Markov Decision Processes

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Markov Chains
- Discounted Rewards
- Markov Decision Processes
 - Value Iteration
 - Policy Iteration

Markov Chains

- Simplified version of snakes and ladders
- Start at state 0, roll dice, and move the number of positions indicated on the dice. If you land on square 4 you teleport to square 7
- Winner is the one who gets to 11 first

11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain

- Discrete clock pacing interaction of agent with environment, t=0,1,2,...
- Agent can be in one of a set of states S={0,1,...,11}
- Initial state s₀=0
- If an agent is in state st at time t, the state at time st+1 is determined only by the role of the dice at time t

11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain

- The probability of the next state state state state state agent got to the current state state
- Example: Assume at time t, agent is in state 2
 - $P(s_{t+1}=3|s_t)=1/6$
 - $P(s_{t+1}=7|s_t)=1/3$
 - $P(s_{t+1}=5|s_t)=1/6$, $P(s_{t+1}=6|s_t)=1/6$, $P(s_{t+1}=8|s_t)=1/6$
 - Game is completely described by the *probability distribution of the next* state given the current state

11	10	9	8	7	6
0	1	2	3	4	5

Markov Chain: Formal Representation

- State space S={0,1,2,3,4,5,6,7,8,9,10,11}
- Transition probability matrix P

	0	1/6	1/6	1/6	0	1/6	1/6	1/6	0	0	0	0	1
	0	0	1/6	1/6	0	1/6	1/6	1/3	0	0	0	0	
	0	0	0	1/6	0	1/6	1/6	1/3	1/6	0	0	0	
	0	0	0	0	0	1/6	1/6	1/3		1/6	0	0	
P =	0	0	0	0	0	0	0	1	0	0	0	0	
• -	0	0	0	0	0	0	1/6	1/6	1/6	1/6	1/6	1/6	
	0	0	0	0	0	0	0	1/6	1/6	1/6	1/6	1/3	
	0	0	0	0	0	0	0	0	1/6	1/6	1/6	1/2	
	0	0	0	0	0	0	0	0	0	1/6	1/6	2/3	
	0	0	0	0	0	0	0	0	0	0	1/6	5/6	
	0	0	0	0	0	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	0	0	0	0	1	

P_{ij}=Prob(Next=s_i| This=s_i)

Discounted Rewards

- An assistant professor gets paid, say, 30K per year
- How much, in total, will the assistant professor earn in their lifetime?

30+30+30+30+...=

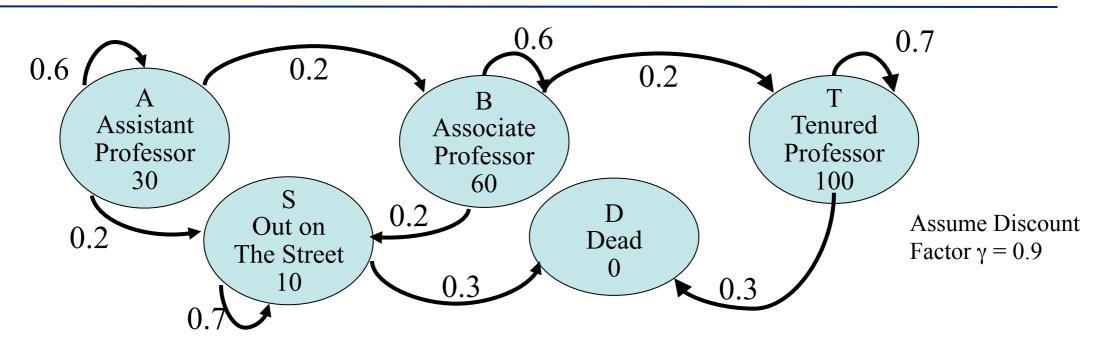
Discounted Rewards

- A reward in the future is not worth quite as much as a reward now
 - Because of chance of inflation
 - Because of chance of obliteration
- Example:
 - Being promised \$10000 next year is worth only 90% as much as receiving \$10000 now
- Assuming payment n years in the future is worth only (0.9)ⁿ of payment now, what is the assistant professor's Future Discounted Sum of Rewards?

Discount Factors

- Used in economics and probabilistic decision-making all the time
- Discounted sum of future awards using discount factor γ is
 - Reward now + γ(reward in 1 time step) + γ²(reward in 2 time steps) + γ³(reward in 3 time steps) + ...

The Academic Life



- U_A=Expected discounted future rewards starting in state A
- U_B=Expected discounted future rewards starting in state B
- U_T =Expected discounted future rewards starting in state T
- U_S=Expected discounted future rewards starting in state S
- U_D=Expected discounted future rewards starting in state D

Markov System of Rewards

- Set of states S={s1,s2,...,sn}
- Each state has a reward {r1,r2,...,rn}
- Discount factor γ , 0< γ <1
- Transition probability matrix, P

$$P = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix} \qquad P_{ij} = \operatorname{Prob}(\operatorname{Next} = \mathbf{s}_{j} \mid \operatorname{This} = \mathbf{s}_{j})$$

On each step:

- •Assume state is s_i
- •Get reward r_i
- •Randomly move to state s_j with probability P_{ij}
- •All future rewards are discounted by $\boldsymbol{\gamma}$

Solving a Markov Process

- Write U*(s_i) = expected discounted sum of future rewards starting at state s_i
 - $U^*(s_i)=r_i+\gamma(P_{i1}U^*(s_i)+P_{i2}U^*(s_2)+...+P_{in}U^*(s_n))$

$$\bar{\mathbf{U}} = \begin{pmatrix} U^*(S_1) \\ U^*(S_2) \\ \vdots \\ U^*(S_n) \end{pmatrix} \qquad \bar{\mathbf{R}} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix} \qquad \bar{\mathbf{P}} = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{2n} & \cdots & P_{nn} \end{pmatrix}$$

Closed form: $U=(I-\gamma P)^{-1}R$

Solving a Markov System using Matrix Inversion

• Upside:

- You get an exact number!
- Downside:
 - If you have n states you are solving an n by n system of equations!

Value Iteration

• Define

- U¹(s_i)=Expected discounted sum of rewards over next 1 time step
- U²(s_i)=Expected discounted sum of rewards over next 2 time steps
- U³(s_i)=Expected discounted sum of rewards over next 3 time steps
- ...
- U^k(s_i)=Expected discounted sum of rewards over next k time steps

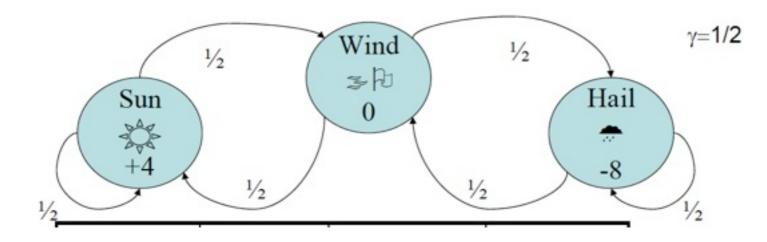
Value Iteration

• Define

- U¹(s_i)=Expected discounted sum of rewards over next 1 time step
- $U^2(s_i)$ =Expected discounted sum of rewards over next 2 time steps
- $U^{3}(s_{i})$ =Expected discounted sum of rewards over next 3 time steps
- **-** ...
- U^k(s_i)=Expected discounted sum of rewards over next k time steps

$$U^{1}(S_{i})=r_{i}$$
$$U^{2}(S_{i})=r_{i}+\gamma \Sigma_{j=1}^{n} p_{ij}U^{1}(s_{j})$$
$$U^{k+1}(S_{i})=r_{i}+\gamma \Sigma_{j=1}^{n} p_{ij}U^{k}(s_{j})$$

Example: Value Iteration

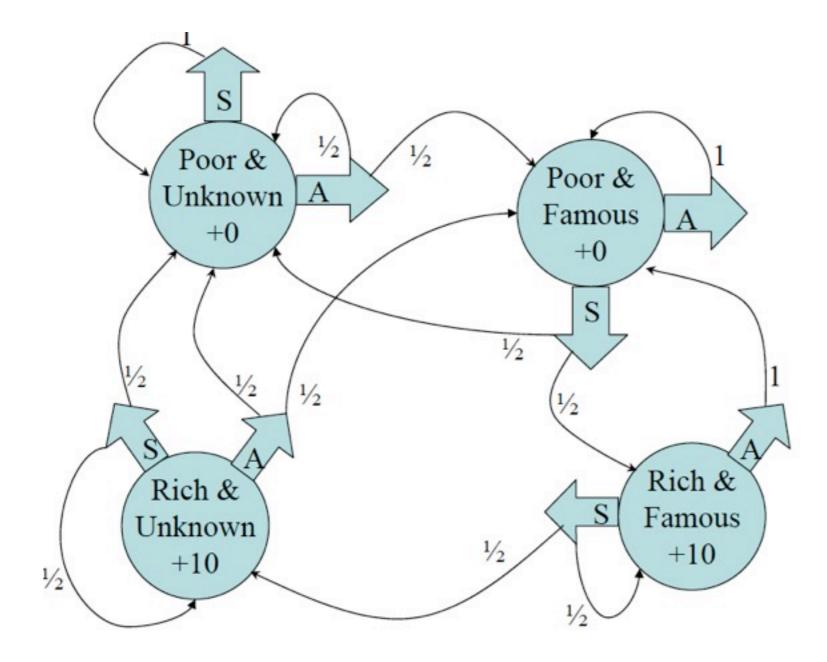


k	U ^k (sun)	U ^k (wind)	U ^k (hail)
1			
2			
3			
4			
5			

Value Iteration

- Compute U¹(s_i) for each i
- Compute U²(s_i) for each i
- Compute U^k(s_i) for each i
- As $k \rightarrow \infty$, $U^k(s_i) \rightarrow U^*(s_i)$
- When to stop?
 - max $|U^{k+1}(s_i)-U^k(s_i)| < \varepsilon$
- This is often faster than matrix inversion

Markov Decision Process



$$\gamma = 0.9$$

You own a company

In every state you must choose between Saving money or Advertising

Markov Decision Process

- Set of states S={s₁,s₂,...,s_n}
- Each state has a reward $\{r_1, r_2, ..., r_n\}$
- Set of actions {a₁,...,a_m}
- Discount factor γ, 0<γ<1
- Transition probability function, P

 $P_{ij}^{k} = Prob(Next = s_j | This = s_i and you took action a_k)$

On each step:

- •Assume state is s_i
- •Get reward r_i
- •Choose action a_k
- •Randomly move to state s_j with probability P_{ij}^k
- •All future rewards are discounted by $\boldsymbol{\gamma}$

Planning in MDPs

- The goal of an agent in an MDP is to be rational
 - Maximize its expected utility
 - But maximizing immediate utility is not good enough
 - Great action now can lead to certain death tomorrow
- Goal is to maximize its long term reward
 - Do this by finding a **policy** that has high return

Policies

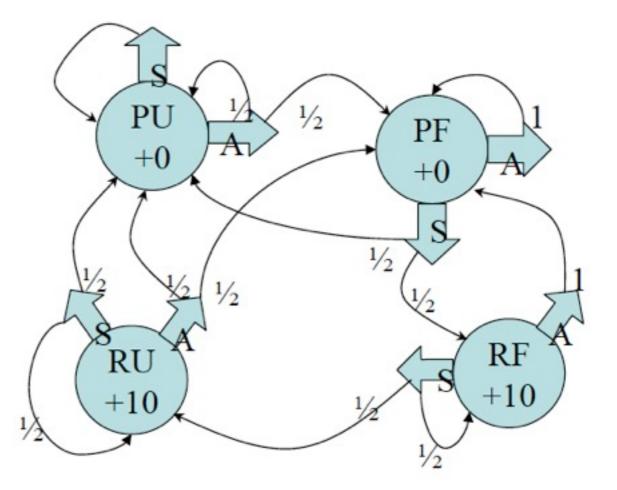
• A policy is a mapping from states to actions

Policy 1

PU	S
PF	A
RU	S
RF	A

Policy 2

PU	А
PF	А
RU	А
RF	А



Fact

- For every MDP there exists an optimal policy
- It is the policy such that for every possible start state, there is no better option that to follow the policy

Our goal: To find this policy!

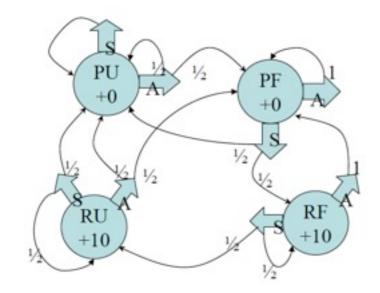
Finding the Optimal Policy

- Naive approach:
 - Run through all possible policies and select the best

Optimal Value Function

- Define V*(s_i) to be the expected discounted future rewards
 - Starting from state s_i, assuming we use the optimal policy
- Define V^t(s_i) to be the possible sum of discounted rewards I can get if I start at state s_i and live for t time steps
 - Note: $V^{1}(s_{i})=r_{i}$

Example



$$\gamma = 0.9$$

t	V ^t (PU)	V ^t (PF)	V ^t (RU)	V ^t (RF)
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	8.55	16.53	25.08
4	4.76	12.20	18.35	28.72
5	7.63	15.07	20.40	31.18
6	10.22	17.46	22.61	33.21

Bellman's Equation

 $V^{+1}(s_i)=max_k [r_i+\gamma \sum_{j=1}^{n} P_{ij} V^{+}(s_j)]$

- Now we can do Value Iteration!
 - Compute V¹(s_i) for all i
 - Compute V²(s_i) for all i
 - ...
 - Compute V^t(s_i) for all i
 - Until convergence $max_i |V^{t+1}(s_i) V^t(s_i)| < \epsilon$

aka Dynamic Programming

Finding the Optimal Policy

- Compute V*(s_i) for all i using value iteration
- Define the best action in state s_i as

 $\operatorname{argmax}_{k}[r_{i}+\gamma\sum_{j}P_{ij}^{k} V^{*}(s_{j})]$

Policy Iteration

- There are other ways of finding the optimal policy
- Policy Iteration
 - Alternates between two steps
 - Policy evaluation: Given π , compute $V_i = V^{\pi}$
 - Policy improvement: Calculate a new π_{i+1} using 1-step lookahead

Policy Iteration Algorithm

- Start with random policy π
- Repeat until you stop changing the policy
 - Compute long term reward for each s_i , using π
 - For each state s_i

$$\max_{k} \left[r_i + \gamma \sum_{j} P_{i,j}^k V^*(s_j) \right] > r_i + \gamma \sum_{j} P_{i,j}^{\pi(s_i)} V^*(s_j)$$

Then

If

$$\pi(s_i) \leftarrow \arg\max_k \left[r_i + \gamma \sum_j P_{i,j}^k V^*(s_j) \right]$$

Summary

- MDPs describe planning tasks in stochastic worlds
- Goal of the agent is to maximize its expected return
- Value functions estimate the expected return
- In finite MDPs there is a unique optimal policy
 - Dynamic programing can be used to find it

Summary

- Good news
 - finding optimal policy is polynomial in number of states
- Bad news
 - finding optimal policy is polynomial in number of states
- Number of states tends to be very very large
 - exponential in number of state variables
- In practice, can handle problems with up to 10 million states

Extensions

- In "real life" agents may not know what state they are in
 - Partial observability
- Partially Observable MDPs (POMDPs)
 - Set of states
 - Set of actions
 - Each state has a reward
 - Transition probability function P(stlat-1, st-1)
 - Set of observations O={o₁,...,o_k}
 - Observation model P(otlst)

POMDPs

- Agent maintains a belief state, b
 - Probability distribution over all possible states
 - b(s) is the probability assigned to state s
- Insight: optimal action depends only on agent's current belief state
 - Policy is a mapping from belief states to actions

POMDPs

- Decision cycle of an agent
 - Given current b, execute action $a=\pi^*(b)$
 - Receive observation o
 - Update current belief state
 - b'(s')=αO(ols')ΣsP(s'la,s)b(s)
- Possible to write a POMDP as an MDP by summing over all actual states s' that an agent might reach
 - $P(b'la,b)=\Sigma_{o}P(b'lo,a,b)\Sigma_{s'}O(ols')\Sigma_{s}P(s'la,s)b(s)$

POMDPs

- Complications
 - Our (new) MDP has a continuous state space
 - In general, finding (approximately) optimal policies is difficult (PSPACE-hard)
 - Problems with even a few dozen states are often infeasible
 - New techniques, take advantage of structure,....