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Markov Chains

Simplified version of snakes and ladders

Start at state O, roll dice, and move the number of
positions indicated on the dice. If you land on square 4
you teleport to square 7

Winner is the one who gets to 11 first
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Markov Chain

Discrete clock pacing interaction of agent with environment,
t=0,1,2,...

Agent can be in one of a set of states S5={0,1,...,11}
Initial state so=0

If an agent is in state st at time t, the state at time st.1 IS
determined only by the role of the dice at time t
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Markov Chain

e The probability of the next state si.1 does not depend on how the
agent got to the current state s: (Markov Property)

e Example: Assume at time t, agent is in state 2
- P(su1=3ls)=1/6
- P(sw1=7Isy)=1/3
-  P(st+1=5lst)=1/6, P(st+1=06lst)=1/6, P(st+1=8lst)=1/6

- Game is completely described by the probability distribution of the next
state given the current state
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Markov Chain: Formal
Representation

e State space S={0,1,2,3,4,5,6,7,8,9,10,11}

e Transition probability matrix P

[0 1/6 1/6 1/6 0 1/6 1/6 1/6 0 0 0 O
o 0 1/6 1/6 0 1/6 1/6 1/3 0 0 0 O
o 0 0 1/6 0 1/6 1/6 1/3 1/6 0 0 0
o 0 0 O O01/6 1/6 1/3 1/6 1/6 0 O

P=-(oo0o o oo0o0 0 1 0 O 0 0
o 0 0 O O O 1/6 1/6 1/6 1/6 1/6 1/6
O 0 0 O O O 0 1/6 1/6 1/6 1/6 1/3
O 0 0 O O O O o0 1/6 1/6 1/6 1/2
0O 0 0 0O O O O 0O 0 1/6 1/6 2/3
O 0 0 O 0O O O O O o0 1/6 5/6
o 0 0 0O 0O O O O 0O o0 o0 1
)& 0@ 0 0 & 0 @ 0 o 0 ©0 I

P.;=Prob(Next=s;| This=s))



Discounted Rewards

¢ An assistant professor gets paid, say,
30K per year

e How much, In total, will the assistant
professor earn in their lifetime?

30+30+30+30+...= ‘.

=




Discounted Rewards

e Areward in the future is not worth quite as much as a
reward now

- Because of chance of inflation
- Because of chance of obliteration
e Example:

- Being promised $10000 next year is worth only 90% as
much as receiving $10000 now

e Assuming payment n years in the future is worth only
(0.9)" of payment now, what is the assistant
professor’s Future Discounted Sum of Rewards?



Discount Factors

e Used in economics and probabilistic
decision-making all the time

e Discounted sum of future awards using
discount factor v is

- Reward now + y(reward in 1 time step) +
Y2(reward in 2 time steps) + y3(reward in 3

time steps) + ...



The Academic Life
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Ua=EXxpected discounted future rewards starting in state A
Us=EXxpected discounted future rewards starting in state B
Ur=Expected discounted future rewards starting in state T
Us=Expected discounted future rewards starting in state S

Up=Expected discounted future rewards starting in state D



Markov System of Rewards

e Set of states S={s1,s2,...,sn}
e Each state has a reward {r1,r2,...,rn}
e Discount factor y, O<y<1

e Transition probability matrix, P

| P13 Pia - Ppy |
p = | Par P2 -0 Py

P, =Prob(Next=s, | This=s)

_Pnl Pn2 Pun_

On each step:

*Assume state is s;

*Get reward r;

Randomly move to state s; with probability P;
All future rewards are discounted by vy



Solving a Markov Process

e Write U*(si) = expected discounted sum
of future rewards starting at state s;

- U*(si)=ri+y(PitU*(si)+Pi2U*(s2) +...+PinU*(8n))

() () (Pu Po o P
o=| V6 | Ro| | | Pa 2
K ("'x(.‘svil) ) \ 'n / \ Pn1 PQn o+ Pon /

Closed form: U=(l-yP)-'R
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Solving a Markov System using
Matrix Inversion

e Upside:
- You get an exact number!
e Downside:

- |f you have n states you are solving an n by
n system of equations!



Value lteration

e Define

U1(si)=Expected discounted sum of rewards over next 1
time step

U2(si)=Expected discounted sum of rewards over next 2
time steps

U3(si)=Expected discounted sum of rewards over next 3
time steps

Uk(si)=Expected discounted sum of rewards over next k
time steps



Value lteration

e Define
-  U'(si)=Expected discounted sum of rewards over next 1 time step
-  U2(si)=Expected discounted sum of rewards over next 2 time steps

-  US(si)=Expected discounted sum of rewards over next 3 time steps

-  UX(si)=Expected discounted sum of rewards over next k time steps
1 -

JY(S,)=r.

JZ(Si):r'i"'YZJ'ﬂn Pijul(sj)
(S )=r S pyUK(s)




Example: Value lteration

A, N

____.—-",L“n.__\ I = I-" 'l ..-"'_-.ji_:“--.
/" Sun \ "\\ 0 /' /" Hail R
. = )

’ / \ .
1/, // N LA

Uk(sun) Uk(wind) Uk(hail)
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Value lteration

Compute U(s) for each |
Compute U?(s;) for each i
Compute UK(sj) for each |
As kK—oo, UK(si)—U*(si)
When to stop?

- max [Uk+1(sj)-Uk(si)l<e

This Is often faster than matrix inversion



Markov Decision Process

s
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Markov Decision Process

e Set of states S={s1,s5,...,5n}

e Each state has a reward {r1,rz,...,rn}
e Set of actions {ai,...,am}

e Discount factor y, O<y<1

e Transition probability function , P

Pj= Prob(Next = s, | This = s;and you took action a)

On each step:

eAssume state IS S;

*Get reward r;

*Choose action ak

*Randomly move to state sj with probability P
All future rewards are discounted by vy
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Planning in MDPs

e The goal of an agent in an MDP is to be
rational

- Maximize its expected utility

- But maximizing immediate utility is not good
enough

- Great action now can lead to certain death tomorrow

e (Goal is to maximize its long term reward

- Do this by finding a policy that has high return
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Policies

e A policy is a mapping
from states to actions

Policy 1

PU |S

PE__|A Policy 2

RU |S

RF_|A PU_|A
PF |A
RU A
RF |A
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Fact

e For every MDP there exists an optimal
policy

e |tis the policy such that for every
possible start state, there is no better
option that to follow the policy

Our goal: To find this policy!
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Finding the Optimal Policy

e Naive approach:

- Run through all possible policies and select
the best
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Optimal Value Function

e Define V*(si) to be the expected
discounted future rewards

- Starting from state sj, assuming we use the
optimal policy

e Define Vi(si) to be the possible sum of
discounted rewards | can get if | start at
state si and live for t time steps

- Note: Vi(si)=r
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Bellman’'s Equation

V*i(s)=max, [r+yZ;," Pijk Vis))]

e Now we can do Value lteration!
- Compute V1(sj) for all i
- Compute V2(s)) for all i
- Compute Vi(s;) for all i

- Until convergence maxlVt+1(si)-Vi(si)l<e

aka Dynamic Programming
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Finding the Optimal Policy

e Compute V*(si) for all i using value
iteration

e Define the best action In state s; as

argmaxg[ri+y2 iPik V*(sj)]
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Policy lteration

e There are other ways of finding the
optimal policy

e Policy lteration

- Alternates between two steps

- Policy evaluation: Given 1, compute Vi=V™

- Policy improvement: Calculate a new 1.1 using 1-step
lookahead
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Policy lteration Algorithm

e Start with random policy
e Repeat until you stop changing the policy
- Compute long term reward for each s;, using T

- For each state s;

It

J ;

J

Then

k *
T(8;) argm}gx r; + ”YZPi,jV (s5)
J
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Summary

MDPs describe planning tasks in stochastic
worlds

Goal of the agent is to maximize its expected
return

Value functions estimate the expected return

In finite MDPs there is a unique optimal
policy

- Dynamic programing can be used to find it
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Summary

Good news

- finding optimal policy is polynomial in number of states
Bad news

- finding optimal policy is polynomial in number of states
Number of states tends to be very very large

- exponential in number of state variables

In practice, can handle problems with up to 10
million states
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Extensions

e |n “real life” agents may not know what state they are in

- Partial observability

e Partially Observable MDPs (POMDPs)

- Set of states

- Set of actions

- Each state has a reward

- Transition probability function P(stlat-1,St-1)
= Set of observations O={os,...,0«}

= Observation model P(oilst)
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POMDPs

e Agent maintains a belief state, b
- Probability distribution over all possible states

- b(s) is the probability assigned to state s

e |nsight: optimal action depends only on
agent’s current belief state

- Policy is a mapping from belief states to
actions
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POMDPs

e Decision cycle of an agent
- (Given current b, execute action a=1t*(b)

- Receive observation o

- Update current belief state

- b’(s’)=a0(ols’)2sP(s’la,s)b(s)

e Possible to write a POMDP as an MDP by
summing over all actual states s’ that an agent
might reach

- P(b’la,b)=2,P(b’lo,a,b)2sO(0ls’)2sP(s’la,s)b(s)
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POMDPs

e Complications

- Our (new) MDP has a continuous state
space

- |n general, finding (approximately) optimal
policies is difficult (PSPACE-hard)

- Problems with even a few dozen states are
often infeasible

- New techniques, take advantage of structure,....
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