Markov Decision
Processes

CS 486/686: Introduction to Artificial Intelligence
Fall 2013



Outline

e Markov Chains
e Discounted Rewards

e Markov Decision Processes
- Value lteration

- Policy Iteration



Markov Chains

Simplified version of snakes and ladders

Start at state O, roll dice, and move the number of
positions indicated on the dice. If you land on square 4
you teleport to square 7

Winner is the one who gets to 11 first

11 10 9 8 7T 6




Markov Chain

Discrete clock pacing interaction of agent with environment,
t=0,1,2,...

Agent can be in one of a set of states S5={0,1,...,11}
Initial state so=0

If an agent is in state st at time t, the state at time st.1 IS
determined only by the role of the dice at time t

11 10 9 38 71 6




Markov Chain

e The probability of the next state si.1 does not depend on how the
agent got to the current state s: (Markov Property)

e Example: Assume at time t, agent is in state 2
- P(su1=3ls)=1/6
- P(sw1=7Isy)=1/3
-  P(st+1=5lst)=1/6, P(st+1=06lst)=1/6, P(st+1=8lst)=1/6

- Game is completely described by the probability distribution of the next
state given the current state

11 10 9 38 7T 6
0 1 2 3 4




Markov Chain: Formal
Representation

e State space S={0,1,2,3,4,5,6,7,8,9,10,11}

e Transition probability matrix P

[0 1/6 1/6 1/6 0 1/6 1/6 1/6 0 0 0 O
o 0 1/6 1/6 0 1/6 1/6 1/3 0 0 0 O
o 0 0 1/6 0 1/6 1/6 1/3 1/6 0 0 0
o 0 0 O O01/6 1/6 1/3 1/6 1/6 0 O

P=-(oo0o o oo0o0 0 1 0 O 0 0
o 0 0 O O O 1/6 1/6 1/6 1/6 1/6 1/6
O 0 0 O O O 0 1/6 1/6 1/6 1/6 1/3
O 0 0 O O O O o0 1/6 1/6 1/6 1/2
0O 0 0 0O O O O 0O 0 1/6 1/6 2/3
O 0 0 O 0O O O O O o0 1/6 5/6
o 0 0 0O 0O O O O 0O o0 o0 1
)& 0@ 0 0 & 0 @ 0 o 0 ©0 I

P.;=Prob(Next=s;| This=s))



Discounted Rewards

¢ An assistant professor gets paid, say,
30K per year

e How much, In total, will the assistant
professor earn in their lifetime?

30+30+30+30+...= ‘.

=




Discounted Rewards

e Areward in the future is not worth quite as much as a
reward now

- Because of chance of inflation
- Because of chance of obliteration
e Example:

- Being promised $10000 next year is worth only 90% as
much as receiving $10000 now

e Assuming payment n years in the future is worth only
(0.9)" of payment now, what is the assistant
professor’s Future Discounted Sum of Rewards?



Discount Factors

e Used in economics and probabilistic
decision-making all the time

e Discounted sum of future awards using
discount factor v is

- Reward now + y(reward in 1 time step) +
Y2(reward in 2 time steps) + y3(reward in 3

time steps) + ...



The Academic Life

0.6 0.7

Assistant

Professor
30

Associate
Professor

Assume Discount

The Street Factory=10.9

10

Ua=EXxpected discounted future rewards starting in state A
Us=EXxpected discounted future rewards starting in state B
Ur=Expected discounted future rewards starting in state T
Us=Expected discounted future rewards starting in state S

Up=Expected discounted future rewards starting in state D



Markov System of Rewards

e Set of states S={s1,s2,...,sn}
e Each state has a reward {r1,r2,...,rn}
e Discount factor y, O<y<1

e Transition probability matrix, P

| P13 Pia - Ppy |
p = | Par P2 -0 Py

P, =Prob(Next=s, | This=s)

_Pnl Pn2 Pun_

On each step:

*Assume state is s;

*Get reward r;

Randomly move to state s; with probability P;
All future rewards are discounted by vy



Solving a Markov Process

e Write U*(si) = expected discounted sum
of future rewards starting at state s;

- U*(si)=ri+y(PitU*(si)+Pi2U*(s2) +...+PinU*(8n))

() () (Pu Po o P
o=| V6 | Ro| | | Pa 2
K ("'x(.‘svil) ) \ 'n / \ Pn1 PQn o+ Pon /

Closed form: U=(l-yP)-'R

12



Solving a Markov System using
Matrix Inversion

e Upside:
- You get an exact number!
e Downside:

- |f you have n states you are solving an n by
n system of equations!



Value lteration

e Define

U1(si)=Expected discounted sum of rewards over next 1
time step

U2(si)=Expected discounted sum of rewards over next 2
time steps

U3(si)=Expected discounted sum of rewards over next 3
time steps

Uk(si)=Expected discounted sum of rewards over next k
time steps



Value lteration

e Define
-  U'(si)=Expected discounted sum of rewards over next 1 time step
-  U2(si)=Expected discounted sum of rewards over next 2 time steps

-  US(si)=Expected discounted sum of rewards over next 3 time steps

-  UX(si)=Expected discounted sum of rewards over next k time steps
1 -

JY(S,)=r.

JZ(Si):r'i"'YZJ'ﬂn Pijul(sj)
(S )=r S pyUK(s)




Example: Value lteration

A, N

____.—-",L“n.__\ I = I-" 'l ..-"'_-.ji_:“--.
/" Sun \ "\\ 0 /' /" Hail R
. = )

’ / \ .
1/, // N LA

Uk(sun) Uk(wind) Uk(hail)

|l D WINN| = X]]




Value lteration

Compute U(s) for each |
Compute U?(s;) for each i
Compute UK(sj) for each |
As kK—oo, UK(si)—U*(si)
When to stop?

- max [Uk+1(sj)-Uk(si)l<e

This Is often faster than matrix inversion



Markov Decision Process

s

1/,
Poor & \ 72 % 1 _
Vikioo A Poor & vy =0.9
+0 Famous | A
+0 You own a
g \ company
72 | In every state
1/, you must
g ’ choose between
: : Saving money or
Rich & Advertising
Unknown S| Famous

+10



Markov Decision Process

e Set of states S={s1,s5,...,5n}

e Each state has a reward {r1,rz,...,rn}
e Set of actions {ai,...,am}

e Discount factor y, O<y<1

e Transition probability function , P

Pj= Prob(Next = s, | This = s;and you took action a)

On each step:

eAssume state IS S;

*Get reward r;

*Choose action ak

*Randomly move to state sj with probability P
All future rewards are discounted by vy

19



Planning in MDPs

e The goal of an agent in an MDP is to be
rational

- Maximize its expected utility

- But maximizing immediate utility is not good
enough

- Great action now can lead to certain death tomorrow

e (Goal is to maximize its long term reward

- Do this by finding a policy that has high return

20



Policies

e A policy is a mapping
from states to actions

Policy 1

PU |S

PE__|A Policy 2

RU |S

RF_|A PU_|A
PF |A
RU A
RF |A

21



Fact

e For every MDP there exists an optimal
policy

e |tis the policy such that for every
possible start state, there is no better
option that to follow the policy

Our goal: To find this policy!

22



Finding the Optimal Policy

e Naive approach:

- Run through all possible policies and select
the best

23



Optimal Value Function

e Define V*(si) to be the expected
discounted future rewards

- Starting from state sj, assuming we use the
optimal policy

e Define Vi(si) to be the possible sum of
discounted rewards | can get if | start at
state si and live for t time steps

- Note: Vi(si)=r

24



VE(PF)

VE(RU)

VY(RF)

10

10

4.5

14.5

19

8.55

16.53

25.08

12.20

18.35

28.72

15.07

20.40

31.18

Ol Nn|hWIN|RHR |~

17.46

22.61

33.21

25




Bellman’'s Equation

V*i(s)=max, [r+yZ;," Pijk Vis))]

e Now we can do Value lteration!
- Compute V1(sj) for all i
- Compute V2(s)) for all i
- Compute Vi(s;) for all i

- Until convergence maxlVt+1(si)-Vi(si)l<e

aka Dynamic Programming

26



Finding the Optimal Policy

e Compute V*(si) for all i using value
iteration

e Define the best action In state s; as

argmaxg[ri+y2 iPik V*(sj)]

27



Policy lteration

e There are other ways of finding the
optimal policy

e Policy lteration

- Alternates between two steps

- Policy evaluation: Given 1, compute Vi=V™

- Policy improvement: Calculate a new 1.1 using 1-step
lookahead

28



Policy lteration Algorithm

e Start with random policy
e Repeat until you stop changing the policy
- Compute long term reward for each s;, using T

- For each state s;

It

J ;

J

Then

k *
T(8;) argm}gx r; + ”YZPi,jV (s5)
J

29



Summary

MDPs describe planning tasks in stochastic
worlds

Goal of the agent is to maximize its expected
return

Value functions estimate the expected return

In finite MDPs there is a unique optimal
policy

- Dynamic programing can be used to find it

30



Summary

Good news

- finding optimal policy is polynomial in number of states
Bad news

- finding optimal policy is polynomial in number of states
Number of states tends to be very very large

- exponential in number of state variables

In practice, can handle problems with up to 10
million states

31



Extensions

e |n “real life” agents may not know what state they are in

- Partial observability

e Partially Observable MDPs (POMDPs)

- Set of states

- Set of actions

- Each state has a reward

- Transition probability function P(stlat-1,St-1)
= Set of observations O={os,...,0«}

= Observation model P(oilst)

32



POMDPs

e Agent maintains a belief state, b
- Probability distribution over all possible states

- b(s) is the probability assigned to state s

e |nsight: optimal action depends only on
agent’s current belief state

- Policy is a mapping from belief states to
actions

33



POMDPs

e Decision cycle of an agent
- (Given current b, execute action a=1t*(b)

- Receive observation o

- Update current belief state

- b’(s’)=a0(ols’)2sP(s’la,s)b(s)

e Possible to write a POMDP as an MDP by
summing over all actual states s’ that an agent
might reach

- P(b’la,b)=2,P(b’lo,a,b)2sO(0ls’)2sP(s’la,s)b(s)

34



POMDPs

e Complications

- Our (new) MDP has a continuous state
space

- |n general, finding (approximately) optimal
policies is difficult (PSPACE-hard)

- Problems with even a few dozen states are
often infeasible

- New techniques, take advantage of structure,....

35



