Ensemble Learning and Statistical Learning
 CS 486/686
 Introduction to AI
 University of Waterloo

Outline

- Ensemble Learning
- Statistical learning
- Bayesian learning
- Maximum a posteriori (MAP)
- Maximum likelihood

Ensemble learning

- So far our learning methods have had the following general approach
- Choose a single hypothesis from the hypothesis space
- Use this hypothesis to make predictions
- Maybe we can do better by using a lot of hypothesis from the hypothesis space and combine their predictions

Ensemble Learning

- Analogies
- Elections
- Committees
- Intuitions:
- Individuals may make mistakes
- The majority may be less likely to make a mistake
- Individuals have partial information
- Committes pool experise

Ensemble expressiveness

- Using ensembles can also enlarge the hypothesis space
- Ensemble as hypothesis
- Set of all ensembles as hypothesis space

Original hypothesis space: linear threshold hypothesis

- Simple, efficient learning algorithms
 but not particularly expressive

Bagging

- Majority voting:

Ensemble of hypothesis

classification

Majority $\left(h_{1}(x), h_{2}(x), h_{3}(x), h_{4}(x), h_{5}(x)\right)$
For the classification
to be wrong, at least 3 out of 5 hypothesis have to be wrong

Bagging

- Assumptions:
- Each h_{i} makes an error with probability p
- Hypotheses are independent
- Majority voting of n hypotheses
- Probability k make an error?
- Probability majority make an error?

Weighted Majority

- In practice
- Hypotheses are rarely independent
- Some hypotheses have less errors than others
- Weighted majority
- Intuition
- Decrease weights of correlated hypotheses
- Increase weights of good hypotheses

Boosting

- Boosting is the most commonly used form of ensemble learning
- Very simple idea, but very powerful
- Computes a weighted majority
- Operates on a weighted training set

Boosting

Training set

Training set

AdaBoost

- $w_{j}<-1 / N$
- For $m=1$ to M do
- $\quad h_{m}<-$ learn(data, w)
- err<-0
- For each $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ in data do
- If $h_{m}\left(x_{i}\right) \neq y_{i}$ then err <-err $+w_{i}$
- For each $\left(x_{i}, y_{j}\right)$ in data do
- If $h_{m}\left(x_{i}\right)=y_{i}$ then $w_{i}<-w_{i}{ }^{*} e r r /(1-e r r)$
- \quad w <- normalize(w)
- $\quad z_{m}<-\log [(1-\mathrm{err}) / \mathrm{err}]$
- Return weighted-majority(h,z)

Boosting

- Many variations of boosting
- ADABOOST is a specific boosting algorithm
- Takes a weak learner L (classifies slightly better than just random guessing)
- Returns a hypothesis that classifies training data with 100% accuracy (for large enough M)

Robert Schapire and Yoav Freund Kanellakis Award for 2004

Boosting Paradigm

- Advantages
- No need to learn a perfect hypothesis
- Can boost any weak learning algorithm
- Easy to program
- Good generalization
- When we have a bunch of hypotheses, boosting provides a principled approach to combine them
- Useful for sensor fusion, combining experts...

Statistical Learning

- Statistical learning
- Bayesian learning
- Maximum a posteriori (MAP)
- Maximum likelihood

Motivation: Things you know

- Agents model uncertainty in the world and utility of different courses of actions
- Bayes nets are models of probability distributions
- Models involve a graph structure annotated with probabilities
- Bayes nets for realistic applications have hundreds of nodes and tens of links...
- Where do these numbers come from?

Recall: Pathfinder

 (Heckerman, 1991)- Medical diagnosis for lymph node disease
- Large net
- 60 diseases, 100 symptoms and test results, 14000 probabilities
- Built by medical experts
- 8 hours to determine the variables
- 35 hours for network topology
- 40 hours for probability table values

Knowledge acquisition bottleneck

- In many applications, Bayes net structure and parameters are set by experts in the field
- Experts are scarce and expensive
- Experts can be inconsistent
- Experts can be non-existent
- But data is cheap and plentiful (usually)
- Goal of learning:
- Build models of the world directly from data
- We will focus on learning models for probabilistic models

凹ค円囚

－Favorite candy sold in two flavors
－Lime
－Cherry
－Same wrapper for both flavors
－Sold in bags with different ratios
－ 100% cherry
－ 75% cherry， 25% lime
－ 50% cherry， 50% lime
－ 25% cherry， 75% lime
－ 100% lime

Candy Example

- You bought a bag of candy but do not know its flavor ratio
- After eating k candies
- What is the flavor ratio of the bag?
- What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory about the world
- $\quad h_{1}: 100 \%$ cherry
- $h_{2}: 75 \%$ cherry, 25% lime
- $\quad h_{3}: 50 \%$ cherry, 50% lime
- $\quad h_{4}: 25 \%$ cherry, 75% lime
- $h_{5}: 100 \%$ lime
- Data D: evidence about the world
- $\quad d_{1}: 1^{\text {st }}$ candy is cherry
- $\quad d_{2}: 2^{\text {nd }}$ candy is lime
- $\quad d_{3}: 3^{\text {rd }}$ candy is lime

Bayesian learning

- Prior: $\mathrm{P}(\mathrm{H})$
- Likelihood: P(dIH)
- Evidence: $\mathrm{d}=<\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}>$
- Bayesian learning
- Compute the probability of each hypothesis given the data
- $\quad \mathrm{P}(\mathrm{HId})=\alpha \mathrm{P}(\mathrm{dlH}) \mathrm{P}(\mathrm{H})$

Bayesian learning

Suppose we want to make a prediction about some unknown quantity x

- i.e. flavor of next candy
- $P(x \mid d)=\sum_{i} P\left(x \mid d, h_{i}\right) P\left(h_{i} \mid d\right)$
$=\sum_{i} P\left(x \mid h_{i}\right) P\left(h_{i} \mid d\right)$
- Predictions are weighted averages of the predictions of the individual hypothesis

Bayesian learning

- Hypothesis are "intermediaries" between raw data and prediction

Candy Example

Assume prior $\mathrm{P}(\mathrm{H})=<0.1,0.2,0.4,0.2,0.1>$

- Assume candies are i.i.d (identically and independently distributed)
- $\quad P\left(d_{i} h_{i}\right)=\Pi_{j} P\left(d_{j} / h_{j}\right)$
- Suppose first 10 candies are all lime
- $\quad P\left(\mathrm{dlh}_{1}\right)=0^{10}=0$
- $\quad P\left(\mathrm{dlh}_{2}\right)=0.25^{10}=0.00000095$
- $\quad P\left(\mathrm{dlh}_{3}\right)=0.5^{10}=0.00097$
- $\quad \mathrm{P}\left(\mathrm{dlh}_{4}\right)=0.75^{10}=0.056$
- $\quad P\left(\mathrm{dlh}_{5}\right)=1^{10}=1$

Candy Example: Posterior

Posteriors given that data is really generated from h_{5}

Candy Example: Prediction

Prediction next candy is lime given that data is really generated from h_{5}

Bayesian learning

- Good news
- Optimal
- Given prior, no other prediction is correct more often than the Bayesian one
- No overfitting
- Use prior to penalize complex hypothesis (complex hypothesis are more unlikely)
- Bad news
- If hypothesis space is large, Bayesian learning is intractable
- Large summation (or integration) problem
- Use approximations
- Maximum a posteriori (MAP)

Maximum a posteriori (MAP)

- Idea: Make prediction on most probable hypothesis $\mathrm{h}_{\text {MAP }}$
- $\quad h_{\text {MAP }}=\operatorname{argmax}_{h_{i}} P\left(h_{i} / d\right)$
- $\quad P(x \mid d)=P\left(x \mid h_{\text {MAP }}\right)$
- Compare to Bayesian learning
- Bayesian learning makes prediction on all hypothesis weighted by their probability

MAP - Candy Example

MAP Properties

- MAP prediction is less accurate than Bayesian prediction
- MAP relies on only one hypothesis
- MAP and Bayesian predictions converge as data increases
- No overfitting
- Use prior to penalize complex hypothesis
- Finding $\mathrm{h}_{\text {MAP }}$ may be intractable
- $\quad h_{\text {MAP }}=\operatorname{argmax} P(h l d)$
- Optimization may be hard!

MAP computation

Optimization

- $h_{\text {MAP }}=\operatorname{argmax}_{\mathrm{h}} \mathrm{P}$ (hld)
$=\operatorname{argmax}_{\mathrm{h}} \mathrm{P}(\mathrm{h}) \mathrm{P}(\mathrm{dlh})$
$=\operatorname{argmax}_{\mathrm{h}} \mathrm{P}(\mathrm{h}) \Pi_{\mathrm{i}} \mathrm{P}\left(\mathrm{d}_{\mathrm{i}} \mathrm{h}\right)$
- Product introduces non-linear optimization
- Take log to linearize
- $h_{\text {MAP }}=\operatorname{argmax}_{\mathrm{h}} \log \mathrm{P}(\mathrm{h})+\sum_{\mathrm{i}} \log \mathrm{P}\left(\mathrm{d}_{\mathrm{i}} \mid \mathrm{h}\right)$

Maximum Likelihood (ML)

- Idea: Simplify MAP by assuming uniform prior (i.e. $P\left(h_{i}\right)=P\left(h_{j}\right)$ for all i, j)
- $h_{\text {MAP }}=\operatorname{argmax}_{\mathrm{h}} \mathrm{P}(\mathrm{h}) \mathrm{P}(\mathrm{dlh})$
- $h_{\text {ML }}=\operatorname{argmax}_{h} P($ dlh $)$
- Make prediction on h_{ML} only

$$
-\quad P(x \mid d)=P\left(x \mid h_{M L}\right)
$$

ML Properties

- ML prediction is less accurate than Bayesian and MAP
- Ignores prior information
- Relies only on one hypothesis h_{M}
- ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting
- Does not penalize complex hypothesis
- Finding $\mathrm{h}_{\text {ML }}$ is often easier than $\mathrm{h}_{\text {MAP }}$
- $\quad \mathrm{h}_{\text {ML }}=\operatorname{argmax}_{\mathrm{j}} \sum_{\mathrm{i}} \log \mathrm{P}\left(\mathrm{d}_{\mathrm{i}} / \mathrm{h}_{\mathrm{j}}\right)$

Learning with complete data

- Parameter learning with complete data
- Parameter learning task involves finding numerical parameters for a probability model whose structure is fixed
- Example
- Learning CPT for a Bayes net with a given structure

Simple ML Example

- Hypothesis h_{θ}
- $\quad \mathrm{P}($ cherry $)=\theta$ and $\quad \mathrm{P}($ lime $)=1-\theta$
- θ is our parameter
- Data d:
- $\quad \mathrm{N}$ candies (c cherry and $\mathrm{I}=\mathrm{N}-\mathrm{c}$ lime)
- What should θ be?

Simple ML example

- Likelihood of this particular data set
- $\quad \mathrm{P}\left(\mathrm{dlh}_{\theta}\right)=\theta^{c}(1-\theta)^{\prime}$
- ML hypothesis is one that maximizes the above expression
- Equivalent to maximizing log likelihood
- Log likelihood
- $\quad L\left(\mathrm{dlh}_{\theta}\right)=\log \mathrm{P}\left(\mathrm{dlh}_{\theta}\right)=\mathrm{c} \log \theta+\mathrm{l} \log (1-\theta)$

Simple ML example

- Find θ that maximizes log likelihood

$$
\begin{aligned}
& \frac{\partial L\left(d \mid h_{\theta}\right)}{\partial \theta}=\frac{c}{\theta}-\frac{l}{1-\theta}=0 \\
& \theta=\frac{c}{c+l}=\frac{c}{N}
\end{aligned}
$$

- ML hypothesis asserts that actual proportion of cherries is equal to observed proportion

More complex ML example

- Hypothesis: $\mathrm{h}_{\theta, \theta_{1}, \theta_{2}}$

Data:

- c cherries

$$
\begin{array}{ll}
\text { - } & G_{c} \text { green wrappers } \\
\text { - } & R_{c} \text { red wrappers }
\end{array}
$$

- I limes

$$
\begin{array}{ll}
- & G_{1} \text { green wrappers } \\
\text { - } & R_{1} \text { red wrappers }
\end{array}
$$

More complex ML example

- $P\left(d_{l} h_{\theta, \theta_{1}, \theta_{2}}\right)=\theta c(1-\theta)^{\prime} \theta_{1} R_{c}\left(1-\theta_{1}\right) G_{c} \theta_{2} R_{l}\left(1-\theta_{2}\right)^{G}$
- $\mathrm{L}=[\mathrm{c} \log \theta+l \log (1-\theta)]+$
$\left[R_{c} \log \theta_{1}+G_{c} \log \left(1-\theta_{1}\right)\right]+$
$\left[R_{1} \log \theta_{2}+G_{1} \log \left(1-\theta_{2}\right)\right]$
- Take derivatives with respect to each parameter and set to zero
- $\quad \theta=c /(c+1)$
- $\quad \theta_{1}=R_{c} /\left(R_{c}+G_{c}\right)$
- $\quad \theta_{2}=R_{l} /\left(R_{1}+G_{1}\right)$

ML Comments

- This approach can be extended to any Bayes net whose conditional probabilities are represented as tables
- With complete data

1. ML parameter learning problem decomposes into separate learning problems, one for each parameter!
2. Parameter values for a variable, given its parents are just observed frequencies of variable values for each setting of parent values!

A problem: Zero probabilities

- What happens if we observed zero cherry candies?
- $\quad \theta$ would be set to 0
- Is this a good prediction?
- Laplace smoothing
- Instead of $\theta=c /(c+1)$ use $\theta=(c+1) /(c+1+2)$

Naïve Bayes model

- Want to predict a class C based on attributes A_{i}
- Parameters:

$$
\begin{array}{ll}
\text { - } & \theta=\mathrm{P}(\mathrm{C}=\text { true }) \\
\text { - } & \theta_{\mathrm{j}, 1}=\mathrm{P}\left(\mathrm{~A}_{\mathrm{j}}=\text { truel } \mathrm{C}=\text { true }\right) \\
\text { - } & \theta_{\mathrm{j}, 2}=\mathrm{P}\left(\mathrm{~A}_{\mathrm{j}}=\text { truel } \mathrm{C}=\text { false }\right)
\end{array}
$$

- Assumption: A_{i} 's are independent given C

Naïve Bayes Model

- With observed attribute values $x_{1}, x_{2}, \ldots, x_{n}$
- $\quad \mathrm{P}\left(\mathrm{Clx}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\alpha \mathrm{P}(\mathrm{C}) \Pi_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{C}\right)$
- From ML we know what the parameters should be
- Observed frequencies (with possible Laplace smoothing)
- Just need to choose the most likely class C

Naïve Bayes comments

- Naïve Bayes scales well
- Naïve Bayes tends to perform well
- Even though the assumption that attributes are independent given class often does not hold
- Application
- Text classification

Text classification

- Important practical problem, occurring in many applications
- Information retrieval, spam filtering, news filtering, building web directories...
- Simplified problem description
- Given: collection of documents, classified as "interesting" or "not interesting" by people
- Goal: learn a classifier that can look at text of new documents and provide a label, without human intervention

Data representation

- Consider all possible significant words that can occur in documents
- Words in English dictionary, proper names, abbreviations,...
- Do not include stopwords
- Words that appear in all documents
- E.g. prepositions, common verbs, "to be", "to do",...
- Stem words
- Map words to their root
- E.g. learn <-"learn", "learning", "learned"
- For each root, introduce common binary feature
- specifying whether the word is present or not in the document

Example

- "Machine learning is fun"

Aardvark 0
M
Fun 1
Funel 0
M
Learn 1
M
Machine 1
M
Zebra 0

Use Naïve Bayes Assumption

- Words are independent of each other, given the class, y, of document
$P(y \mid$ document $)=\Pi_{i-1}^{\mid \text {Vocab } \mid} P\left(w_{i} \mid y\right)$

How do we get the probabilities?

Use Naïve Bayes Assumption

- Words are independent of each other, given the class, y , of document

$P(y \mid$ document $)=\Pi_{i-1}^{\mid \text {Vocab } \mid} P\left(w_{i} \mid y\right)$

- Use ML parameter estimation!
- $\quad \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mathrm{l} \mathrm{y}\right)=\left(\#\right.$ documents of class y containing word $\left.\mathrm{w}_{\mathrm{i}}\right) /(\#$ documents of class y)
- Count words over collections of documents
- Use Bayes rule to compute probabilities for unseen documents
- Laplace smoothing is very useful here

Observations

- We may not be able to find θ analytically
- Gradient search to find good value of θ
- Start with guess θ
- Update $\theta<-\theta+\alpha \partial \mathrm{L}(\theta$ ID $) / \partial \theta$
- $\quad \alpha$ in $(0,1)$ is learning rate or step size
- Repeat until θ stops changing significantly

Conclusions

- What you should know
- Bayesian learning
- MAP
- ML
- How to learn parameters in Bayes Nets
- Naïve Bayes assumption
- Laplace smoothing

