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What is game theory?

The study of games!

Bluffing in poker

What move to make in chess

How to play Rock-Scissors-Paper

Also study of auction design,

strategic deterrence, election laws,

coaching decisions, routing

protocols,...

Kate Larson (University of Waterloo) 2 / 67



What is game theory?

The study of games!

Bluffing in poker

What move to make in chess

How to play Rock-Scissors-Paper

Also study of auction design,

strategic deterrence, election laws,

coaching decisions, routing

protocols,...

Kate Larson (University of Waterloo) 2 / 67



What is game theory?

Game theory is a formal way to analyze interactions among a group

of rational agents who behave strategically.
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What is game theory?

Game theory is a formal way to analyze interactions among a group

of rational agents who behave strategically.

Group: Must have more than one decision maker

Otherwise you have a decision problem, not a game

Solitaire is not a

game.
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What is game theory?

Game theory is a formal way to analyze interactions among a group

of rational agents who behave strategically.

Interaction: What one agent does directly affects at least one other

agent

Strategic: Agents take into account that their actions influence the

game

Rational: An agent chooses its best action (maximizes its expected

utility)
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Example

Pretend that the entire class is going to go for lunch:

1 Everyone pays their own bill

2 Before ordering, everyone agrees to split the bill equally

Which situation is a game?
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Normal Form Games

Normal Form

A normal form game is defined by

Finite set of agents (or players) N, |N| = n

Each agent i has an action space Ai

Ai is non-empty and finite

An outcome is defined by an action profile a = (a1, . . . ,an) where

ai is the action taken by agent i

Each agent has a utility function ui : A1 × . . .× An 7→ R
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Normal Form Games

Examples

Prisoners’ Dilemma

C D

C a,a b,c

D c,b d,d

c > a > d > b

Pure coordination game

∀ action profiles a ∈ A1 × . . .× An

and ∀i , j , ui(a) = uj(a).

L R

L 1,1 0,0

R 0,0 1,1

Agents do not have conflicting

interests.
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Normal Form Games

Zero-sum games

∀a ∈ A1 × A2, u1(a) + u2(a) = 0.

Matching Pennies

H T

H 1,-1 -1, 1

T -1,1 1,-1

H T

H 1 -1

T -1 1

Given the utility of one agent, the

other’s utility is known.
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Normal Form Games

More Examples

Most games have elements of both cooperation and competition.

BoS

H S

H 2,1 0,0

S 0,0 1,2

Hawk-Dove

D H

D 3,3 1,4

H 4,1 0,0
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Normal Form Games

Strategies

Notation: Given set X , let ∆X be the set of all probability distributions

over X .

Definition

Given a normal form game, the set of mixed strategies for agent i is

Si = ∆Ai

The set of mixed strategy profiles is S = S1 × . . . × Sn.

Definition

A strategy si is a probability distribution over Ai . si(ai) is the probability

action ai will be played by mixed strategy si .
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Normal Form Games

Strategies

Definition

The support of a mixed strategy si is

{ai |si(ai) > 0}

Definition

A pure strategy si is a strategy such that the support has size 1, i.e.

|{ai |si(ai) > 0}| = 1

A pure strategy plays a single action with probability 1.
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Normal Form Games

Expected Utility

The expected utility of agent i given strategy profile s is

ui(s) =
∑

a∈A

ui(a)Π
n
j=1sj(aj)

Example

C D

C -1,-1 -4,0

D 0, -4 -3,-3

Given strategy profile s = ((1
2 ,

1
2), (

1
10 ,

9
10))

what is the expected utility of the agents?

Kate Larson (University of Waterloo) 13 / 67



Normal Form Games Nash Equilibria

Best-response

Given a game, what strategy should an agent choose?

We first consider only pure strategies.

Definition

Given a−i , the best-response for agent i is a∗
i ∈ Ai such that

ui(a
∗
i ,a−i) ≥ ui(a

′
i ,a−i)∀a′

i ∈ Ai

Note that the best response may not be unique.

A best-response set is

Bi(a−i) = {ai ∈ Ai |ui(ai ,a−i) ≥ ui(a
′
i ,a−i)∀a′

i ∈ Ai}
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Normal Form Games Nash Equilibria

Nash Equilibrium

Definition

A profile a∗ is a Nash equilibrium if ∀i , a∗
i is a best response to a∗

−i .

That is

∀iui(a
∗
i ,a

∗
−i) ≥ ui(a

′
i ,a

∗
−i) ∀a′

i ∈ Ai

Equivalently, a∗ is a Nash equilibrium if ∀i

a∗
i ∈ B(a∗

−i)
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Normal Form Games Nash Equilibria

Examples

PD
C D

C -1,-1 -4,0

D 0,-4 -3,-3

BoS
H T

H 2,1 0,0

T 0,0 1,2

Matching Pennies

H T

H 1,-1 -1,1

T -1,1 1,-1
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Normal Form Games Nash Equilibria

Nash Equilibria

We need to extend the definition of a Nash equilibrium. Strategy profile

s∗ is a Nash equilibrium is for all i

ui(s
∗
i , s

∗
−i) ≥ ui(s

′
i , s

∗
−i) ∀s′

i ∈ Si

Similarly, a best-response set is

B(s−i) = {si ∈ Si |ui(si , s−i ) ≥ ui(s
′
i , s−i)∀s′

i ∈ Si}
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Normal Form Games Nash Equilibria

Examples
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Normal Form Games Nash Equilibria

Characterization of Mixed Nash Equilibria

s∗ is a (mixed) Nash equilibrium if and only if

the expected payoff, given s∗
−i , to every action to which s∗

i assigns

positive probability is the same, and

the expected payoff, given s∗
−i to every action to which s∗

i assigns

zero probability is at most the expected payoff to any action to

which s∗
i assigns positive probability.
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Normal Form Games Nash Equilibria

Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it

has nice properties (compact and convex).

Define f : X 7→ 2X to be the best-response set function, i.e. given s,

f (s) is the set all strategy profiles s′ = (s′
1, . . . , s

′
n) such that s′

i is i ’s

best response to s′
−i .

Show that f satisfies required properties of a fixed point theorem

(Kakutani’s or Brouwer’s).

Then, f has a fixed point, i.e. there exists s such that f (s) = s. This s is

mutual best-response – NE!
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Normal Form Games Nash Equilibria

Interpretations of Nash Equilibria

Consequence of rational inference

Focal point

Self-enforcing agreement

Stable social convention

...
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Computing Equilibria

Dominant and Dominated Strategies

For the time being, let us restrict ourselves to pure strategies.

Definition

Strategy si is a strictly dominant strategy if for all s′
i 6= si and for all s−i

ui(si , s−i) > ui(s
′
i , s−i)

Prisoner’s Dilemma

C D

C -1,-1 -4,0

D 0, -4 -3,-3

Dominant-strategy equilibria
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Computing Equilibria

Dominated Strategies

Definition

A strategy si is strictly dominated if there exists another strategy s′
i

such that for all s−i

ui(s
′
i , s−i ) > ui(si , s−i)

Definition

A strategy si is weakly dominated if there exists another strategy s′
i

such that for all s−i

ui(s
′
i , s−i ) ≥ ui(si , s−i)

with strict inequality for some s−i .
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Computing Equilibria

Example

L R

U 1,-1 -1,1

M -1,1 1,-1

D -2,5 -3,2

D is strictly dominated

L R

U 5,1 4,0

M 6,0 3,1

D 6,4 4,4

U and M are weakly dominated
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Computing Equilibria

Iterated Deletion of Strictly Dominated Strategies

Algorithm

Let Ri be the removed set of strategies for agent i

Ri = ∅

Loop

Choose i and si such that si ∈ Ai \ Ri and there exists s′

i such that

ui(s
′

i , s−i) > ui(si , s−i) ∀s−i

Add si to Ri

Continue
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Computing Equilibria

Example

R C L

U 3,-3 7,-7 15, -15

D 9,-9 8,-8 10,-10
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Computing Equilibria

Some Results

Theorem

If a unique strategy profile s∗ survives iterated deletion then it is a

Nash equilibrium.

Theorem

If s∗ is a Nash equilibrium then it survives iterated elimination.

Weakly dominated strategies cause some problems.
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Computing Equilibria

Domination and Mixed Strategies

The definitions of domination (both strict and weak) can be easily

extended to mixed strategies in the obvious way.

Theorem

Agent i ’s pure strategy si is strictly dominated if and only if there exists

another (mixed) strategy σi such that

ui(σi , s−i) > ui(si , s−i)

for all s−i .
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Computing Equilibria

Example

L R

U 10,1 0,4

M 4,2 4,3

D 0,5 10,2

Strategy (1
2 ,0,

1
2) strictly dominates

pure strategy M.

Theorem

If pure strategy si is strictly dominated, then so is any (mixed) strategy

that plays si with positive probability.
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Computing Equilibria

Maxmin and Minmax Strategies

A maxmin strategy of player i is one that maximizes its worst

case payoff in the situation where the other agent is playing to

cause it the greatest harm

arg max
si

min
s−i

ui(si , s−i)

A minmax strategy is the one that minimizes the maximum

payoff the other player can get

arg min
si

max s−iu−i(si , s−i)

Kate Larson (University of Waterloo) 30 / 67



Computing Equilibria

Example

In 2-player games, maxmin value of one player is equal to the minmax

value of the other player.

L R

U 2,3 5,4

D 0,1 1,2
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Computing Equilibria

Zero-Sum Games

The maxmin value of one player is equal to the minmax value of

the other player

For both players, the set of maxmin strategies coincides with the

set of minmax strategies

Any maxmin outcome is a Nash equilibrium. These are the only

Nash equilibrium.
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Computing Equilibria

Solving Zero-Sum Games

Let U∗
i be unique expected utility for player i in equilibrium. Recall that

U∗
1 = −U∗

2 .

minimize U∗
1

subject to
∑

ak∈A2
u1(aj ,ak )s2(ak ) ≤ U∗

1 ∀aj ∈ A1
∑

ak∈A2
s2(ak ) = 1

s2(ak) ≥ 0 ∀ak ∈ A2

LP for 2’s mixed strategy in equilibrium.
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Computing Equilibria

Solving Zero-Sum Games

Let U∗
i be unique expected utility for player i in equilibrium. Recall that

U∗
1 = −U∗

2 .

maximize U∗
1

subject to
∑

aj∈A1
u1(aj ,ak )s1(aj) ≥ U∗

1 ∀ak ∈ A2
∑

aj∈A1
s1(aj) = 1

s1(aj) ≥ 0 ∀aj ∈ A1

LP for 1’s mixed strategy in equilibrium.
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Computing Equilibria

Two-Player General-Sum Games

LP formulation does not work for general-sum games since agents’

interests are no longer diametrically opposed.

Linear Complementarity Problem (LCP)

Find any solution that satisfies

∑

ak∈A2
u1(aj ,ak )s2(ak ) + r1(aj) = U∗

1 ∀aj ∈ A1
∑

aj∈A1
u2(aj ,ak )s1(aj) + r2(ak ) = U∗

2 ∀ak ∈ A2
∑

aj∈A1
s1(aj) = 1

∑

ak∈A2
s2(ak ) = 1

s1(aj) ≥ 0, s2(ak ) ≥ 0 ∀aj ∈ A1,ak ∈ A2

r1(aj) ≥ 0, r2(ak ) ≥ 0 ∀aj ∈ A1,ak ∈ A2

r1(aj)s1(aj) = 0, r2(ak )s2(ak ) = 0 ∀aj ∈ A1,ak ∈ A2

For n ≥ 3-player games, formulate a non-linear complementarity

problem.
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Computing Equilibria

Complexity of Finding a NE

Characterization is tricky since we do not have a decision problem

(i.e. every game has at least one Nash Equilibrium)

NE is in PPAD: Polynomial parity argument, directed version

Given an exponential-size directed graph, with every node having
in-degree and out-degree at most one described by a

polynomial-time computable function f (v) that outputs the
predecessor and successor of v , and a vertex s with a successor

but no predecessors, find a t 6= s that either has no successors or

predecessors.
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Perfect Information Games

Extensive Form Games
aka Dynamic Games, aka Tree-Form Games

Extensive form games allows us to model situations where agents

take actions over time

Simplest type is the perfect information game
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Perfect Information Games

Perfect Information Game

Perfect Information Game: G = (N,A,H,Z , α, ρ, σ,u)

N is the player set |N| = n

A = A1 × . . . × An is the action space

H is the set of non-terminal choice nodes

Z is the set of terminal nodes

α : H → 2A action function, assigns to a choice node a set of

possible actions

ρ : H → N player function, assigns a player to each non-terminal

node (player who gets to take an action)

σ : H × A → H ∪ Z , successor function that maps choice nodes

and an action to a new choice node or terminal node where

∀h1,h2 ∈ H and a1,a2 ∈ A if h1 6= h2 then σ(h1,a1) 6= σ(h2,a2)

u = (u1, . . . ,un) where ui : Z → R is utility function for player i

over Z
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Perfect Information Games

Tree Representation

The definition is really a tree description

Each node is defined by its history (sequence of nodes leading

from root to it)

The descendents of a node are all choice and terminal nodes in

the subtree rooted at the node.
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Perfect Information Games

Example

Sharing two items

1

2

(2,0)

2,0

y

0,0

n

2

(1,1)

1,1

y

0,0

n

2

(0,2)

0,2

y

0,0

n
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Perfect Information Games

Strategies

A strategy, si of player i is a function that assigns an action to

each non-terminal history, at which the agent can move.

Outcome: o(s) of strategy profile s is the terminal history that

results when agents play s

Important: The strategy definition requires a decision at each

choice node, regardless of whether or not it is possible to reach

that node given earlier moves
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Perfect Information Games

Example

1

2

A

3,8

C

8,3

D

2

B

5,5

E

1

F

2,10

G

1,10

H

Strategy sets for the agents

S1 = {(A,G),(A,H),(B,G),(B,H)}

S2 = {(C,E),(C,F ),(D,E),(D,F )}
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Perfect Information Games

Example

We can transform an extensive form game into a normal form game.

(C,E) (C,F) (D,E) (D,F)

(A,G) 3,8 3,8 8,3 8,3

(A,H) 3,8 3,8 8,3 8,3

(B,G) 5,5 2,10 5,5 2, 10

(B,H) 5,5 1,0 5,5 1,0
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Perfect Information Games

Nash Equilibria

Definition (Nash Equilibrium)

Strategy profile s∗ is a Nash Equilibrium in a perfect information,

extensive form game if for all i

ui(s
∗
i , s

∗
−i) ≥ ui(s

′
i , s

∗
−i )∀s′

i

Theorem

Any perfect information game in extensive form has a pure strategy

Nash equilibrium.

Intuition: Since players take turns, and everyone sees each move

there is no reason to randomize.
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Perfect Information Games

Example: Bay of Pigs

Krushev

Kennedy

Arm

-100,-100

Nuke

10,-10

Fold

-1,1

Retreat

What are the NE?

Kate Larson (University of Waterloo) 45 / 67



Perfect Information Games

Subgame Perfect Equilibrium

Nash Equilibrium can sometimes be too weak a solution concept.

Definition (Subgame)

Given a game G, the subgame of G rooted at node j is the restriction

of G to its descendents of h.

Definition (Subgame perfect equilibrium)

A strategy profile s∗ is a subgame perfect equilibrium if for all i ∈ N,

and for all subgames of G, the restriction of s∗ to G′ (G′ is a subgame

of G) is a Nash equilibrium in G′. That is

∀i ,∀G′,ui(s
∗
i |G′ , s∗

−i |G′) ≥ ui(s
′
i |G′ , s∗

−i |G′)∀s′
i

Kate Larson (University of Waterloo) 46 / 67



Perfect Information Games

Example: Bay of Pigs

Krushev

Kennedy

Arm

-100,-100

Nuke

10,-10

Fold

-1,1

Retreat

What are the SPE?

Kate Larson (University of Waterloo) 47 / 67



Perfect Information Games

Existence of SPE

Theorem (Kuhn’s Thm)

Every finite extensive form game with perfect information has a SPE.

You can find the SPE by backward induction.

Identify equilibria in the bottom-most trees

Work upwards
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Perfect Information Games

Centipede Game

1

1,0D

2A

0,2D

1A

3,1D

2A

2,4D

1A

5,3D

4,6A
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Imperfect Information Games

Imperfect Information Games

Sometimes agents have not observed everything, or else can not

remember what they have observed

Imperfect information games: Choice nodes H are partitioned into

information sets.

If two choice nodes are in the same information set, then the

agent can not distinguish between them.

Actions available to an agent must be the same for all nodes in the

same information set
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Imperfect Information Games

Example

1

2

L

1

A

0,0

l

1,2

r

1

B

1,2

l

0,0

r

2,1

R

Information sets for agent 1

I1 = {{∅}, {(L,A), (L,B)}}

I2 = {{L}}
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Imperfect Information Games

More Examples

Simultaneous Moves

1

2

C

-1,-1

C

-4,0

D

2

D

0,-4

C

-3,-3

D

Imperfect Recall

1

1

L

1,0

L

100,100

R

2

R

5,1

U

2,2

D
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Imperfect Information Games

Strategies

Pure strategy: a function that assigns an action in Ai(Ii ) to each

information set Ii ∈ Ii

Mixed strategy: probability distribution over pure strategies

Behavorial strategy: probability distribution over actions

available to agent i at each of its information sets (independent

distributions)
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Imperfect Information Games

Behavorial Strategies

Definition

Given extensive game G, a behavorial strategy for player i specifies,

for every Ii ∈ Ii and action ai ∈ Ai(Ii), a probability λi(ai , Ii) ≥ 0 with

∑

ai∈Ai (Ii )

λ(ai , Ii ) = 1

Kate Larson (University of Waterloo) 54 / 67



Imperfect Information Games

Example

1

2

A

o1

C

o2

D

2

B

o3

E

1

F

o4

G

o5

H

Mixed Strategy:

(0.4(A,G), 0.6(B,H))

Behavorial Strategy:

Play A with probability 0.5

Play G with probability 0.3
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Imperfect Information Games

Mixed and Behavorial Strategies

In general you can not compare the two types of strategies.

But for games with perfect recall

Any mixed strategy can be replaced with a behavorial strategy

Any behavorial strategy can be replaced with a mixed strategy
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Imperfect Information Games

Example

1

2

A

h

U

b

L

b

R

h*

D

b

L

b

R

b

B
Mixed Strategy:

(<0.3(A,L)>,<0.2(A,R)>,

<0.5(B,L)>)

Behavorial Strategy:

At I1: (0.5, 0.5)

At I2: (0.6, 0.4)
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Imperfect Information Games Bayesian Games

Bayesian Games

So far we have assumed that all players know what game they are

playing

Number of players

Actions available to each player

Payoffs associated with strategy profiles

L R

U 3,? -2, ?

D 0, ? 6, ?

Bayesian games (games of incomplete information) are used to

represent uncertainties about the game being played
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Imperfect Information Games Bayesian Games

Bayesian Games

There are different possible representations.

Information Sets

N set of agents

G set of games

Same strategy sets for each game and agent

Π(G) is the set of all probability distributions over G

P(G) ∈ Π(G) common prior

I = (I1, . . . , In) are information sets (partitions over games)
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Imperfect Information Games Bayesian Games

Extensive Form With Chance Moves

A special player, Nature, makes probabilistic moves.

Nature

1

0.6

2

U

b

L

b

R

2

D

b

L

b

R

1

0.4

2

U

b

L

b

R

2

D

b

L

b

R
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Imperfect Information Games Bayesian Games

Epistemic Types

Epistemic types captures uncertainty directly over a game’s utility

functions.

N set of agents

A = (A1, . . . ,An) actions for each agent

Θ = Θ1 × . . .×Θn where Θi is type space of each agent

p : Θ → [0,1] is common prior over types

Each agent has utility function ui : A ×Θ → R
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Imperfect Information Games Bayesian Games

Example

BoS

2 agents

A1 = A2 = {soccer, hockey}

Θ = (Θ1,Θ2) where

Θ1 = {H, S}, Θ2 = {H, S }

Prior: p1(H) = 1, p2(H) = 2
3 ,

p2(S) = 1
3

Utilities can be captured by

matrix-form

θ2 = H

H S

H 2,2 0,0

S 0,0 1,1

θ2 = S

H S

H 2,1 0,0

S 0,0 1,2
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Imperfect Information Games Bayesian Games

Strategies and Utility

A strategy si(θi) is a mapping from Θi to Ai . It specifies what

action (or what distribution of actions) to take for each type.

Utility: ui(s|θi)

ex-ante EU (know nothing about types)

EU =
∑

θi∈Θi

p(θi)EUi(si |θi)

interim EU (know own type)

EU = EUi(s|θi) =
∑

θ−i∈Θ−i

p(θ−i |θi)
∑

a∈A

Πj∈Nsj(aj , θj))ui(a, θ−i , θi)

ex-post EU (know everyones type)
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Imperfect Information Games Bayesian Games

Example

2 firms, 1 and 2, competing to create some product.

If one makes the product then it has to share with the other.

Product development cost is c ∈ (0,1)

Benefit of having the product is known only to each firm

Type θi drawn uniformly from [0, 1]
Benefit of having product is θ2

i
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Imperfect Information Games Bayesian Games

Bayes Nash Equilibrium

Definition (BNE)

Strategy profile s∗ is a Bayes Nash equilibrium if ∀i , ∀θi

EU(s∗
i , s

∗
−i |θi) ≥ EU(s′

i , s
∗
−i |θi)∀s′

i 6= s∗
i
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Imperfect Information Games Bayesian Games

Example Continued

Let si(θi) = 1 if i develops product, and 0 otherwise.

If i develops product

ui = θ2
i − c

If it does not then

ui = θ2
i Pr(sj (θj) = 1)

Thus, develop product if and only if

θ2
i − c ≥ θ2

i Pr(sj(θj) = 1) ⇒ θi ≥

√

c

1 − Pr(sj (θj) = 1)
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Imperfect Information Games Bayesian Games

Example Continued

Suppose θ̂1, θ̂2 ∈ (0,1) are cutoff values in BNE.

If so, then Pr(sj(θj) = 1) = 1 − θ̂j

We must have

θ̂i ≥

√

c

θ̂j

⇒ θ̂2
i θ̂j = c

and

θ̂2
j θ̂i = c

Therefore

θ̂2
i θ̂j = θ̂2

j θ̂i

and so

θ̂i = θ̂j = θ∗ = c
1
3
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