
Expectation Maximisation
(EM)

CS 486/686: Introduction to Artificial
Intelligence

University of Waterloo

1

2

Overview

• Learning from incomplete data
– EM algorithm

• Unsupervised Learning

3

Incomplete Data
• So far we have seen problems where

– Values of all attributes are known

– Learning is relatively easy

• Many real-world problems have hidden
variables

– Incomplete data

– Missing attribute values

4

Bayes Nets: Maximum
Likelihood Learning

• Review: ML Learning of Bayes nets
parameters
– ΘV=true, Par(V)=x = P(V=true|Par(V)=x)

– ΘV=true, Par(V)=x (#Insts V=true)/(Total #V)

– Assumes all attributes have values
• What if some values are missing?

5

Naïve Solutions

• Ignore examples with missing
attribute values
– What if all examples have missing attribute

values?

• Ignore hidden variables
– Model might become much more complex

6

Hidden Variables
Heart disease example

a) Uses a Hidden Variable, simpler (fewer CPT parameters)
b) No Hidden Variable, complex (many CPT parameters)

7

“Direct” ML
• Maximize likelihood directly

– Let Z be hidden vars, and E observable

– hML=argmaxhP(e|h)

 =argmaxhΣzP(e,z|h)

 =argmaxhΣz∏iCPT(Vi)

 =argmaxh log Σz ∏i CPT(Vi)

– Canʼt push log past sum to linearize product

8

Expectation-Maximization (EM)

• If we knew the missing values
computing hML is trivial

• Guess hML

• Iterate
– Expectation: based on hML compute

expectation of missing values

– Maximization: based on expected missing
values compute new hML

9

Expectation-Maximization (EM)

• Formally
– Approximate maximum likelihood

– Iteratively compute:

– hi+1=argmaxh ΣZ P(Z|hi,e)log P(e,Z|h)

Expectation

Maximization

10

EM Derivation
• Derivation

– log P(e|h)=log[P(e,Z|h)/P(Z|e,h)]

 =log P(e,Z|h)-log P(Z|e,h)

 =ΣZP(Z|e,h)logP(e,Z|h) -ΣZP(Z|e,h)logP(Z|e,h)

 ≥ΣZP(Z|e,h)logP(e,Z|h)

• EM finds a local maximum of ΣZP(Z|e,h)logP(e,Z|
h) which is a lower bound of log P(e|h)

11

EM
• Log inside sum can linearize the product

– hi+1=argmaxhΣZ P(Z|h,e)log P(e,Z|h)

 =argmaxh ΣZ P(Z|h,e)log ∏j CPTj

 =argmaxh ΣZ P(Z|h,e) Σjlog CPTj

• Monotonic improvement of likelihood
– P(e|hi+1)≥P(e|hi)

12

Candy Example

• You buy two bags of candies of unknown type
(flavour ratios)

• You plan to eat candies from each bag to learn
the flavour ratios

• Your rotten roommate mixes both bags
• How do you learn the type of each bag despite

being mixed?

13

Unsupervised Clustering

• “Class” variable
(Bag) is hidden

• Naïve Bayes
model

14

Candy Example
• Unknown Parameters

– Θi=P(Bag=i)

– ΘFi=P(Flavour=cherry|Bag=i)

– ΘWi=P(Wrapper=red|Bag=i)

– ΘHi=P(Hole=yes|Bag=i)

• When eating a candy:
– F, W, and H are observable

– B is hidden

15

Candy Example
• Let true parameters be:

– Θ=0.5, ΘH1= ΘW1= ΘH1=0.8,

 and ΘF2= ΘW2= ΘH2=0.3

• After eating 1000 candies

W=redW=red W=greenW=green

H=1 H=0 H=1 H=0

F=cherry 273 93 104 90

F=line 79 100 94 167

16

EM Algorithm
• Guess h0

– Θ=0.6

– ΘF1= ΘW1= ΘH1=0.6

– ΘF2= ΘW2= ΘH2=0.4

• Alternate
– Expectation: expected # of candies in each bag
– Maximization: new parameter estimates

17

Candy Example
• Expectation: expected # of candies in each

bag
– #[Bag=i]=Σj P(B=i|fj,wj,hj)

– Compute P(B=i|fj,wj,hj) by variable elimination

• Example
– #[Bag=1]=612

– #[Bag=2]=388

18

Candy Example

• Maximization: relative frequency of each
bag
– Θ1=612/1000 = 0.612

– Θ2=388/1000=0.388

19

Candy Example
• Expectation: expected # cherry candies in each

bag
– #[B=i,F=cherry]=ΣjP(B=i|fj=cherry,wj,hj)

– Compute P(B=i|fj=cherry,wj,hj) by var. elimination

• Maximization:
– ΘF1=#[B=1,F=cherry]/#[B=1]=0.668

– ΘF2=#[B=2,F=cherry]/#[B=2]=0.389

20

Candy Example

21

CS 486/686 - K Larson

Bayesian Networks
• EM algorithm for general Bayes nets

• Expectation:
– #[Vi=vij,Par(Vi)=paik]=expected frequency

• Maximization
– Θvij,paik=#[Vi=vij,Par(Vi)=paik]/#[Par(Vi)=paik]

22

Unsupervised Learning

• Incomplete data ->Unsupervised learning

• Examples
– Market segmentation for marketing

– Categorizing stars by astronomers

– Identification of species

– Etc…

23

Clustering/Unsupervised Learning

• Target features are not given in the training examples
• Goal: construct a natural classification that can be used

to predict features in the data
• Examples are partitioned into clusters or classes

– Best clustering minimizes error

• Types of clustering
– Hard clustering

– Soft clustering

24

k-means Algorithm
• k-means algorithm is used for hard clustering

• Inputs
– training examples

– number of classes, k

• Outputs
– a prediction of a value for each feature for each class

– an assignment of examples to classes

25

k-means Algorithm
• Input:

– E is set of all examples

– Input features X1,...,Xn

– val(e,Xj) is value of feature j for example e

– k classes {1,2,...,k}

• k-means algorithm outputs
– function class: E->{1,...,k} where class(e)=i means example

e is in class i

– pval function where pval(i,Xj) is the prediction for each
example in class i for feature Xj

26

k-means Algorithm
• Sum-of-squares error for class i and pval is

• Goal: Final class and pval that minimizes sum-
of-squares error.

27

Minimizing the error

• Given class, the pval that minimizes sum-of-square
error is the mean value for that class

• Given pval, each example can be assigned to the
class that minimizes the error for that example

28

k-means Algorithm
• Randomly assign the examples to classes

• Repeat the following two steps until E step does not change the assignment
of any example

– M: For each class i and feature Xj

– E: For each example e, assign e to the class that minimizes

29

k-means Example

• Data set: (X,Y) pairs
– (0.7,5.1) (1.5,6), (2.1, 4.5), (2.4, 5.5), (3, 4.4),

(3.5, 5), (4.5, 1.5), (5.2, 0.7), (5.3, 1.8), (6.2,
1.7), (6.7, 2.5), (8.5, 9.2), (9.1, 9.7), (9.5,
8.5)

30

Example Data

31

Random Assignment to Classes

32

Assign Each Example to Closest Mean

33

Reassign each example

34

Properties of k-means
• An assignment is stable if both M step

and E step do not change the assignment
– Algorithm will eventually converge to a stable

local minimum

– No guarantee that it will converge to a global
minimum

• Increasing k can always decrease error
until k is the number of different examples

