Introduction to Decision Making

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Utility Theory
- Decision Trees

Decision Making Under Uncertainty

- I give a robot a planning problem: " I want coffee"
- But the coffee maker is broken: Robot reports "No plan!"

?

Decision Making Under Uncertainty

- I want more robust behavior
- I want my robot to know what to do when my primary goal is not satisfied
- Provide it with some indication of my preferences over alternatives
- e.g. coffee better than tea, tea better than water, water better than nothing,...

Decision Making Under Uncertainty

- But it is more complicated than that
- It could wait 45 minutes for the coffee maker to be fixed
- What is better?
- Tea now?
- Coffee in 45 minutes?

Preferences

- A preference ordering \approx is a ranking over all possible states of the world s
- These could be outcomes of actions, truth assignments, states in a search problem, etc
- $s \geqslant t$ state s is at least as good as state t
- $s>t$: state s is strictly preferred to state t
- $\mathrm{s} \sim \mathrm{t}$: agent is ambivalent between states s and t

Preferences

- If an agent's actions are deterministic, then we know what states will occur
- If an agent's actions are not deterministic, then we represent this by lotteries
- Probability distribution over outcomes
- Lottery $L=\left[p_{1}, s_{1} ; p_{2}, s_{2} ; \ldots ; p_{n}, s_{n}\right]$
- s_{1} occurs with probability p_{1}, s_{2} occurs with probability p_{2}, \ldots

Axioms

- Orderability: Given 2 states A and B
- $\quad(A \approx B) \vee(B \approx A) \vee(A \sim B)$
- Transitivity: Given 3 states A, B, C
- $\quad(A \approx B) \wedge(B \geqslant C) \rightarrow(A \approx C)$
- Continuity:
- $A \approx B \approx C \rightarrow$ Exists $p,[p, A ;(1-p), C] \sim B$
- Substitutability
- $\quad A \sim B \rightarrow[p, A ; 1-p, C] \sim[p, B, 1-p, C]$
- Monotonicity:
- $\quad(A \approx B) \rightarrow(p \geq q \leftrightarrow[p, A ; 1-p, B] \approx[q, A ; 1-q, B]$
- Decomposability
- $\quad[p, A ; 1-p[q, B ; 1-q, C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]$

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements"
- It is a weak ordering
- Example: Why transitivity?
- Without transitivity, I can construct a "Money pump"

Money Pump

$A>B>C>A$

Assume that agent currently has item A. We offer to sell it item C for some small amount. Since $C>A$ it accepts. Then sell it B. Since $B>A$ it accepts. Sell it A. Since $A>B$ it accepts....

Decision Problem: Certainty

- A decision problem under certainty is <D, S, f, $\approx>$ where
- D is a set of decisions
- S is a set of outcomes or states
- f is an outcome function $f: D \rightarrow S$
- \geq is a preference ordering over S
- A solution to a decision problem is any d^{*} in D such that $f\left(d^{*}\right) \geq f(d)$ for all d in D

Computational Issues

- At some level, a solution to a decision problem is trivial
- But decisions and outcome functions are rarely specified explicitly
- For example: In search you construct the set of decisions by exploring search paths
- Do not know the outcomes in advance

$$
\begin{gathered}
\text { Preferences } \\
c, b, b c \\
> \\
c, b, \sim b c \\
> \\
c, \sim b, \sim b c \\
> \\
c, \sim b, b c
\end{gathered}
$$

Decision Making Under Uncertainty

- Suppose actions do not have deterministic outcomes
- Example: When the robot pours coffee, 20% of the time it spills it, making a mess
- Preferences: c,~mess>~c,~mess>~c, mess
- What should your robot do?
- Decision getcoffee leads to a good outcome and a bad outcome with some probability
- Decision donothing leads to a medium outcome

- Rather than just ranking outcomes, we need to quantify our degree of preference
- How much more we prefer one outcome to another (e.g c to ~mess)
- A utility function $\mathrm{U}: \mathrm{S} \rightarrow \mathbf{R}$ associates a real-valued utility to each outcome
- Utility measures your degree of preference for s
- U induces a preference ordering $\geqslant u$ over S where $s \approx u t$ if and only if $U(s) \geq U(t)$

Expected Utility

- Under conditions of uncertainty, decision d induces a distribution over possible outcomes
- $\mathrm{Pd}(\mathrm{s})$ is the probability of outcome s under decision d
- The expected utility of decision d is $\mathrm{EU}(\mathrm{d})=\sum_{\mathrm{s} \text { in } \mathrm{s}} \mathrm{P}_{\mathrm{d}}(\mathrm{s}) \mathrm{U}(\mathrm{s})$

Example

- When my robot pours coffee, it makes a mess 20% of the time
- If $U(\mathrm{c}, \sim \mathrm{ms})=10, \mathrm{U}(\sim \mathrm{c}, \sim \mathrm{ms})=5, \mathrm{U}(\sim \mathrm{c}, \mathrm{ms})=0$ then
- EU(getcoffee)=(0.8)10+(0.2)0=8
- EU(donothing)=5
- If $U(c, \sim m s)=10, U(\sim c, \sim m s)=9, U(\sim c, m s)=0$ then
- EU(getcoffee)=8
- EU(donothing)=9

Maximum Expected Utility Principle

- Principle of Maximum Expected Utility
- The optimal decision under conditions of uncertainty is that with the greatest expected utility
- Robot example:
- First case: optimal decision is getcoffee
- Second case: optimal decision is donothing

Decision Problem: Uncertainty

- A decision problem under uncertainty is
- Set of decisions D
- Set of outcomes S
- Outcome function $\mathrm{P}: \mathrm{D} \rightarrow \Delta(\mathrm{S})$
- $\quad \Delta(S)$ is the set of distributions over S
- Utility function U over S
- A solution is any d^{*} in D such that $E U\left(\mathrm{~d}^{*}\right) \geq E U(d)$ for all d in D

Notes: Expected Utility

- This viewpoint accounts for
- Uncertainty in action outcomes
- Uncertainty in state of knowledge
- Any combination of the two

Stochastic actions

Uncertain knowledge

Notes: Expected Utility

- Why Maximum Expected Utility?
- Where do these utilities come from?
- Preference elicitation

Notes: Expected Utility

- Utility functions need not be unique
- If you multiply U by a positive constant, all decisions have the same relative utility
- If you add a constant to U, then the same thing is true
- U is unique up to a positive affine transformation

$$
\begin{aligned}
& \text { If } \mathrm{d}^{*}=\operatorname{argmax} \sum_{\mathrm{d}} \operatorname{Pr}(\mathrm{~d}) \mathrm{U}(\mathrm{~d}) \\
& \text { then } \\
& \mathrm{d}^{*}=\operatorname{argmax} \sum_{\mathrm{d}} \operatorname{Pr}(\mathrm{~d})[\mathrm{aU}(\mathrm{~d})+\mathrm{b}] \\
& \mathrm{a}>0
\end{aligned}
$$

What are the Complications?

- Outcome space can be large
- State space can be huge
- Do not want to spell out distributions explicitly
- Solution: Use Bayes Nets (or related Influence diagrams)
- Decision space is large
- Usually decisions are not one-shot
- \quad Sequential choice
- If we treat each plan as a distinct decision, then the space is too large to handle directly
- Solution: Use dynamic programming to construct optimal plans

Simple Example

- Two actions: a, b
- That is, either [a,a], [a,b], [b,a], [b,b]
- We can execute two actions in sequence
- Actions are stochastic: action a induces distribution $\mathrm{P}_{\mathrm{a}}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{s}_{\mathrm{j}}\right)$ over states
- $\mathrm{Pa}_{\mathrm{a}}\left(\mathrm{s}_{2} \mid \mathrm{s}_{1}\right)=0.9$ means that the prob. of moving to state s2 when taking action a in state s 1 is 0.9
- Similar distribution for action b
- How good is a particular plan?

Distributions for Action Sequences

How Good is a Sequence?

- We associate utilities with the final outcome
- How good is it to end up at $\mathrm{S}_{4}, \mathrm{~S}_{5}, \mathrm{~S}_{6}, \ldots$
- Now we have:
- $E U(\mathrm{aa})=.45 \mathrm{U}\left(\mathrm{s}_{4}\right)+.45 \mathrm{U}\left(\mathrm{S}_{5}\right)+.02 \mathrm{U}\left(\mathrm{s}_{8}\right)+.08\left(\mathrm{~s}_{9}\right)$
- $E U(\mathrm{ab})=.54 \mathrm{U}\left(\mathrm{s}_{6}\right)+.36 \mathrm{U}\left(\mathrm{s}_{7}\right)+.07 \mathrm{U}\left(\mathrm{s}_{10}\right)+.03 \mathrm{U}\left(\mathrm{s}_{11}\right)$
- etc

Utilities for Action Sequences

Looks a lot like a game tree, but with chance nodes instead of min nodes. (We average instead of minimizing)

Why Sequences Might Be Bad

- Suppose we do a first; we could reach s_{2} or s_{3}
- At s2, assume: $\mathrm{EU}(\mathrm{a})=.5 \mathrm{U}(\mathrm{s} 4)+.5 \mathrm{U}(\mathrm{s} 5)>E \mathrm{E}(\mathrm{b})=.6 \mathrm{U}(\mathrm{s} 6)+.4 \mathrm{U}(\mathrm{s} 7)$
- \quad At s 3 assume: $\mathrm{EU}(\mathrm{a})=.2 \mathrm{U}(\mathrm{s} 8)+.8 \mathrm{U}(\mathrm{s} 9)<\mathrm{EU}(\mathrm{b})=.7 \mathrm{U}(\mathrm{s} 10)+.3 \mathrm{U}(\mathrm{s} 11)$
- After doing a first, we want to do a next if we reach s_{2}, but we want to be b second if we reach s_{3}

Policies

- We want to consider policies, not sequences of actions (plans)
- We have 8 policies for the decision tree:

$$
\begin{aligned}
& \text { [a; if s2 a, if s3 a] [b; if s12 a, if s13 a] } \\
& \text { [a; if s2 a, if s3 b] [b; if s12 a, if s13 b] } \\
& \text { [a; if s2 b, is s3 a] [b; if s12 b, if s13 a] } \\
& \text { [a; if s2 b, if s3 b] [b; if s12 b. if s13 b] }
\end{aligned}
$$

- We have 4 plans
- [a;a], [a;b], [b;a], [b;b]
- Note: each plans corresponds to a policy so we can only gain by allowing the decision maker to use policies

Evaluating Policies

- Number of plans (sequences) of length k
- Exponential in $\mathrm{k}:|\mathrm{Al}|^{k}$ if A is the action set
- Number of policies is much larger
- If A is the action set and O is the outcome set, then we have (IAlIOI) ${ }^{k}$ policies
- Fortunately, dynamic programming can be used
- Suppose EU(a)>EU(b) at s2
- Never consider a policy that does anything else at s2
- How to do this?
- Back values up the tree much like minimax search

Decision Trees

- Squares denote choice nodes (decision nodes)
- Circles denote chance nodes
- Uncertainty regarding action effects

- Terminal nodes labelled with utilities

Evaluating Decision Trees

- Procedure is exactly like game trees except
- "MIN" is "nature" who chooses outcomes at chance nodes with specified probability
- Average instead of minimize
- Back values up the tree
- $\mathrm{U}(\mathrm{t})$ defined for terminal nodes
- $U(n)=a v g\{U(c): c$ a child of $n\}$ if n is chance node
- $U(n)=\max \{U(c: c$ is child of $n\}$ if n is a choice node

Evaluating a Decision Tree

Decision Tree Policies

- Note that we don't just compute values, but policies for the tree
- A policy assigns a decision to each choice node in the tree
- Some policies can't be distinguished in terms of their expected values
- Example: If a policy chooses a at $s 1$, the choice at s 4 does not matter because it won't be reached
- Two policies are implementationally indistinguishable if they disagree only on unreachable nodes

Computational Issues

- Savings compared to explicit policy evaluation is substantial
- Let $n=|A|$ and $m=|O|$
- Evaluate only $\mathrm{O}\left((\mathrm{nm})^{\mathrm{d}}\right)$ nodes in tree of depth d
- Total computational cost is thus $\mathrm{O}\left((\mathrm{nm})^{\mathrm{d}}\right)$
- Note that there are also (nm) ${ }^{d}$ policies
- Evaluating a single policy requires $O\left(\mathrm{~m}^{\mathrm{d}}\right)$
- Total computation for explicitly evaluating each policy would be $O\left(n^{d} m^{2 d}\right)$

Computational Issues

- Tree size: Grows exponentially with depth
- Possible solutions: Bounded lookahead, heuristic search procedures
- Full Observability: We must know the initial state and outcome of each action
- Possible solutions: Handcrafted decision trees, more general policies based on observations

Other Issues

- Specification: Suppose each state is an assignment of values to variables
- Representing action probability distributions is complex
- Large branching factor
- Possible solutions:
- Bayes Net representations
- Solve problems using decision networks

Key Assumption: Observability

- Full observability: We must know the initial state and outcome of each action
- To implement a policy we must be able to resolve the uncertainty of any chance node that is followed by a decision node
- e.g. After doing a at s1, we must know which of the outcomes (s2 or s3) was realized so that we know what action to take next
- Note: We don't need to resolve the uncertainty at a chance node if no decision follows it

Partial Observability

- If we push (unobservable) uncertainty to the "end of the tree" then we can evaluate the tree
- often used in handcrafted decision trees

Here we push uncertainty re: disease to end of tree. All chance outcomes preceding decision are fully observable.

Large State Spaces (Variables)

- To represent outcomes of actions or decisions, we need to specify distributions
- $P(s l d)$: probability of outcome s given decision d
- P(sla,s'): probability of state s given action a was taken in state s'
- Note that the state space is exponential in the number of variables
- Spelling out distributions explicitly is intractable
- Bayes Nets can be used to represent actions
- Joint distribution over variables, conditioned on action/decision and previous state

Example Action Using a Dynamic Bayes Net

Deliver Coffee action

M - mail waiting	C - Kate has coffee
T - lab tidy	R - robot has coffee
L - robot located in Kate's office	

$f_{J}\left(T_{t}, T_{++1}\right)$

Dynamic BN Action Representation

- Dynamic Bayes Nets (DBN)
- List all state variables for time t (pre-action)
- List all state variables for time $\mathrm{t}+1$ (post-action)
- Indicate parents of all $t+1$ variables
- Can include time t and $t+1$ variables, but network must be acyclic
- Specify CPT for each time $t+1$ variable
- Note: Generally no prior given for time t variables
- We are generally interested in conditional distributions over post-action states given pre-action states
- Time t variables are instantiated as "evidence" when using a DBN (generally)

Example

Throw rock at window action

Throwing rock has certain probability of breaking window and setting off alarm; but whether alarm is triggered depends on whether rock actually broke the window.

Use of BN Action Representation

- DBNs: Actions concisely, naturally specified
- Can be used in two ways
- To generate "expectimax" search tree to solve decision problems
- Used directly in stochastic decision making algorithms
- First use does not buy us that much computationally when solving decision problems
- Second use allows us to compute expected utilities without enumerating the outcome space (tree)
- Decision networks (next week)

Summary

- Basic properties of preferences
- Relationship between preferences and utilities
- Principle of Maximum Expected Utility
- Decision Trees

