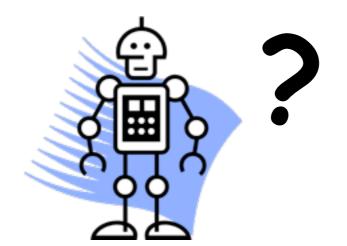
Introduction to Decision Making

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Utility Theory
- Decision Trees

- I give a robot a planning problem: "I want coffee"
 - But the coffee maker is broken: Robot reports "No plan!"



- I want more robust behavior
- I want my robot to know what to do when my primary goal is not satisfied
 - Provide it with some indication of my preferences over alternatives
 - e.g. coffee better than tea, tea better than water, water better than nothing,...

- But it is more complicated than that
 - It could wait 45 minutes for the coffee maker to be fixed
- What is better?
 - Tea now?
 - Coffee in 45 minutes?

Preferences

- A preference ordering ≿ is a ranking over all possible states of the world s
- These could be outcomes of actions, truth assignments, states in a search problem, etc
 - s ≿ t: state s is **at least as good as** state t
 - s > t: state s is **strictly preferred to** state t
 - s ~ t: agent is ambivalent between states s and

Preferences

- If an agent's actions are deterministic, then we know what states will occur
- If an agent's actions are not deterministic, then we represent this by lotteries
 - Probability distribution over outcomes
 - Lottery L= $[p_1, s_1; p_2, s_2; ...; p_n, s_n]$
 - s_1 occurs with probability p_1 , s_2 occurs with probability p_2 , ...

Axioms

- Orderability: Given 2 states A and B
 - (A≿B)∨(B≿A)∨(A~B)
- Transitivity: Given 3 states A, B, C
 - $(A \ge B) \land (B \ge C) \rightarrow (A \ge C)$
- Continuity:
 - A≿B≿C→Exists p, [p,A;(1-p),C]~B
- Substitutability
 - A~B→[p,A;1-p,C]~[p,B,1-p,C]
- Monotonicity:
 - (A≿B)→(p≥q↔[p,A;1-p,B]≿[q,A;1-q,B]
- Decomposability
 - [p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]

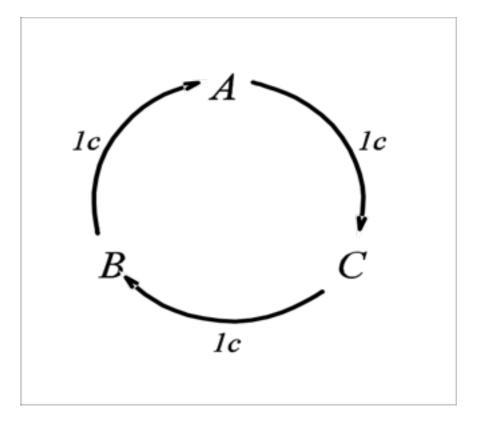
Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements"
 - It is a weak ordering
- Example: Why transitivity?
 - Without transitivity, I can construct a "Money pump"

Money Pump

A>B>C>A

Assume that agent currently has item A. We offer to sell it item C for some small amount. Since C>A it accepts. Then sell it B. Since B>A it accepts. Sell it A. Since A>B it accepts....

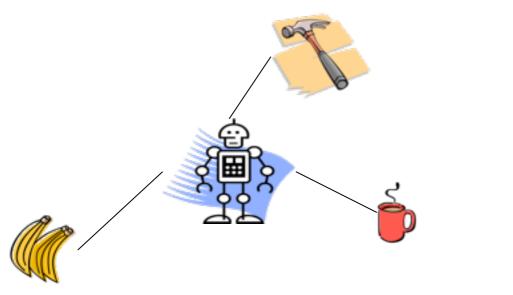


Decision Problem: Certainty

- A decision problem under certainty is <D,
 S, f, ≥> where
 - D is a set of decisions
 - S is a set of outcomes or states
 - f is an outcome function $f:D \rightarrow S$
 - \approx is a preference ordering over S
- A solution to a decision problem is any d* in D such that f(d*)≥f(d) for all d in D

Computational Issues

- At some level, a solution to a decision problem is trivial
 - But decisions and outcome functions are rarely specified explicitly
 - For example: In search you construct the set of decisions by exploring search paths
 - Do not know the outcomes in advance



- Suppose actions do not have deterministic outcomes
 - Example: When the robot pours coffee, 20% of the time it spills it, making a mess
 - Preferences: c,~mess>~c,~mess>~c, mess
- What should your robot do?
 - Decision *getcoffee* leads to a good outcome and a bad outcome with some probability
 - Decision *donothing* leads to a medium outcome

Utilities

- Rather than just ranking outcomes, we need to quantify our degree of preference
 - How much more we prefer one outcome to another (e.g c to ~mess)
- A utility function U:S→R associates a real-valued utility to each outcome
 - Utility measures your degree of preference for s
- U induces a preference ordering ≿∪ over S where s≿∪t if and only if U(s)≥U(t)

Expected Utility

- Under conditions of uncertainty, decision d induces a distribution over possible outcomes
 - Pd(s) is the probability of outcome s under decision d
- The **expected utility** of decision d is $EU(d) = \sum_{s \text{ in } S} P_d(s)U(s)$

Example

- When my robot pours coffee, it makes a mess 20% of the time
- If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then
 - EU(*getcoffee*)=(0.8)10+(0.2)0=8
 - EU(*donothing*)=5
- If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then
 - EU(*getcoffee*)=8
 - EU(donothing)=9

Maximum Expected Utility Principle

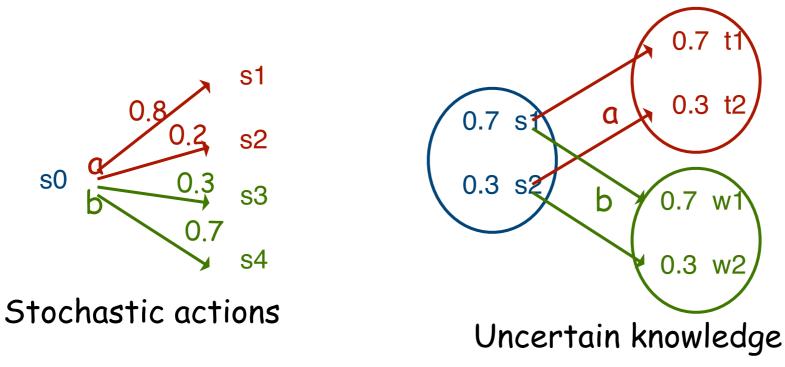
- Principle of Maximum Expected Utility
 - The optimal decision under conditions of uncertainty is that with the greatest expected utility
- Robot example:
 - First case: optimal decision is *getcoffee*
 - Second case: optimal decision is *donothing*

Decision Problem: Uncertainty

- A decision problem under uncertainty is
 - Set of decisions D
 - Set of outcomes S
 - Outcome function $P:D \rightarrow \Delta(S)$
 - Δ(S) is the set of distributions over S
 - Utility function U over S
- A solution is any d* in D such that EU(d*)≥EU(d) for all d in D

Notes: Expected Utility

- This viewpoint accounts for
 - Uncertainty in action outcomes
 - Uncertainty in state of knowledge
 - Any combination of the two



0.7 t

t2

0.3

0.7 w

0.3 w2

Notes: Expected Utility

• Why Maximum Expected Utility?

- Where do these utilities come from?
 - Preference elicitation

Notes: Expected Utility

- Utility functions need not be unique
 - If you multiply U by a positive constant, all decisions have the same relative utility
 - If you add a constant to U, then the same thing is true
- U is unique up to a positive affine transformation

```
If d^*=argmax \sum_d Pr(d)U(d)
then
d^*=argmax \sum_d Pr(d)[aU(d)+b]
a>0
```

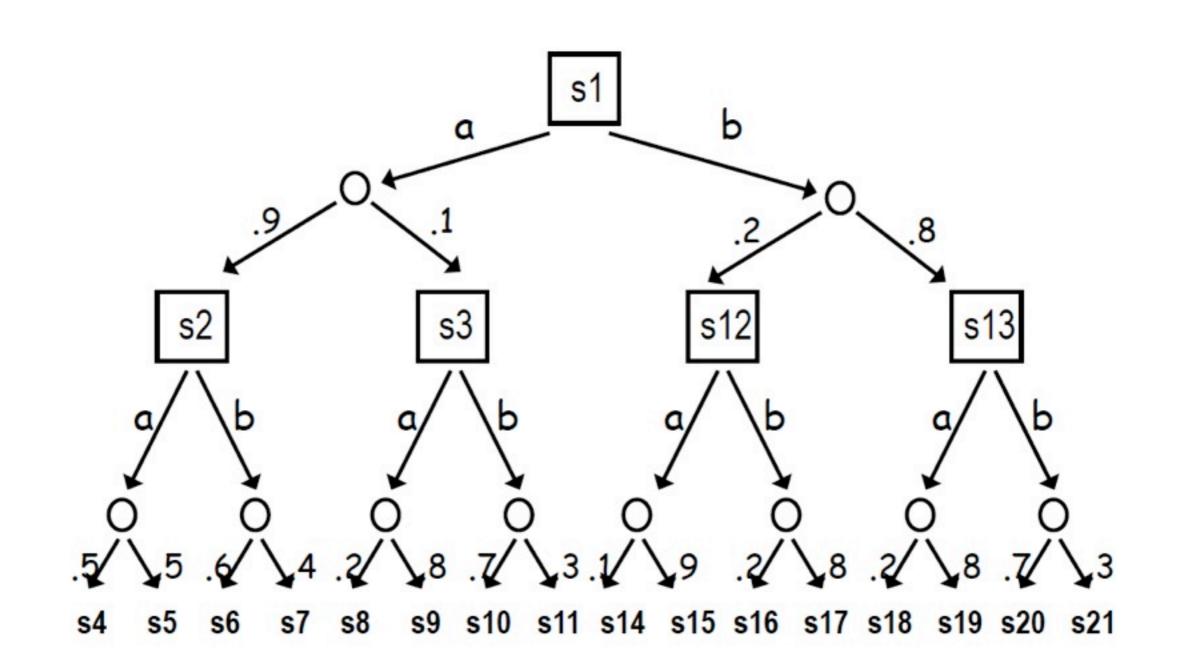
What are the Complications?

- Outcome space can be large
 - State space can be huge
 - Do not want to spell out distributions explicitly
 - Solution: Use Bayes Nets (or related Influence diagrams)
- Decision space is large
 - Usually decisions are not one-shot
 - Sequential choice
 - If we treat each plan as a distinct decision, then the space is too large to handle directly
 - Solution: Use dynamic programming to construct optimal plans

Simple Example

- Two actions: a,b
 - That is, either [a,a], [a,b], [b,a], [b,b]
- We can execute two actions in sequence
- Actions are stochastic: action a induces distribution P_a(s_ils_j) over states
 - P_a(s₂ls₁)=0.9 means that the prob. of moving to state s2 when taking action a in state s1 is 0.9
 - Similar distribution for action b
- How good is a particular plan?

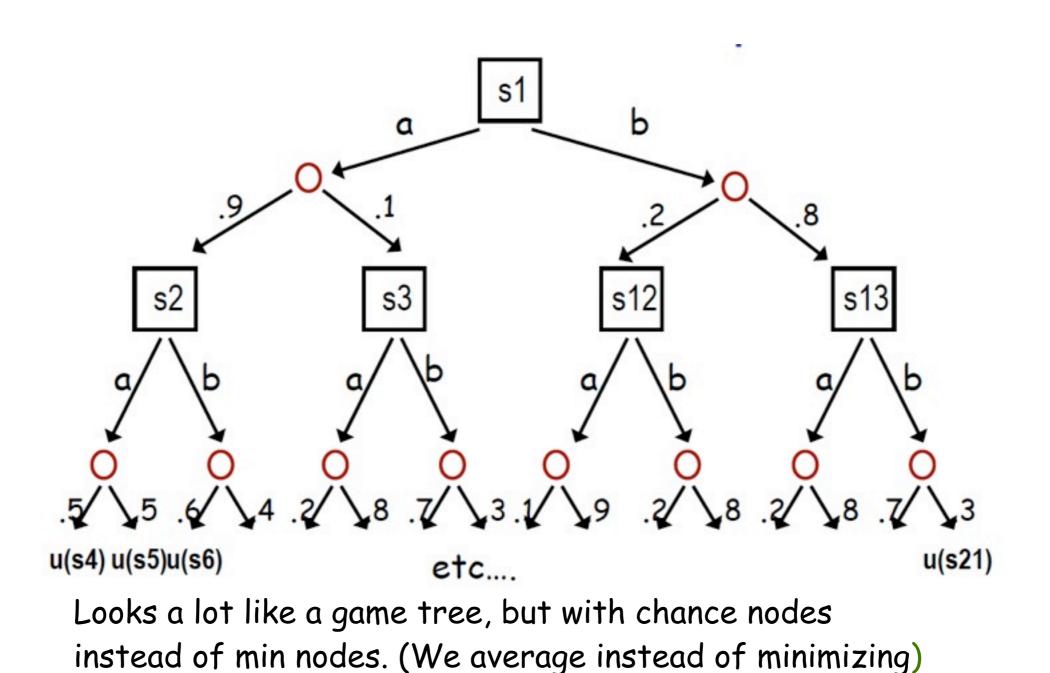
Distributions for Action Sequences



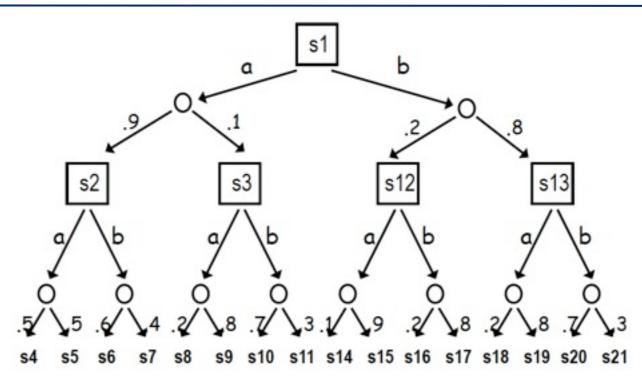
How Good is a Sequence?

- We associate utilities with the final outcome
 - How good is it to end up at s_4 , s_5 , s_6 , ...
- Now we have:
 - $EU(aa)=.45U(s_4)+.45U(s_5)+.02U(s_8)+.08(s_9)$
 - $EU(ab)=.54U(s_6)+.36U(s_7)+.07U(s_{10})+.03U(s_{11})$
 - etc

Utilities for Action Sequences



Why Sequences Might Be Bad



- Suppose we do *a* first; we could reach s_2 or s_3
 - At s2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)
 - At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)</p>
- After doing a first, we want to do a next if we reach s₂, but we want to be b second if we reach s₃

Policies

- We want to consider **policies**, not sequences of actions (plans)
- We have 8 policies for the decision tree:

[a; if s2 a, if s3 a]	[b; if s12 a, if s13 a]
[a; if s2 a, if s3 b]	[b; if s12 a, if s13 b]
[a; if s2 b, is s3 a]	[b; if s12 b, if s13 a]
[a; if s2 b, if s3 b]	[b; if s12 b. if s13 b]

- We have 4 plans
 - [a;a], [a;b], [b;a], [b;b]
 - Note: each plans corresponds to a policy so we can only gain by allowing the decision maker to use policies

Evaluating Policies

- Number of plans (sequences) of length k
 - Exponential in k: IAI^k if A is the action set
- Number of policies is much larger
 - If A is the action set and O is the outcome set, then we have (IAIIOI)^k policies
- Fortunately, dynamic programming can be used
 - Suppose EU(a)>EU(b) at s2
 - Never consider a policy that does anything else at s2
- How to do this?
 - Back values up the tree much like minimax search

Decision Trees

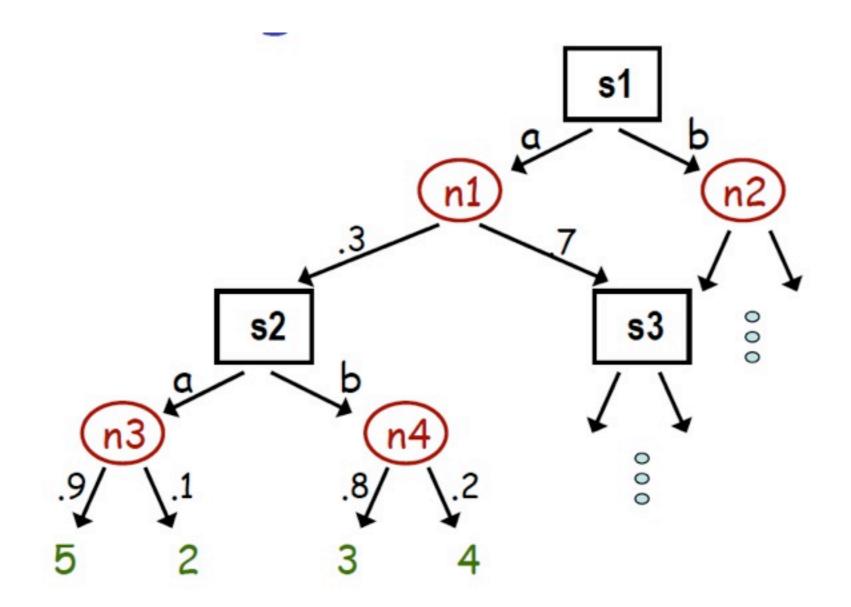
- Squares denote
 choice nodes
 (decision nodes)
- Circles denote **chance** nodes
- 3° 3° 3° 3° 3° 3°

- Uncertainty regarding action effects
- Terminal nodes labelled with **utilities**

Evaluating Decision Trees

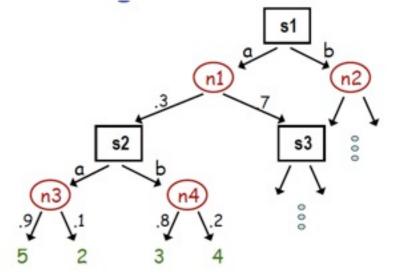
- Procedure is exactly like game trees except
 - "MIN" is "nature" who chooses outcomes at chance nodes with specified probability
 - Average instead of minimize
- Back values up the tree
 - U(t) defined for terminal nodes
 - U(n)=avg {U(c):c a child of n} if n is chance node
 - U(n)=max{U(c:c is child of n} if n is a choice node

Evaluating a Decision Tree



Decision Tree Policies

- Note that we don't just compute values, but policies for the tree
- A policy assigns a decision to each choice node in the tree
- Some policies can't be distinguished in terms of their expected values
 - Example: If a policy chooses a at s1, the choice at s4 does not matter because it won't be reached
 - Two policies are implementationally indistinguishable if they disagree only on unreachable nodes



Computational Issues

- Savings compared to explicit policy evaluation is substantial
- Let n=IAI and m=IOI
 - Evaluate only O((nm)^d) nodes in tree of depth d
 - Total computational cost is thus O((nm)^d)
 - Note that there are also (nm)^d policies
 - Evaluating a single policy requires O(m^d)
 - Total computation for explicitly evaluating each policy would be O(n^dm^{2d})

Computational Issues

- Tree size: Grows exponentially with depth
 - Possible solutions: Bounded lookahead, heuristic search procedures
- Full Observability: We must know the initial state and outcome of each action
 - Possible solutions: Handcrafted decision trees, more general policies based on observations

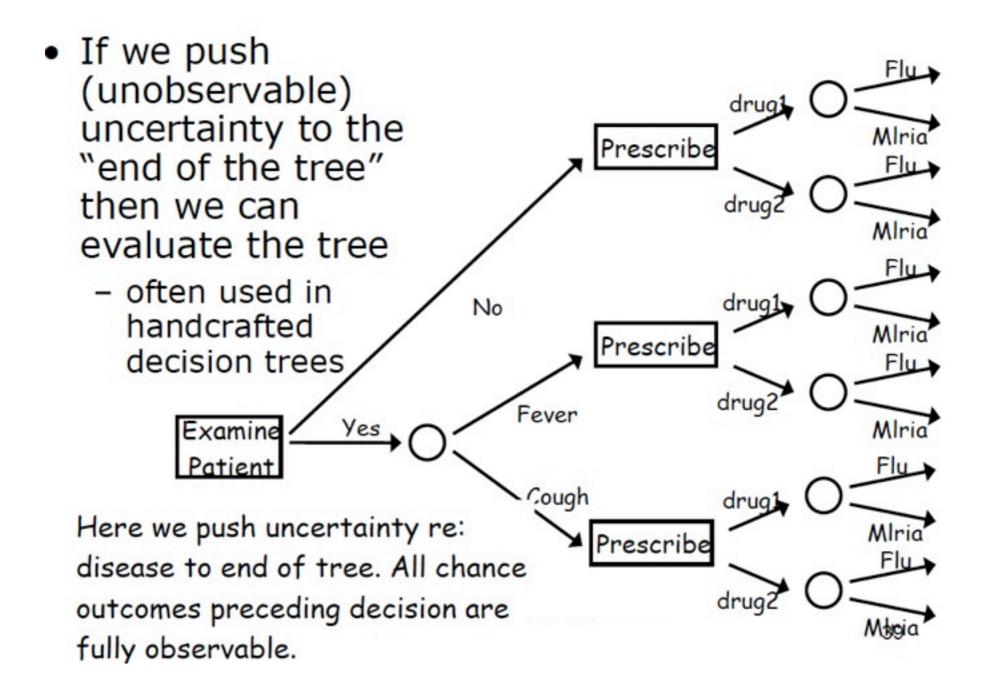
Other Issues

- Specification: Suppose each state is an assignment of values to variables
 - Representing action probability distributions is complex
 - Large branching factor
- Possible solutions:
 - Bayes Net representations
 - Solve problems using decision networks

Key Assumption: Observability

- Full observability: We must know the initial state and outcome of each action
 - To implement a policy we must be able to resolve the uncertainty of any chance node that is followed by a decision node
 - e.g. After doing a at s1, we must know which of the outcomes (s2 or s3) was realized so that we know what action to take next
 - Note: We don't need to resolve the uncertainty at a chance node if no decision follows it

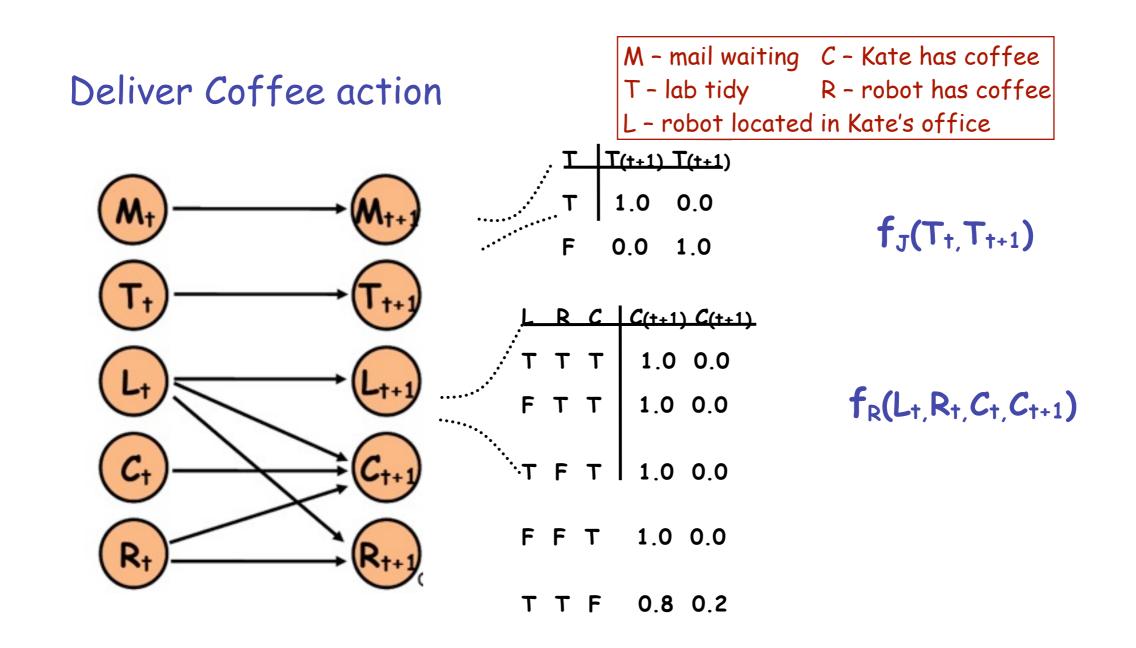
Partial Observability



Large State Spaces (Variables)

- To represent outcomes of actions or decisions, we need to specify distributions
 - P(sld): probability of outcome s given decision d
 - P(sla,s'): probability of state s given action a was taken in state s'
- Note that the state space is exponential in the number of variables
 - Spelling out distributions explicitly is intractable
- Bayes Nets can be used to represent actions
 - Joint distribution over variables, conditioned on action/decision and previous state

Example Action Using a Dynamic Bayes Net

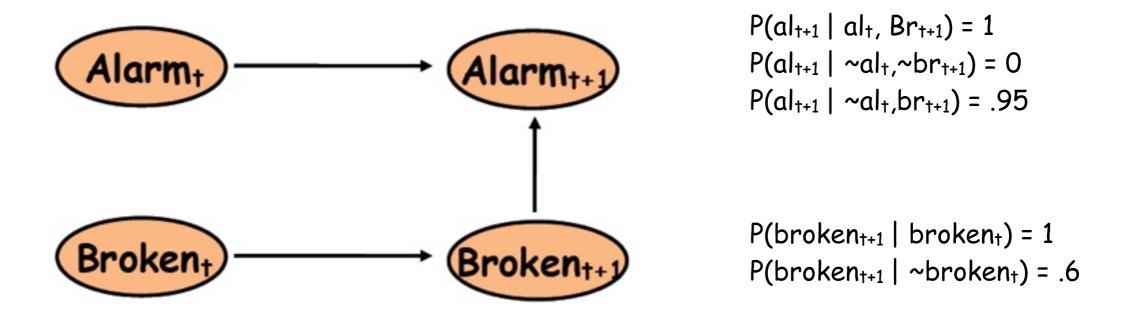


Dynamic BN Action Representation

- Dynamic Bayes Nets (DBN)
 - List all state variables for time t (pre-action)
 - List all state variables for time t+1 (post-action)
 - Indicate parents of all t+1 variables
 - Can include time t and t+1 variables, but network must be acyclic
 - Specify CPT for each time t+1 variable
- Note: Generally **no prior given** for time t variables
 - We are generally interested in conditional distributions over post-action states given pre-action states
 - Time t variables are instantiated as "evidence" when using a DBN (generally)

Example

Throw rock at window action



Throwing rock has certain probability of breaking window and setting off alarm; but whether alarm is triggered depends on whether rock actually broke the window.

Use of BN Action Representation

- DBNs: Actions concisely, naturally specified
- Can be used in two ways
 - To generate "expectimax" search tree to solve decision problems
 - Used directly in stochastic decision making algorithms
- First use does not buy us that much computationally when solving decision problems
- Second use allows us to compute expected utilities without enumerating the outcome space (tree)
 - Decision networks (next week)

Summary

- Basic properties of preferences
- Relationship between preferences and utilities
- Principle of Maximum Expected Utility
- Decision Trees