# Introduction to Decision Making

CS 486/686: Introduction to Artificial Intelligence Fall 2013

### Outline

- Utility Theory
- Decision Trees

- I give a robot a planning problem: "I want coffee"
  - But the coffee maker is broken: Robot reports "No plan!"





- I want more robust behavior
- I want my robot to know what to do when my primary goal is not satisfied
  - Provide it with some indication of my preferences over alternatives
    - e.g. coffee better than tea, tea better than water, water better than nothing,...



- But it is more complicated than that
  - It could wait 45 minutes for the coffee maker to be fixed
- What is better?
  - Tea now?
  - Coffee in 45 minutes?

### Preferences

- A preference ordering ≿ is a ranking over all possible states of the world s
- These could be outcomes of actions, truth assignments, states in a search problem, etc
  - s ≿ t: state s is **at least as good as** state t
  - s > t: state s is **strictly preferred to** state t
  - s ~ t: agent is ambivalent between states s and

### Preferences

- If an agent's actions are deterministic, then we know what states will occur
- If an agent's actions are not deterministic, then we represent this by lotteries
  - Probability distribution over outcomes
  - Lottery L= $[p_1, s_1; p_2, s_2; ...; p_n, s_n]$ 
    - $s_1$  occurs with probability  $p_1$ ,  $s_2$  occurs with probability  $p_2$ , ...

### Axioms

- Orderability: Given 2 states A and B
  - (A≿B)∨(B≿A)∨(A~B)
- Transitivity: Given 3 states A, B, C
  - $(A \ge B) \land (B \ge C) \rightarrow (A \ge C)$
- Continuity:
  - A≿B≿C→Exists p, [p,A;(1-p),C]~B
- Substitutability
  - A~B→[p,A;1-p,C]~[p,B,1-p,C]
- Monotonicity:
  - (A≿B)→(p≥q↔[p,A;1-p,B]≿[q,A;1-q,B]
- Decomposability
  - [p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]

#### Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements"
  - It is a weak ordering
- Example: Why transitivity?
  - Without transitivity, I can construct a "Money pump"

# Money Pump

#### A>B>C>A

Assume that agent currently has item A. We offer to sell it item C for some small amount. Since C>A it accepts. Then sell it B. Since B>A it accepts. Sell it A. Since A>B it accepts....



### **Decision Problem: Certainty**

- A decision problem under certainty is <D,</li>
   S, f, ≥> where
  - D is a set of decisions
  - S is a set of outcomes or states
  - f is an outcome function  $f:D \rightarrow S$
  - $\approx$  is a preference ordering over S
- A solution to a decision problem is any d\* in D such that f(d\*)≥f(d) for all d in D

# **Computational Issues**

- At some level, a solution to a decision problem is trivial
  - But decisions and outcome functions are rarely specified explicitly
  - For example: In search you construct the set of decisions by exploring search paths
    - Do not know the outcomes in advance



- Suppose actions do not have deterministic outcomes
  - Example: When the robot pours coffee, 20% of the time it spills it, making a mess
  - Preferences: c,~mess>~c,~mess>~c, mess
- What should your robot do?
  - Decision *getcoffee* leads to a good outcome and a bad outcome with some probability
  - Decision *donothing* leads to a medium outcome



### Utilities

- Rather than just ranking outcomes, we need to quantify our degree of preference
  - How much more we prefer one outcome to another (e.g c to ~mess)
- A utility function U:S→R associates a real-valued utility to each outcome
  - Utility measures your degree of preference for s
- U induces a preference ordering ≿∪ over S where s≿∪t if and only if U(s)≥U(t)

# **Expected Utility**

- Under conditions of uncertainty, decision d induces a distribution over possible outcomes
  - Pd(s) is the probability of outcome s under decision d
- The **expected utility** of decision d is  $EU(d) = \sum_{s \text{ in } S} P_d(s)U(s)$

## Example



- When my robot pours coffee, it makes a mess 20% of the time
- If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then
  - EU(*getcoffee*)=(0.8)10+(0.2)0=8
  - EU(*donothing*)=5
- If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then
  - EU(*getcoffee*)=8
  - EU(donothing)=9

#### Maximum Expected Utility Principle

- Principle of Maximum Expected Utility
  - The optimal decision under conditions of uncertainty is that with the greatest expected utility
- Robot example:
  - First case: optimal decision is *getcoffee*
  - Second case: optimal decision is *donothing*

#### **Decision Problem: Uncertainty**

- A decision problem under uncertainty is
  - Set of decisions D
  - Set of outcomes S
  - Outcome function  $P:D \rightarrow \Delta(S)$ 
    - Δ(S) is the set of distributions over S
  - Utility function U over S
- A solution is any d\* in D such that EU(d\*)≥EU(d) for all d in D

# Notes: Expected Utility

- This viewpoint accounts for
  - Uncertainty in action outcomes
  - Uncertainty in state of knowledge
  - Any combination of the two



0.7 t

t2

0.3

0.7 w

0.3 w2

# Notes: Expected Utility

• Why Maximum Expected Utility?

- Where do these utilities come from?
  - Preference elicitation

# Notes: Expected Utility

- Utility functions need not be unique
  - If you multiply U by a positive constant, all decisions have the same relative utility
  - If you add a constant to U, then the same thing is true
- U is unique up to a positive affine transformation

```
If d^*=argmax \sum_d Pr(d)U(d)
then
d^*=argmax \sum_d Pr(d)[aU(d)+b]
a>0
```

#### What are the Complications?

- Outcome space can be large
  - State space can be huge
  - Do not want to spell out distributions explicitly
  - Solution: Use Bayes Nets (or related Influence diagrams)
- Decision space is large
  - Usually decisions are not one-shot
    - Sequential choice
    - If we treat each plan as a distinct decision, then the space is too large to handle directly
  - Solution: Use dynamic programming to construct optimal plans

# Simple Example

- Two actions: a,b
  - That is, either [a,a], [a,b], [b,a], [b,b]
- We can execute two actions in sequence
- Actions are stochastic: action a induces distribution P<sub>a</sub>(s<sub>i</sub>ls<sub>j</sub>) over states
  - P<sub>a</sub>(s<sub>2</sub>ls<sub>1</sub>)=0.9 means that the prob. of moving to state s2 when taking action a in state s1 is 0.9
  - Similar distribution for action b
- How good is a particular plan?

#### Distributions for Action Sequences



### How Good is a Sequence?

- We associate utilities with the final outcome
  - How good is it to end up at  $s_4$ ,  $s_5$ ,  $s_6$ , ...
- Now we have:
  - $EU(aa)=.45U(s_4)+.45U(s_5)+.02U(s_8)+.08(s_9)$
  - $EU(ab)=.54U(s_6)+.36U(s_7)+.07U(s_{10})+.03U(s_{11})$
  - etc

#### **Utilities for Action Sequences**



#### Why Sequences Might Be Bad



- Suppose we do *a* first; we could reach  $s_2$  or  $s_3$ 
  - At s2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)
  - At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)</p>
- After doing a first, we want to do a next if we reach s<sub>2</sub>, but we want to be b second if we reach s<sub>3</sub>

### Policies

- We want to consider **policies**, not sequences of actions (plans)
- We have 8 policies for the decision tree:

| [a; if s2 a, if s3 a] | [b; if s12 a, if s13 a] |
|-----------------------|-------------------------|
| [a; if s2 a, if s3 b] | [b; if s12 a, if s13 b] |
| [a; if s2 b, is s3 a] | [b; if s12 b, if s13 a] |
| [a; if s2 b, if s3 b] | [b; if s12 b. if s13 b] |

- We have 4 plans
  - [a;a], [a;b], [b;a], [b;b]
  - Note: each plans corresponds to a policy so we can only gain by allowing the decision maker to use policies

# **Evaluating Policies**

- Number of plans (sequences) of length k
  - Exponential in k: IAI<sup>k</sup> if A is the action set
- Number of policies is much larger
  - If A is the action set and O is the outcome set, then we have (IAIIOI)<sup>k</sup> policies
- Fortunately, dynamic programming can be used
  - Suppose EU(a)>EU(b) at s2
  - Never consider a policy that does anything else at s2
- How to do this?
  - Back values up the tree much like minimax search

### **Decision Trees**

- Squares denote
   choice nodes
   (decision nodes)
- Circles denote **chance** nodes
- $3^{\circ}$   $3^{\circ}$   $3^{\circ}$   $3^{\circ}$   $3^{\circ}$   $3^{\circ}$

- Uncertainty regarding action effects
- Terminal nodes labelled with **utilities**

### **Evaluating Decision Trees**

- Procedure is exactly like game trees except
  - "MIN" is "nature" who chooses outcomes at chance nodes with specified probability
    - Average instead of minimize
- Back values up the tree
  - U(t) defined for terminal nodes
  - U(n)=avg {U(c):c a child of n} if n is chance node
  - U(n)=max{U(c:c is child of n} if n is a choice node

#### **Evaluating a Decision Tree**



## **Decision Tree Policies**

- Note that we don't just compute values, but policies for the tree
- A policy assigns a decision to each choice node in the tree
- Some policies can't be distinguished in terms of their expected values
  - Example: If a policy chooses a at s1, the choice at s4 does not matter because it won't be reached
  - Two policies are implementationally indistinguishable if they disagree only on unreachable nodes



# **Computational Issues**

- Savings compared to explicit policy evaluation is substantial
- Let n=IAI and m=IOI
  - Evaluate only O((nm)<sup>d</sup>) nodes in tree of depth d
    - Total computational cost is thus O((nm)<sup>d</sup>)
  - Note that there are also (nm)<sup>d</sup> policies
    - Evaluating a single policy requires O(m<sup>d</sup>)
    - Total computation for explicitly evaluating each policy would be O(n<sup>d</sup>m<sup>2d</sup>)

# **Computational Issues**

- Tree size: Grows exponentially with depth
  - Possible solutions: Bounded lookahead, heuristic search procedures
- Full Observability: We must know the initial state and outcome of each action
  - Possible solutions: Handcrafted decision trees, more general policies based on observations

## Other Issues

- Specification: Suppose each state is an assignment of values to variables
  - Representing action probability distributions is complex
    - Large branching factor
- Possible solutions:
  - Bayes Net representations
  - Solve problems using decision networks

#### Key Assumption: Observability

- Full observability: We must know the initial state and outcome of each action
  - To implement a policy we must be able to resolve the uncertainty of any chance node that is followed by a decision node
    - e.g. After doing a at s1, we must know which of the outcomes (s2 or s3) was realized so that we know what action to take next
  - Note: We don't need to resolve the uncertainty at a chance node if no decision follows it

# Partial Observability



#### Large State Spaces (Variables)

- To represent outcomes of actions or decisions, we need to specify distributions
  - P(sld): probability of outcome s given decision d
  - P(sla,s'): probability of state s given action a was taken in state s'
- Note that the state space is exponential in the number of variables
  - Spelling out distributions explicitly is intractable
- Bayes Nets can be used to represent actions
  - Joint distribution over variables, conditioned on action/decision and previous state

#### Example Action Using a Dynamic Bayes Net



#### Dynamic BN Action Representation

- Dynamic Bayes Nets (DBN)
  - List all state variables for time t (pre-action)
  - List all state variables for time t+1 (post-action)
  - Indicate parents of all t+1 variables
    - Can include time t and t+1 variables, but network must be acyclic
  - Specify CPT for each time t+1 variable
- Note: Generally **no prior given** for time t variables
  - We are generally interested in conditional distributions over post-action states given pre-action states
  - Time t variables are instantiated as "evidence" when using a DBN (generally)

### Example

#### Throw rock at window action



Throwing rock has certain probability of breaking window and setting off alarm; but whether alarm is triggered depends on whether rock actually broke the window.

#### Use of BN Action Representation

- DBNs: Actions concisely, naturally specified
- Can be used in two ways
  - To generate "expectimax" search tree to solve decision problems
  - Used directly in stochastic decision making algorithms
- First use does not buy us that much computationally when solving decision problems
- Second use allows us to compute expected utilities without enumerating the outcome space (tree)
  - Decision networks (next week)

# Summary

- Basic properties of preferences
- Relationship between preferences and utilities
- Principle of Maximum Expected Utility
- Decision Trees