Decision Networks (Influence Diagrams)

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Decision Networks
- Computing Policies
- Value of Information

Introduction

- Decision networks (aka influence diagrams) provide a representation for sequential decision making
- Basic idea
 - Random variables like in Bayes Nets
 - Decision variables that you "control"
 - Utility variables which state how good certain states are

Example Decision Network

Chance Nodes

- Random variables (denoted by circles)
- Like as in a BN, probabilistic dependence on parents

Decision Nodes

- Variables the decision maker sets (denoted by squares)
- Parents reflect information available at time of decision

$$\begin{array}{c|c} \hline Chills \\ \hline BloodTst \\ \hline Fever \\ \end{array} \quad BT \in \{bt, \ \ bt\} \\ \end{array}$$

Value Nodes

- Specifies the utility of a state (denoted by a diamond)
- Utility depends only on state of parents
- Generally, only one value node in a network

U(fludrug, flu) = 20 U(fludrug, mal) = -300 U(fludrug, none) = -5 U(maldrug, flu) = -30 U(maldrug, mal) = 10 U(maldrug, none) = -20 U(no drug, flu) = -10 U(no drug, mal) = -285 U(no drug, none) = 30

Assumptions

- Decision nodes are totally ordered
 - Given decision variables D₁,..., D_n, decisions are made in sequence
- No forgetting property
 - Any information available for decision D_i remains available for decision D_j where j>i
 - All parents of D_i are also parents for D_j

Policies

- Let Par(D_i) be the parents of decision node D_i
 - Dom(Par(D_i)) is the set of assignments to Par(D_i)
- A policy δ is a set of mappings δ_i, one for each decision node D_i
 - $\delta_i(D_i)$ associates a decision for each parent assignment
 - $δ_i$:Dom(Par(D_i))→Dom(D_i)

Value of a Policy

- The value of a policy δ is the expected utility given that decision nodes are executed according to δ
- Given assignment x to random variables X, let δ(x) be the assignment to decision variables dictated by δ
 - Value of δ

$\mathsf{EU}(\delta) = \sum_{\mathbf{x}} \mathsf{P}(\mathbf{x}, \delta(\mathbf{x})) \mathsf{U}(\mathbf{x}, \delta(\mathbf{x}))$

Optimal Policy

- An optimal policy δ^* is such that $EU(\delta^*) \ge EU(\delta)$ for all δ
- We can use dynamic programming to avoid enumerating all possible policies
- We can also use the BN structure and Variable Elimination to aid the computation

- Work backwards as follows
 - Compute optimal policy for Drug
 - For each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), compute the expected value of choosing that value of D
 - Set policy choice for each value of parents to be the value of D that has max value

- Next compute policy for BT, given policy $\delta_D(C,F,BT,TR)$ just computed
 - Since δ_D is fixed, we treat D as a random variable with deterministic probabilities
 - Solve for BT just like you did for D

- How do we compute these expected values?
 - -Suppose we have asst <c,f,bt,pos> to parents of Drug
 - –We want to compute EU of deciding to set *Drug = md*
 - -We can run variable elimination!

- Treat C, F, BT, Tr, Dr as evidence
 - This reduces the factors
 - Eliminate remaining variables (Dis)
 - Left with factor U()= Σ_{Dis} P(Dis I c,f,bt,pos,md)U(Dis,md,bt)
- We now know EU of doing Dr=md when c,f,bt,pos

Computing Expected Utilities

- Computing expected utilities with BNs is straightforward
- Utility nodes are just factors that can be dealt with using variable elimination

$$EU = \Sigma_{A,B,C} P(A,B,C) U(B,C)$$

= $\Sigma_{A,B,C} P(C|B) P(B|A) P(A) U(B,C)$

Optimizing Policies: Key Points

- If decision node D has no decisions that follow it, we can find its policy by instantiating its parents and computing the expected utility for each decision given parents
 - No-forgetting means that all other decision are instantiated
 - Easy to compute the expected utility using VE
 - Number of computations is large
 - We run expected utility calculations for each parent instantiation and each decision instantiation
 - Policy: Max decision for each parent instantiation

Optimizing Policies: Key points

- When node D is optimized, can be treated as a random variable
- If we optimize from the last decision to the first, at each point we can optimize a single decision by simple VE
 - Why? Its successor decisions are simply random variables in the BN

- Commonly used by decision analysts to help structure decision problems
- Much work put into computationally effective techniques to solve them
 - Common trick: replace decision nodes with random variables at the outset and solve a plain BN
- Complexity is much greater than BN inference

Decision Trees and Decision Networks

- It is possible to build a decision tree from a decision network
 - Order decisions as in the network
 - Ensure that observed chance nodes appear before decisions that use them
 - Label leaves with utilities dictated from utility nodes
 - Assign probabilities to outcomes using conditional probabilities of outcomes given observed variables and decisions on the branch so far

Decision Tree for Medical Network

Example: Decision Network

- You want to buy a used car, but there is some chance it is a "lemon" (i.e. it breaks down often). Before deciding to buy it, you can take it to a mechanic for an inspection. S/he will give you a report, labelling the car as either "good" or "bad". A good report is positively correlated with the car not being a lemon while a bad report is positively correlated with the car being a lemon
- The report costs \$50. You could risk it and buy the car with no report.
- Owning a good car is better than no car, which is better than owning a lemon.

Example

Value of Information

- Claim: Optimal policy is "Inspect car, buy if the report is good" (EU=205)
 - Note that the EU of inspecting the car and buying if you get a good report is 255 minus the cost of the inspection (50)
- At what point would you no longer be interested in doing the inspection?
 - Find V(I) such that 255-V(I)≤EU(~i)=200
- The expected value of information associated with the inspection is \$55
 - You should be willing to pay up to \$55 for the inspection

Value of Information

- Information has value
 - To the extent it is likely to cause a change of plan
 - To the extent that the new plan will be significantly better than the old plan
- The value of information is non-negative
 - This is true for any decision-theoretic agent

Summary

- Definition of a Decision Network
- Definition of an Optimal Policy
- Computing Optimal Policies
- Relationship between DN and DT
- Value of Information