Outline

• What is reinforcement learning
• Quick MDP review
• Passive learning
 • Temporal Difference Learning
• Active learning
 • Q-Learning
What is RL?

• Reinforcement learning is learning what to do so as to maximize a numerical reward signal

• Learner is not told what actions to take

• Learner discovers value of actions by
 - Trying actions out
 - Seeing what the reward is
What is RL?

• Another common learning framework is supervised learning (we will see this later in the semester)

Supervised learning

Don’t touch. You will get burnt

Reinforcement learning

Ouch!
Reinforcement Learning Problem

Goal: Learn to choose actions that maximize \(r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \), where \(0 < \gamma < 1 \)
Example: Slot Machine

- **State**: Configuration of slots
- **Actions**: Stopping time
- **Reward**: $$$
- **Problem**: Find $\pi: S \rightarrow A$ that maximizes the reward
Example: Tic Tac Toe

- **State**: Board configuration
- **Actions**: Next move
- **Reward**: 1 for a win, -1 for a loss, 0 for a draw
- **Problem**: Find $\pi: S \rightarrow A$ that maximizes the reward
Example: Inverted Pendulum

- **State**: $x(t), x'(t), \theta(t), \theta'(t)$

- **Actions**: Force F

- **Reward**: 1 for any step where the pole is balanced

- **Problem**: Find $\pi: S \rightarrow A$ that maximizes the reward
Example: Mobile Robot

- **State**: Location of robot, people
- **Actions**: Motion
- **Reward**: Number of happy faces
- **Problem**: Find $\pi: S \rightarrow A$ that maximizes the reward
Reinforcement Learning Characteristics

- Delayed reward
 - Credit assignment problem
- Exploration and exploitation
- Possibility that a state is only partially observable
- Life-long learning
Reinforcement Learning Model

- Set of states S
- Set of actions A
- Set of reinforcement signals (rewards)
 - Rewards may be delayed
Markov Decision Process

\[\gamma = 0.9 \]

You own a company!

In every state you must choose between Saving money or Advertising.
Markov Decision Process

- Set of states \(\{s_1, s_2, \ldots, s_n\} \)
- Set of actions \(\{a_1, \ldots, a_m\} \)
- Each state has a reward \(\{r_1, r_2, \ldots, r_n\} \)
- Transition probability function

\[
P_{ij}^k = (\text{Next} = s_j | \text{This} = s_i \text{ and I take action } a_k)
\]

- ON EACH STEP...
 0. Assume your state is \(s_i \)
 1. You get given reward \(r_i \)
 2. Choose action \(a_k \)
 3. You will move to state \(s_j \) with probability \(P_{ij}^k \)
 4. All future rewards are discounted by \(\gamma \)
MDPs and RL

• With an MDP our goal was to **find the optimal policy given the model**
 - Given rewards and transition probabilities

• In RL our goal is to **find the optimal policy but we start without knowing the model**
 - Not given rewards and transition probabilities
Agent’s Learning Task

- Execute actions in the world
- Observe the results
- Learn policy \(\pi : S \rightarrow A \) that maximizes
\[
E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots] \]
from any starting state in \(S \)
Types of RL

- **Model-based vs Model-free**
 - **Model-based**: Learn the model and use it to determine the optimal policy
 - **Model-free**: Derive optimal policy without learning the model

- **Passive vs Active**
 - **Passive**: Agent observes the world and tries to determine the value of being in different states
 - **Active**: Agent watches and takes actions
Passive Learning

- An agent has a policy π
- Executes a set of trials using π
 - Starts in s_0, has a series of state transitions until it reaches the terminal state
- Tries to determine the expected utility of being in each state
Passive Learning

\[\gamma = 1 \]
\[r_i = -0.04 \textrm{ for non-terminal states} \]

We do not know the transition probabilities

\[
(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1} \\
(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1} \\
(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}
\]

What is the value, \(V^*(s) \) of being in state \(s \)?
Direct Utility Estimation

• Direct utility estimation is a form of supervised learning
 - Input: State
 - Output: Reward

• Ignore an important piece of information
 - Utility values obey Bellman equation

• Misses opportunities for learning
Adaptive Dynamic Programming (ADP)

• Recall Bellman equations:
 \[V^\pi(s_i) = r_i + \gamma \sum_j P_{ij}^{\pi(s_i)} V^\pi(s_j) \]
 - Connection between states can speed up learning
 - Do not need to consider any situation where the above constraint is violated

• Adaptive dynamic programming (ADP)
 - Learns transition probabilities, rewards from observations
 - Updates values of states
Example: ADP

\[V^\pi(s_i) = r(s_i) + \gamma \sum_j P_{ij}^\pi V^\pi(s_j) \]

\[r_i = -0.04 \text{ for non-terminal states} \]

Use this information in the Bellman equation

\[P_{(1,3)(2,3)}^r = \frac{2}{3} \]
\[P_{(1,3)(1,2)}^r = \frac{1}{3} \]
Temporal Difference

- Model free

- Key Idea:
 - Use observed transitions to adjust values of observed states so that they satisfy Bellman equations
 - At each time step
 - Observe s, a, s’, r
 - Update V^π after each move
 - $V^\pi(s) = V^\pi(s) + \alpha(r(s) + \gamma V^\pi(s') - V^\pi(s))$
Theorem: If α is appropriately decreased with the number of times a state is visited, then $V_\pi(s)$ converges to the correct value.

- α must satisfy
 - $\sum_n \alpha(n) \rightarrow 1$
 - $\sum_n \alpha^2(n) < 1$
TD-Lambda

• Idea: Update from the whole training sequence, not just a single state transition

\[V^\pi(s_i) \rightarrow V^\pi(s_i) + \alpha \sum_{m=i}^{\infty} \lambda^{m-i} [r(s_m) + \gamma V^\pi(s_{m+1}) - V^\pi(s_m)] \]

• Special cases:
 - Lambda = 1 (basically ADP)
 - Lambda=0 (TD)

• Intermediate choice of lambda is best (empirically lambda=0.7 works well)
Active Learning

- Recall, that real goal is to find a good policy

 - If the transition and reward model is known then
 - \[V^*(s) = \max_a [r(s) + \gamma \sum_{s'} P(s'|s,a)V^*(s')] \]

 - If the transition and reward model is unknown
 - Improve policy as agent executes it
Q-Learning

- Key idea: Learn a function $Q: S \times A \rightarrow \mathbb{R}$
 - Value of a state-action pair
 - Policy $\pi(s) = \arg\max_a Q(s, a)$ is the optimal policy
 - $V^*(s) = \max_a Q(s, a)$

- Bellman’s equation
 - $Q(s, a) = r(s) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q(s', a')$
Q-Learning

- For each state s and action a, initialize $Q(s,a)$
 - $Q(s,a) = 0$ or some random value
- Observe current state
- **Loop**
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update $Q(s,a)$
 - $Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_a Q(s',a') - Q(s,a))$
 - $s = s'$
Example: Q-Learning

\[
\begin{array}{c|c|c}
 & 73 & 100 \\
\hline
 66 & 81 & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 & 81.5 & 100 \\
\hline
 66 & 81 & \\
\end{array}
\]

\[r = 0\] for non-terminal states
\[\gamma = 0.9\]
\[\alpha = 0.5\]

\[
Q(s_1, a_{\text{right}}) = Q(s_1, a_{\text{right}}) + \alpha(r + \gamma \max_{a'} Q(s_2, a') - Q(s_1, a_{\text{right}}))
\]
\[
= 73 + 0.5(0 + 0.9 \max[66, 81, 100] - 73)
\]
\[
= 73 + 0.5(17)
\]
\[
= 81.5
\]
Q-Learning

• For each state s and action a, initialize Q(s,a)
 - Q(s,a)=0 or some random value
• Observe current state
• Loop
 - **Select action a and execute it**
 - Receive immediate reward r
 - Observe new state s’
 - Update Q(s,a)
 - Q(s,a)=Q(s,a)+α(r+γ \text{max}_{a'}Q(s',a')-Q(s,a))
 - s=s’
Exploration vs Exploitation

- If an agent always chooses the action with highest value then it is **exploiting**
- If an agent always chooses an action at random then it may learn the model (**exploring**)
- Need to balance the two
Common Exploration Methods

• Use an optimistic estimate of utility
• Chose best action with probability p and a random action otherwise

• Boltzmann exploration

$$P(a) = \frac{e^{Q(s,a)/T}}{\sum_a e^{Q(s,a)/T}}$$
Exploration and Q-Learning

- Q-Learning converges to the optimal Q-values if
 - Every state is visited infinitely often (due to exploration)
 - The action selection becomes greedy as time approaches infinity
 - The learning rate is decreased appropriately
Summary

- Active vs Passive Learning
- Model-Based vs Model-Free
- ADP
- TD
- Q-learning
 - Exploration-Exploitation tradeoff