Reinforcement Learning

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- What is reinforcement learning
- Quick MDP review
- Passive learning
 - Temporal Difference Learning
- Active learning
 - Q-Learning

What is RL?

- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
- Learner is not told what actions to take
- Learner discovers value of actions by
 - Trying actions out
 - Seeing what the reward is

What is RL?

 Another common learning framework is supervised learning (we will see this later in the semester)

Reinforcement learning

Reinforcement Learning Problem

Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where $0 < \gamma < 1$

Example: Slot Machine

- State: Configuration of slots
- Actions: Stopping time
- **Reward**: \$\$\$
- Problem: Find π: S → A that maximizes the reward

Example: Tic Tac Toe

- **State**: Board configuration
- Actions: Next move
- **Reward**: 1 for a win, -1 for a loss, 0 for a draw
- Problem: Find π: S → A that maximizes the reward

Example: Inverted Pendulem

- **State**: x(t), x'(t), θ(t), θ'(t)
- Actions: Force F
- **Reward**: 1 for any step where the pole is balanced
- Problem: Find π: S → A that maximizes the reward

Example: Mobile Robot

- **State**: Location of robot, people
- Actions: Motion
- Reward: Number of happy faces
- Problem: Find π: S → A that maximizes the reward

Reinforcement Learning Characteristics

- Delayed reward
 - Credit assignment problem
- Exploration and exploitation
- Possibility that a state is only partially observable
- Life-long learning

Reinforcement Learning Model

- Set of states S
- Set of actions A
- Set of reinforcement signals (rewards)
 - Rewards may be delayed

Markov Decision Process

 $\gamma = 0.9$

You own a company

In every state you must choose between **S**aving money or **A**dvertising

Markov Decision Process

- Set of states $\{s_1, s_2, \dots s_n\}$
- Set of actions $\{a_1, \dots, a_m\}$
- Each state has a reward $\{r_1, r_2, ..., r_n\}$
- Transition probability function

$$P_{ij}^k = (\text{Next} = s_j | \text{This} = s_i \text{ and I take action } a_k)$$

• ON EACH STEP...

0. Assume your state is s_i

- 1. You get given reward r_i
- 2. Choose action a_k
- 3. You will move to state s_j with probability P_{ij}^{k}
- 4. All future rewards are discounted by γ

MDPs and RL

- With an MDP our goal was to find the optimal policy given the model
 - Given rewards and transition probabilities
- In RL our goal is to find the optimal policy but we start without knowing the model
 - Not given rewards and transition probabilities

Agent's Learning Task

- Execute actions in the world
- Observe the results
- Learn policy π:S→A that maximizes E[r_t+Yr_{t+1}+Y²r_{t+2}+...] from any starting state in S

Types of RL

Model-based vs Model-free

- Model-based: Learn the model and use it to determine the optimal policy
- Model-free: Derive optimal optimal policy without learning the model
- Passive vs Active
 - Passive: Agent observes the world and tries to determine the value of being in different states
 - Active: Agent watches and takes actions

Passive Learning

- An agent has a policy π
- Executes a set of trials using π
 - Starts in s₀, has a series of state transitions until it reaches the terminal state
- Tries to determine the expected utility of being in each state

Passive Learning

γ = 1

 $r_i = -0.04$ for non-terminal states

We do not know the transition probabilities

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3)! \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

$$(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$$

What is the value, V^{*}(s) of being in state s?

Direct Utility Estimation

- Direct utility estimation is a form of supervised learning
 - Input: State
 - Output: Reward
- Ignore an important piece of information
 - Utility values obey Bellman equation
- Misses opportunities for learning

Adaptive Dynamic Programming (ADP)

- Recall Bellman equations:
 - $V^{\pi}(s_i) = r_i + \gamma \Sigma_j P_{ij}^{\pi(si)} V^{\pi}(s_j)$
 - Connection between states can speed up learning
 - Do not need to consider any situation where the above constraint is violated
- Adaptive dynamic programming (ADP)
 - Learns transition probabilities, rewards from observations
 - Updates values of states

Example: ADP

$$\gamma = 1$$

$$r_{i} = -0.04 \text{ for non-terminal states}$$

$$r_{i} = -0.04 \text{ for non-terminal states}$$

$$r_{i} = -0.04 \text{ for non-terminal states}$$

$$V^{\pi}(s_{i}) = r(s_{i}) + \gamma \sum_{j} P_{ij}^{\pi} V^{\pi}(s_{j})$$

$$r_{i}(s_{i}) = r(s_{i}) + \gamma \sum_{j} P_{ij}^{\pi} V^{\pi}(s_{j})$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$ $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$ $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

$$P_{(1,3)(2,3)}^{r}=2/3$$

 $P_{(1,3)(1,2)}^{r}=1/3$

Use this information in the Bellman equation

Temporal Difference

- Model free
- Key Idea:
 - Use observed transitions to adjust values of observed states so that they satisfy Bellman equations
 - At each time step
 - Observe s, a, s', r
 - Update V^{π} after each move
 - $V^{\pi}(s) = V^{\pi}(s) + \alpha(r(s) + \gamma V^{\pi}(s') V^{\pi}(s))$

TD(0)

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r(s) + \gamma V^{\pi}(s') - V^{\pi}(s))$$

Learning rate Temporal difference

- Theorem: If α is appropriately decreased with the number of times a state is visited, then Vπ(s) converges to the correct value.
 - α must satisfy
 - Σ_nα(n)-> 1
 - $\Sigma_n \alpha^2(n) < 1$

TD-Lambda

 Idea: Update from the whole training sequence, not just a single state transition

 $V^{\pi}(s_i) \rightarrow V^{\pi}(s_i) + \alpha \sum_{m=i}^{\infty} \lambda^{m-i} [r(s_m) + \gamma V^{\pi}(s_{m+1}) - V^{\pi}(s_m)]$

- Special cases:
 - Lambda = 1 (basically ADP)
 - Lambda=0 (TD)
- Intermediate choice of lambda is best (empirically lambda=0.7 works well)

Active Learning

- Recall, that real goal is to find a good policy
 - If the transition and reward model is known then
 - $V^*(s)=max_a[r(s)+\gamma\Sigma_{s'}P(s'ls,a)V^*(s')]$
 - If the transition and reward model is unknown
 - Improve policy as agent executes it

Q-Learning

- Key idea: Learn a function Q:SxA->R
 - Value of a state-action pair
 - Policy π(s)=argmax_a Q(s,a) is the optimal policy
 - $V^*(s)=max_aQ(s,a)$
- Bellman's equation
 - $Q(s,a)=r(s)+\gamma\Sigma_{s'}P(s'ls,a)max_{a'}Q(s',a')$

Q-Learning

- For each state s and action a, initialize Q(s,a)
 - Q(s,a)=0 or some random value
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(s,a)
 - $Q(s,a)=Q(s,a)+\alpha(r+\gamma \max_{a}Q(s',a')-Q(s,a))$
 - **-** S=S'

Example: Q-Learning

r=0 for non-terminal states γ =0.9 α = 0.5

$$Q(s_1, a_{\text{right}}) = Q(s_1, a_{\text{right}}) + \alpha(r + \gamma \max_{a'} Q(s_2, a') - Q(s_1, a_{\text{right}}))$$

= 73 + 0.5(0 + 0.9max[66, 81, 100] - 73)
= 73 + 0.5(17)
= 81.5

Q-Learning

- For each state s and action a, initialize Q(s,a)
 - Q(s,a)=0 or some random value
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(s,a)
 - $Q(s,a)=Q(s,a)+\alpha(r+\gamma \max_{a}Q(s',a')-Q(s,a))$
 - **-** S=S'

Exploration vs Exploitation

- If an agent always choses the action with highest value then it is exploiting
- If an agent always choses an action at random then it may learn the model (exploring)
- Need to balance the two

Common Exploration Methods

- Use an optimistic estimate of utility
- Chose best action with probability p and a random action otherwise
- Boltzmann exploration

$$P(a) = \frac{e^{\mathcal{Q}(s,a)/T}}{\sum_{a} e^{\mathcal{Q}(s,a)/T}}$$

Exploration and Q-Learning

- Q-Learning converges to the optimal Qvalues if
 - Every state is visited infinitely often (due to exploration)
 - The action selection becomes greedy as time approaches infinity
 - The learning rate is decreased appropriately

Summary

- Active vs Passive Learning
- Model-Based vs Model-Free
- ADP
- TD
- Q-learning
 - Exploration-Exploitation tradeoff