Ensemble Learning and Statistical Learning

CS 486/686 Introduction to AI University of Waterloo

Outline

- Ensemble Learning
- Statistical learning
 - Bayesian learning
 - Maximum a posteriori (MAP)
 - Maximum likelihood

Ensemble learning

- So far our learning methods have had the following general approach
 - Choose a single hypothesis from the hypothesis space
 - Use this hypothesis to make predictions

 Maybe we can do better by using a lot of hypothesis from the hypothesis space and combine their predictions

Ensemble Learning

- Analogies
 - Elections
 - Committees
- Intuitions:
 - Individuals may make mistakes
 - The majority may be less likely to make a mistake
 - Individuals have partial information
 - Committes pool experise

Ensemble expressiveness

- Using ensembles can also enlarge the hypothesis space
 - Ensemble as hypothesis
 - Set of all ensembles as hypothesis space

Original hypothesis space: linear threshold hypothesis

• Simple, efficient learning algorithms but not particularly expressive

Bagging

• Majority voting:

Ensemble of hypothesis

classification

 $Majority(h_1(x),h_2(x),h_3(x),h_4(x),h_5(x))$

For the classification to be wrong, at least 3 out of 5 hypothesis have to be wrong

Bagging

- Assumptions:
 - Each h_i makes an error with probability p
 - Hypotheses are independent

- Majority voting of n hypotheses
 - Probability k make an error?
 - Probability majority make an error?

Weighted Majority

- In practice
 - Hypotheses are rarely independent
 - Some hypotheses have less errors than others
- Weighted majority
 - Intuition
 - Decrease weights of correlated hypotheses
 - Increase weights of good hypotheses

Boosting

- Boosting is the most commonly used form of ensemble learning
 - Very simple idea, but very powerful
 - Computes a weighted majority
 - Operates on a weighted training set

Boosting

AdaBoost

- w_j<- 1/N
- For m=1 to M do
 - h_m <- learn(data,w)
 - err<-0
 - For each (x_i, y_i) in data do
 - If $h_m(x_i) \neq y_i$ then err $<-err + w_i$
 - For each (x_i, y_i) in data do
 - If $h_m(x_i)=y_i$ then $w_i < -w_i * err/(1-err)$
 - w <- normalize(w)
 - z_m<-log[(1-err)/err]
- Return weighted-majority(h,z)

Boosting

- Many variations of boosting
 - ADABOOST is a specific boosting algorithm
 - Takes a weak learner L (classifies slightly better than just random guessing)
 - Returns a hypothesis that classifies training data with 100% accuracy (for large enough M)

Robert Schapire and Yoav Freund Kanellakis Award for 2004

Boosting Paradigm

- Advantages
 - No need to learn a perfect hypothesis
 - Can boost any weak learning algorithm
 - Easy to program
 - Good generalization
- When we have a bunch of hypotheses, boosting provides a principled approach to combine them
 - Useful for sensor fusion, combining experts...

Statistical Learning

- Statistical learning
 - Bayesian learning
 - Maximum a posteriori (MAP)
 - Maximum likelihood

Motivation: Things you know

- Agents model uncertainty in the world and utility of different courses of actions
- Bayes nets are models of probability distributions
- Models involve a graph structure **annotated** with probabilities
- Bayes nets for realistic applications have hundreds of nodes and tens of links...

• Where do these numbers come from?

Recall: Pathfinder (Heckerman, 1991)

- Medical diagnosis for lymph node disease
- Large net
 - 60 diseases, 100 symptoms and test results, 14000 probabilities
- Built by medical experts
 - 8 hours to determine the variables
 - 35 hours for network topology
 - 40 hours for probability table values

Knowledge acquisition bottleneck

- In many applications, Bayes net structure and parameters are set by experts in the field
 - Experts are scarce and expensive
 - Experts can be inconsistent
 - Experts can be non-existent
- But data is cheap and plentiful (usually)

• Goal of learning:

- Build models of the world directly from data
- We will focus on learning models for probabilistic models

Candy Example (from text)

- Favorite candy sold in two flavors
 - Lime
 - Cherry
- Same wrapper for both flavors
- Sold in bags with different ratios
 - 100% cherry
 - 75% cherry, 25% lime
 - 50% cherry, 50% lime
 - 25% cherry, 75% lime
 - 100% lime

Candy Example

 You bought a bag of candy but do not know its flavor ratio

- After eating k candies
 - What is the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory about the world
 - h₁: 100% cherry
 - h₂: 75% cherry, 25% lime
 - h₃: 50% cherry, 50% lime
 - h_4 : 25% cherry, 75% lime
 - _ h₅: 100% lime
- Data D: evidence about the world
 - d₁: 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime
 - ...

- Prior: P(H)
- Likelihood: P(dIH)
- Evidence: $d = \langle d_1, d_2, \dots, d_n \rangle$

- Bayesian learning
 - Compute the probability of each hypothesis given the data
 - $P(HId) = \alpha P(dIH)P(H)$

- Suppose we want to make a prediction about some unknown quantity x
 - i.e. flavor of next candy
- $P(xld) = \sum_{i} P(xld,h_i)P(h_ild)$

 $=\sum_{i} P(xlh_{i})P(h_{i}ld)$

 Predictions are weighted averages of the predictions of the individual hypothesis

• Hypothesis are "intermediaries" between raw data and prediction

Candy Example

- Assume prior P(H)=<0.1,0.2,0.4,0.2,0.1>
- Assume candies are i.i.d (identically and independently distributed)
 - $P(dlh_i) = \Pi_j P(d_jlh_i)$
- Suppose first 10 candies are all lime
 - $P(dlh_1)=0^{10}=0$
 - $P(dlh_2)=0.25^{10}=0.0000095$
 - $P(dlh_3)=0.5^{10}=0.00097$
 - $P(dlh_4)=0.75^{10}=0.056$
 - $P(dlh_5)=1^{10}=1$

Candy Example: Posterior

Posteriors given that data is really generated from h_5

Candy Example: Prediction

Prediction next candy is lime given that data is really generated from h₅ 0.9 0.5 0.4 2 4 6 8 10 0 Number of samples in d

- Good news
 - Optimal
 - Given prior, no other prediction is correct more often than the Bayesian one
 - No overfitting
 - Use prior to penalize complex hypothesis (complex hypothesis are more unlikely)

Bad news

- If hypothesis space is large, Bayesian learning is intractable
 - Large summation (or integration) problem
- Use approximations
 - Maximum a posteriori (MAP)

Maximum a posteriori (MAP)

 Idea: Make prediction on most probable hypothesis h_{MAP}

$$h_{MAP} = \operatorname{argmax}_{h_i} P(h_i | d)$$

$$-$$
 P(xld)=P(xlh_{MAP})

- Compare to Bayesian learning
 - Bayesian learning makes prediction on all hypothesis weighted by their probability

MAP – Candy Example

MAP Properties

- MAP prediction is less accurate than Bayesian prediction
 - MAP relies on only one hypothesis
- MAP and Bayesian predictions converge as data increases
- No overfitting
 - Use prior to penalize complex hypothesis
- Finding h_{MAP} may be intractable
 - h_{MAP}=argmax P(hld)
 - Optimization may be hard!

MAP computation

- Optimization
 - h_{MAP} = argmax $_{h}$ P(hld)

 $= \operatorname{argmax}_{h} P(h)P(dlh)$

 $= \operatorname{argmax}_{h} P(h) \Pi_{i} P(d_{i} h)$

- Product introduces non-linear optimization
- Take log to linearize
 - h_{MAP} =argmax_h log P(h) + $\sum_i \log P(d_i h)$

Maximum Likelihood (ML)

- Idea: Simplify MAP by assuming uniform prior (i.e. P(h_i)=P(h_j) for all i,j)
 - h_{MAP} =argmax_h P(h) P(dlh)
 - h_{ML} =argmax_h P(dlh)
- Make prediction on h_{ML} only
 - P(xld)=P(xlh_{ML})

ML Properties

- ML prediction is less accurate than Bayesian and MAP
 - Ignores prior information
 - Relies only on one hypothesis h_M
- ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting
 - Does not penalize complex hypothesis
- Finding h_{ML} is often easier than h_{MAP}
 - h_{ML} =argmax_j $\sum_i \log P(d_i lh_j)$

Learning with complete data

- Parameter learning with complete data
 - Parameter learning task involves finding numerical parameters for a probability model whose structure is fixed
 - Example
 - Learning CPT for a Bayes net with a given structure

Simple ML Example

- Hypothesis h_{θ}
 - P(cherry)= θ and P(lime)=1- θ
 - θ is our parameter
- Data d:
 - N candies (c cherry and I=N-c lime)

• What should θ be?

35

Simple ML example

- Likelihood of this particular data set
 - $P(dlh_{\theta}) = \theta^{c}(1-\theta)^{l}$
 - ML hypothesis is one that maximizes the above expression
 - Equivalent to maximizing log likelihood

- Log likelihood
 - $L(dlh_{\theta}) = log P(dlh_{\theta}) = c log \theta + l log (1-\theta)$

Simple ML example

• Find θ that maximizes log likelihood

$$\frac{\partial L(d|h_{\theta})}{\partial \theta} = \frac{c}{\theta} - \frac{l}{1-\theta} = 0$$

$$\theta = \frac{c}{c+l} = \frac{c}{N}$$

 ML hypothesis asserts that actual proportion of cherries is equal to observed proportion

More complex ML example

- Hypothesis: $h_{\theta, \theta_1, \theta_2}$
- Data:
 - c cherries
 - G_c green wrappers
 - R_c red wrappers
 - I limes
 - G₁ green wrappers
 - R_I red wrappers

P(F=cherry) Θ Flavor		
	F	P(W=red F)
	cherry	$oldsymbol{ heta}_1$
	lime	$\boldsymbol{ heta}_2$
Wrapper		

More complex ML example

- $P(dlh_{\theta, \theta_1, \theta_2}) = \theta c (1-\theta)^{I} \theta_1^{R_c} (1-\theta_1)^{G_c} \theta_2^{R_l} (1-\theta_2)^{G_l}$
- L= [c log θ +l log(1- θ)]+ [R_clog θ_1 + G_clog(1- θ_1)]+

 $[\mathsf{R}_{|}\log\theta_{2} + \mathsf{G}_{|}\log(1-\theta_{2})]$

- Take derivatives with respect to each parameter and set to zero
 - θ=c/(c+l)
 - $\theta_1 = R_c / (R_c + G_c)$
 - $\theta_2 = R_l / (R_l + G_l)$

ML Comments

 This approach can be extended to any Bayes net whose conditional probabilities are represented as tables

- With complete data
 - 1. ML parameter learning problem decomposes into separate learning problems, one for each parameter!
 - 2. Parameter values for a variable, given its parents are just observed frequencies of variable values for each setting of parent values!

A problem: Zero probabilities

- What happens if we observed zero cherry candies?
 - θ would be set to 0
 - Is this a good prediction?
- Laplace smoothing
 - Instead of $\theta = c/(c+l)$ use $\theta = (c+1)/(c+l+2)$

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- Parameters:
 - $\theta = P(C=true)$
 - $\theta_{j,1} = P(A_j = true | C = true)$
 - $\theta_{j,2} = P(A_j = true | C = false)$

 Assumption: A_i's are independent given C

Naïve Bayes Model

• With observed attribute values $x_1, x_2, ..., x_n$

- $P(C|x_1, x_2, \dots, x_n) = \alpha P(C) \prod_i P(x_i|C)$

- From ML we know what the parameters should be
 - Observed frequencies (with possible Laplace smoothing)
- Just need to choose the most likely class C

Naïve Bayes comments

- Naïve Bayes scales well
- Naïve Bayes tends to perform well
 - Even though the assumption that attributes are independent given class often does not hold
- Application
 - Text classification

Text classification

- Important practical problem, occurring in many applications
 - Information retrieval, spam filtering, news filtering, building web directories...
- Simplified problem description
 - Given: collection of documents, classified as "interesting" or "not interesting" by people
 - Goal: learn a classifier that can look at text of new documents and provide a label, without human intervention

Data representation

- Consider all possible significant words that can occur in documents
 - Words in English dictionary, proper names, abbreviations,...
- Do not include stopwords
 - Words that appear in all documents
 - E.g. prepositions, common verbs, "to be", "to do",...
- Stem words
 - Map words to their root
 - E.g. learn <- "learn", "learning", "learned"
 - For each root, introduce common binary feature
 - specifying whether the word is present or not in the document

Example

- "Machine learning is fun"
 - Aardvark 0

Μ

- Fun 1
- Funel 0

Μ

Learn 1

Μ

- Machine 1
- M Zebra 0

47

Use Naïve Bayes Assumption

• Words are independent of each other, given the class, y, of document

$$P(y|\text{document}) = \prod_{i=1}^{|\text{Vocab}|} P(w_i|y)$$

How do we get the probabilities?

Use Naïve Bayes Assumption

• Words are independent of each other, given the class, y, of document

$$P(y|\text{document}) = \prod_{i=1}^{|\text{Vocab}|} P(w_i|y)$$

- Use ML parameter estimation!
 - P(w_ily)=(# documents of class y containing word w_i)/(# documents of class y)
- Count words over collections of documents
- Use Bayes rule to compute probabilities for unseen documents
- Laplace smoothing is very useful here

Observations

• We may not be able to find θ analytically

• **Gradient search** to find good value of θ

- Start with guess θ
- Update $\theta < -\theta + \alpha \partial L(\theta ID)/\partial \theta$
 - α in (0,1) is learning rate or step size
- Repeat until θ stops changing significantly

Conclusions

- What you should know
 - Bayesian learning
 - MAP
 - ML
 - How to learn parameters in Bayes Nets
 - Naïve Bayes assumption
 - Laplace smoothing