
Decision Networks
(Influence Diagrams)

CS 486/686: Introduction to Artificial Intelligence
Fall 2013

1
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Introduction
• Decision networks (aka influence 

diagrams) provide a representation for 
sequential decision making

• Basic idea

- Random variables like in Bayes Nets

- Decision variables that you “control”

- Utility variables which state how good certain 
states are
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Example Decision Network
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Chance Nodes
• Random variables (denoted by circles)

• Like as in a BN, probabilistic dependence on 
parents
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Disease

TstResult

Fever

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,~bt) = 0
Pr(neg|D,~bt) = 0
Pr(null|D,~bt) = 1

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6



Decision Nodes
• Variables the decision maker sets (denoted 

by squares)

• Parents reflect information available at time of 
decision
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Value Nodes
• Specifies the utility of a state (denoted by a diamond)

• Utility depends only on state of parents

• Generally, only one value node in a network
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Disease

Drug

U

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30



Assumptions
• Decision nodes are totally ordered

- Given decision variables D1,..., Dn, decisions are made in sequence

• No forgetting property

- Any information available for decision Di remains available for 
decision Dj where j>i

- All parents of Di are also parents for Dj
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Policies
• Let Par(Di) be the parents of decision node Di

- Dom(Par(Di)) is the set of assignments to Par(Di)

• A policy δ is a set of mappings δi, one for each decision 
node Di

- δi(Di) associates a decision for each parent assignment 

- δi:Dom(Par(Di))→Dom(Di)
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Chills

Fever
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δBT(c,f)=bt
δBT(c,~f)=~bt
δBT(~c,f)=bt
δBT(~c,~f)=~bt



Value of a Policy
• The value of a policy δ is the expected utility 

given that decision nodes are executed 
according to δ

• Given assignment x to random variables X, 
let δ(x) be the assignment to decision 
variables dictated by δ

- Value of δ
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EU(δ)=∑xP(x,δ(x))U(x,δ(x))



Optimal Policy

• An optimal policy δ* is such that 
EU(δ*)≥EU(δ) for all δ

• We can use dynamic programming to 
avoid enumerating all possible policies

• We can also use the BN structure and 
Variable Elimination to aid the 
computation
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Computing the Optimal Policy

• Work backwards as follows

- Compute optimal policy for Drug
- For each asst to parents (C,F,BT,TR) and for each decision value (D = 

md,fd,none), compute the expected value of choosing that value of 
D 

- Set policy choice for each value of parents to be the value of D that 
has max value
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Computing the Optimal Policy

• Next compute policy for BT, given policy 
δD(C,F,BT,TR) just computed

- Since δD is fixed, we treat D as a random variable 
with deterministic probabilities

- Solve for BT just like you did for D
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Computing the Optimal Policy

• How do we compute these expected 
values?
– Suppose we have asst <c,f,bt,pos> to parents of Drug
– We want to compute EU of deciding to set Drug = md
– We can run variable elimination!
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Computing the Optimal Policy

• Treat C, F, BT, Tr, Dr as evidence

- This reduces the factors

- Eliminate remaining variables (Dis)

- Left with factor U()=ΣDis P(Dis | c,f,bt,pos,md)U(Dis,md,bt)

• We now know EU of doing Dr=md when  c,f,bt,pos
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Computing Expected Utilities

• Computing expected utilities with BNs is 
straightforward

• Utility nodes are just factors that can be dealt 
with using variable elimination
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U

C

B

A

EU = ΣA,B,C P(A,B,C) U(B,C)

       = ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)



Optimizing Policies: Key Points

• If decision node D has no decisions that follow it, we 
can find its policy by instantiating its parents and 
computing the expected utility for each decision 
given parents

- No-forgetting means that all other decision are instantiated

- Easy to compute the expected utility using VE

- Number of computations is large
- We run expected utility calculations for each parent instantiation and each decision 

instantiation

- Policy: Max decision for each parent instantiation
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Optimizing Policies: Key points

• When node D is optimized, can be 
treated as a random variable

• If we optimize from the last decision to 
the first, at each point we can optimize 
a single decision by simple VE

- Why? Its successor decisions are simply 
random variables in the BN
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Notes
• Commonly used by decision analysts to help 

structure decision problems

• Much work put into computationally effective 
techniques to solve them

- Common trick: replace decision nodes with 
random variables at the outset and solve a plain 
BN

• Complexity is much greater than BN 
inference
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Decision Trees and Decision 
Networks

• It is possible to build a decision tree from a 
decision network

- Order decisions as in the network

- Ensure that observed chance nodes appear before 
decisions that use them

- Label leaves with utilities dictated from utility nodes

- Assign probabilities to outcomes using conditional 
probabilities of outcomes given  observed variables 
and decisions on the branch so far
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Decision Tree for Medical 
Network
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Example: Decision Network

• You want to buy a used car, but there is some chance it 
is a “lemon” (i.e. it breaks down often). Before deciding 
to buy it, you can take it to a mechanic for an inspection. 
S/he will give you a report, labelling the car as either 
“good”  or “bad”. A good report is positively correlated 
with the car not being a lemon while a bad report is 
positively correlated with the car being a lemon

• The report costs $50. You could risk it and buy the car 
with no report.

• Owning a good car is better than no car, which is better 
than owning a lemon.
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Example
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Lemon

Report

Inspect Buy

U
 b   l   -600
 b ~l   1000
~b l    -300
~b~l   -300

Utility

-50 if
inspect

         g      b     n

 l  i   0.2   0.8   0
~l i   0.9   0.1    0
l ~i    0      0     1
~l ~i  0      0     1

Rep: good,bad,none

 l     ~l
0.5 0.5



Value of Information
• Claim: Optimal policy is “Inspect car, buy if the report 

is good” (EU=205)

- Note that the EU of inspecting the car and buying if you get 
a good report is 255 minus the cost of the inspection (50)

• At what point would you no longer be interested in 
doing the inspection?

- Find V(I) such that 255-V(I)≤EU(~i)=200

• The expected value of information associated with 
the inspection is $55

- You should be willing to pay up to $55 for the inspection
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Value of Information

• Information has value

- To the extent it is likely to cause a change of 
plan

- To the extent that the new plan will be 
significantly better than the old plan

• The value of information is non-negative

- This is true for any decision-theoretic agent
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Summary

• Definition of a Decision Network

• Definition of an Optimal Policy

• Computing Optimal Policies

• Relationship between DN and DT

• Value of Information
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