of Waterloo)

L IL[R]
U] 2354
D[ 0112
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Zero-Sum Games

@ The maxmin value of one player is equal to the minmax value of
the other player

@ For both players, the set of maxmin strategies coincides with the
set of minmax strategies

@ Any maxmin outcome is a Nash equilibrium. These are the only
Nash equilibrium.
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Computing Equilibria

Solving Zero-Sum Games

Let U7 be unique expected utility for player 7 in equilibrium. Recall that
Uy =-U;.

minimize  Uj

subject to ZakeAz ui(aj, ax)sz(ax) < Uy  Vaj € Ay

Danen, S2(ak) =1
S2(ak) > 0 Vay € Az

LP for 2’s mixed strategy in equilibrium.
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Computing Equilibria

Solving Zero-Sum Games

Let U7 be unique expected utility for player 7 in equilibrium. Recall that
U; = -Us;.

maximize Uj
subject to ZajeA1 ui(a;, ax)s1(a;) > Uy Vax € Az

s1(g) >0 Va; € A

LP for 1’s mixed strategy in equilibrium.
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Two-Player General-Sum Games

LP formulation does not work for general-sum games since agents’
interests are no longer diametrically opposed.

Linear Complementarity Problem (LCP)
Find any solution that satisfies

2aceh, U1(8j: ak)s2(ax) +n(a) = Uy Vaj € Ay
D aea, U2(a), ak)si () + r2(ak) = Uz Vak € A
ZajeA1 S1(aj) =1 ZakGAz SZ(ak) =1

si(aj) > 0,s2(ak) >0 Vaj € Ay, ak € Az
ri(a) >0,r(ak) >0 Vaj € Ay, ax € As
ri(aj)s1(a)) = 0,r2(ax)sz(ak) =0 Vaj € Ay, ak € Az

For n > 3-player games, formulate a non-linear complementarity
problem.
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Complexity of Finding a NE

@ Characterization is tricky since we do not have a decision problem
(i.e. every game has at least one Nash Equilibrium)
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Complexity of Finding a NE

@ Characterization is tricky since we do not have a decision problem
(i.e. every game has at least one Nash Equilibrium)

@ NE is in PPAD: Polynomial parity argument, directed version

@ Given an exponential-size directed graph, with every node having
in-degree and out-degree at most one described by a
polynomial-time computable function f(v) that outputs the
predecessor and successor of v, and a vertex s with a successor
but no predecessors, find a t # s that either has no successors or
predecessors.
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Perfect Information Games

Extensive Form Games
aka Dynamic Games, aka Tree-Form Games

@ Extensive form games allows us to model situations where agents
take actions over time

@ Simplest type is the perfect information game
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Perfect Information Games

Perfect Information Game

Perfect Information Game: G = (N, A, H,Z,a, p, 0, U)

@ N is the player set [N| =n

@ A= A; x...x Apis the action space

@ H is the set of non-terminal choice nodes

@ Zis the set of terminal nodes

@ o : H — 24 action function, assigns to a choice node a set of
possible actions

@ p: H — N player function, assigns a player to each non-terminal
node (player who gets to take an action)

® 0: Hx A— HUZ, successor function that maps choice nodes
and an action to a new choice node or terminal node where

Vh1,h2 € Hand ay, ag c Aif hy 75 ho then O‘(h1,a1) 750'(/72,32)

® u=(uy,...,un) wWhere u; : Z — Ris utility function for player i
over Z
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Perfect Information Games

Tree Representation

@ The definition is really a tree description

@ Each node is defined by its history (sequence of nodes leading
from root to it)

@ The descendents of a node are all choice and terminal nodes in
the subtree rooted at the node.
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Perfect Information Games

Example

Sharing two items
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Perfect Information Games

Strategies

@ A strategy, s; of player i is a function that assigns an action to
each non-terminal history, at which the agent can move.

@ Outcome: o(s) of strategy profile s is the terminal history that
results when agents play s

@ Important: The strategy definition requires a decision at each
choice node, regardless of whether or not it is possible to reach
that node given earlier moves
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Perfect Information Games

Example

Strategy sets for the agents

S = {(AG),(AH),(B,G),(B.H)}

Sz = {(C.E),(C.F),(D.E),(D,F)}

Kate Larson (University of Waterloo) 42 /67



Perfect Information Games

Example

We can transform an extensive form game into a normal form game.

‘ | (CE) | (CF) | (D,E) | (DF) |

(AG) | 3.8 3,8 83 | 83
(AH) | 3,8 3,8 83 | 83
(B,G) | 55 | 210 | 55 |2,10
(B,H) || 55 1,0 55 1,0

Kate Larson (University of Waterloo)
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Nash Equilibria

Definition (Nash Equilibrium)
Strategy profile s* is a Nash Equilibrium in a perfect information,
extensive form game if for all i

ui(sf,s";) = ui(sj, s7;)Vs;

Theorem

Any perfect information game in extensive form has a pure strategy
Nash equilibrium.

Intuition: Since players take turns, and everyone sees each move
there is no reason to randomize.
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Example: Bay of Pigs

Krushev

Arm / Retreat
’ What are the NE?

Kennedy

Nuk(/ \Fold

-100,-100 10,-10

Kate Larson (University of Waterloo)
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Perfect Information Games

Subgame Perfect Equilibrium

Nash Equilibrium can sometimes be too weak a solution concept.

Definition (Subgame)

Given a game G, the subgame of G rooted at node j is the restriction
of G to its descendents of h.

Definition (Subgame perfect equilibrium)

A strategy profile s* is a subgame perfect equilibrium if for all i € N,
and for all subgames of G, the restriction of s* to G' (G' is a subgame
of G) is a Nash equilibrium in G'. That is

Vi,VG, ui(sfle 8% la) = UilSilar, S il e )Vs;
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Example: Bay of Pigs

Krushev

Arm / Retreat
’ What are the SPE?

Kennedy

Nuk(/ \Fold

-100,-100 10,-10

Kate Larson (University of Waterloo)
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Existence of SPE

Theorem (Kuhn’s Thm)
Every finite extensive form game with perfect information has a SPE. J

You can find the SPE by backward induction.
@ |dentify equilibria in the bottom-most trees
@ Work upwards
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Perfect Information Games

Centipede Game
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Imperfect Information Games

Imperfect Information Games

@ Sometimes agents have not observed everything, or else can not
remember what they have observed

Imperfect information games: Choice nodes H are partitioned into
information sets.

@ If two choice nodes are in the same information set, then the
agent can not distinguish between them.

@ Actions available to an agent must be the same for all nodes in the
same information set
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Imperfect Information Games

Example

Information sets for agent 1
L= {{(Z)}? {(Lv A)v (Lv B)}}
lo = {{L}}
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Imperfect Information Games

More Examples

Simultaneous Moves Imperfect Recall

1,0 100,100 5,1 2,2
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Imperfect Information Games

Strategies

@ Pure strategy: a function that assigns an action in A;(/;) to each
information set /; € Z;

@ Mixed strategy: probability distribution over pure strategies

@ Behavorial strategy: probability distribution over actions
available to agent / at each of its information sets (independent
distributions)
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Imperfect Information Games

Behavorial Strategies

Definition
Given extensive game G, a behavorial strategy for player i specifies,
for every I; € Z; and action a; € Ai(l;), a probability \i(a;, I;) > 0 with

> Aanh) =1

acAi(l)
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Imperfect Information Games

Example

Mixed Strategy:
(0.4(A,G), 0.6(B,H))

Behavorial Strategy:
@ Play A with probability 0.5
@ Play G with probability 0.3
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Imperfect Information Games

Mixed and Behavorial Strategies

In general you can not compare the two types of strategies.

But for games with perfect recall
@ Any mixed strategy can be replaced with a behavorial strategy
@ Any behavorial strategy can be replaced with a mixed strategy
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Example

Mixed Strategy:
(<0.3(A,L)>,<0.2(A,R)>,
<0.5(B,L)>)

Behavorial Strategy:

o At/: (0.5,0.5)
o Atl: (0.6, 0.4)
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Imperfect Information Games Bayesian Games

Bayesian Games

So far we have assumed that all players know what game they are
playing

@ Number of players

@ Actions available to each player

@ Payoffs associated with strategy profiles

Bayesian games (games of incomplete information) are used to
represent uncertainties about the game being played
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Imperfect Information Games Bayesian Games

Bayesian Games

There are different possible representations.
Information Sets
@ N set of agents
@ G setof games
@ Same strategy sets for each game and agent
@ [1(G) is the set of all probability distributions over G
@ P(G) € MN(G) common prior
@ /= (h,...,I) are information sets (partitions over games)

Kate Larson (University of Waterloo)
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Imperfect Information Games Bayesian Games

Extensive Form With Chance Moves

A special player, Nature, makes probabilistic moves.

Nature
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Epistemic Types

Epistemic types captures uncertainty directly over a game’s utility
functions.

@ N set of agents

@ A= (Ay,...,Ap) actions for each agent

® © =04 x...x ©,where ©; is type space of each agent
@ p:© — [0,1] is common prior over types

@ Each agent has utility function uj: Ax © — R
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Imperfect Information Games Bayesian Games

Example
BoS
Utilities can be captured by
@ 2 agents matrix-form
® Ay = A, = {soccer, hockey} T JTH]S ]|
@ © =(01,07) where bo=H[H[22]0,
©1={H 8}, 0={H, S} S/ 0,011
@ Prior: pi(H) =1, po(H) = &,
P2(S) = § [ [THTS|
o=S|H| 21100
S|00]|1,2
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Strategies and Ultility

@ A strategy s;(6;) is a mapping from ©; to A;. It specifies what
action (or what distribution of actions) to take for each type.

Utility: u;(s|6;)
@ ex-ante EU (know nothing about types)

EU= )" p(6;)EUi(s;|6;)
0,€0;

@ interim EU (know own type)

EU = EU,'(SW,‘) = Z ,0(9_,'|9,') Z I'I,-est(a,-, 9/'))U,'(a, 9_,', 9,’)
0_,€0_; acA

@ ex-post EU (know everyones type)
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Example

@ 2 firms, 1 and 2, competing to create some product.
@ If one makes the product then it has to share with the other.
@ Product development costis ¢ € (0,1)

@ Benefit of having the product is known only to each firm
@ Type 6; drawn uniformly from [0, 1]
o Benefit of having product is 62
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Bayes Nash Equilibrium

Definition (BNE)

Strategy profile s* is a Bayes Nash equilibrium if Vi, V0;

EU(sf,s7l0i) = EU(s}, s"10,)Vs;] # s
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Imperfect Information Games Bayesian Games

Example Continued

@ Let si(¢;) = 1if i develops product, and 0 otherwise.

@ If i develops product
uj = 9,-2 —C

If it does not then
u; = 02Pr(si(6;) = 1)

@ Thus, develop product if and only if

(o
1= Pr(si(6;) = 1)

0?2 —c > 02Pr(si(0;) = 1) = 0; > \/
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Imperfect Information Games Bayesian Games

Example Continued

Suppose 61, 05 € (0, 1) are cutoff values in BNE.

@ If so, then Pr(sj(0) = 1) =1
@ We must have

~ c JUN
0> |~=0%=c
0;
and
]-29,'20

@ Therefore

and so
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