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Outline

• Utility Theory

• Decision Trees
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Decision Making Under 
Uncertainty

• I give a robot a planning problem: “ I 
want coffee”

- But the coffee maker is broken: Robot 
reports “No plan!”

3

?



Decision Making Under 
Uncertainty

• I want more robust behavior

• I want my robot to know what to do when 
my primary goal is not satisfied

- Provide it with some indication of my 
preferences over alternatives
- e.g. coffee better than tea, tea better than water, water better than 

nothing,...
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Decision Making Under 
Uncertainty

• But it is more complicated than that

- It could wait 45 minutes for the coffee maker 
to be fixed

• What is better?

- Tea now?

- Coffee in 45 minutes?
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Preferences
• A preference ordering ≿ is a ranking over all 

possible states of the world s

• These could be outcomes of actions, truth 
assignments, states in a search problem, etc

- s ≿ t: state s is at least as good as state t

- s > t: state s is strictly preferred to  state t

- s ~ t: agent is ambivalent between states s and 
t
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Preferences

• If an agentʼs actions are deterministic, 
then we know what states will occur

• If an agentʼs actions are not deterministic, 
then we represent this by lotteries

- Probability distribution over outcomes

- Lottery L=[p1,s1;p2,s2;…;pn,sn]

- s1 occurs with probability p1, s2 occurs with probability p2, ...
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Axioms
• Orderability: Given 2 states A and B

- (A≿B)⋁(B≿A)⋁(A~B)

• Transitivity: Given 3 states A, B, C

- (A≿B)⋀(B≿C)→(A≿C)

• Continuity:

- A≿B≿C→Exists p, [p,A;(1-p),C]~B

• Substitutability

- A~B→[p,A;1-p,C]~[p,B,1-p,C]

• Monotonicity:

- (A≿B)→(p≥q↔[p,A;1-p,B]≿[q,A;1-q,B]

• Decomposability

- [p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]
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Why Impose These Conditions?

• Structure of preference ordering 
imposes certain “rationality 
requirements”

- It is a weak ordering

• Example: Why transitivity?

- Without transitivity, I can construct a “Money 
pump”
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Money Pump
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A>B>C>A

Assume that agent currently 
has item A.  We offer to sell it 
item C for some small amount. 
Since C>A it accepts.  Then sell 
it B.  Since B>A it accepts.  
Sell it A.  Since A>B it 
accepts….



Decision Problem: Certainty

• A decision problem under certainty is <D, 
S, f, ≿> where

- D is a set of decisions

- S is a set of outcomes or states

- f is an outcome function f:D→S

- ≿ is a preference ordering over S

• A solution to a decision problem is any d* in 
D such that f(d*)≿f(d) for all d in D
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Computational Issues
• At some level, a solution to a decision problem is 

trivial

- But decisions and outcome functions are rarely specified 
explicitly

- For example: In search you construct the set of decisions 
by exploring search paths

- Do not know the outcomes in advance
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Preferences
c, b, bc

≻

c, b, ~bc
≻

c, ~b, ~bc
≻

c, ~b, bc



Decision Making Under 
Uncertainty

• Suppose actions do not have deterministic outcomes

- Example: When the robot pours coffee, 20% of the time it spills it, 
making a mess

- Preferences: c,~mess>~c,~mess>~c, mess

• What should your robot do?

- Decision getcoffee leads to a good outcome and a bad outcome with 
some probability

- Decision donothing leads to a medium outcome
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getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess



Utilities
• Rather than just ranking outcomes, we need to 

quantify our degree of preference

- How much more we prefer one outcome to another 
(e.g c to ~mess)

• A utility function U:S→R associates a real-valued 
utility to each outcome

- Utility measures your degree of preference for s

• U induces a preference ordering ≿U over S where 
s≿Ut if and only if U(s)≥U(t)
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Expected Utility

• Under conditions of uncertainty, 
decision d induces a distribution over 
possible outcomes

- Pd(s) is the probability of outcome s under 
decision d

• The expected utility of decision d is 
EU(d)=∑s in S Pd(s)U(s)

15



Example

• When my robot pours coffee, it makes a mess 20% of the 
time

• If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then

- EU(getcoffee)=(0.8)10+(0.2)0=8

- EU(donothing)=5

• If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then

- EU(getcoffee)=8

- EU(donothing)=9
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getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess



Maximum Expected Utility 
Principle

• Principle of Maximum Expected Utility

- The optimal decision under conditions of 
uncertainty is that with the greatest 
expected utility

• Robot example:

- First case: optimal decision is getcoffee

- Second case: optimal decision is donothing
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Decision Problem: Uncertainty

• A decision problem under uncertainty is
- Set of decisions D

- Set of outcomes S

- Outcome function P:D→Δ(S)
- Δ(S) is the set of distributions over S

- Utility function U over S

• A solution is any d* in D such that EU(d*)≥EU(d) 
for all d in D
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Notes: Expected Utility
• This viewpoint accounts for

- Uncertainty in action outcomes

- Uncertainty in state of knowledge

- Any combination of the two
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Notes: Expected Utility

• Why Maximum Expected Utility?

• Where do these utilities come from?

- Preference elicitation
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Notes: Expected Utility
• Utility functions need not be unique

- If you multiply U by a positive constant, all decisions have 
the same relative utility

- If you add a constant to U, then the same thing is true

• U is unique up to a positive affine transformation
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If d*=argmax ∑d Pr(d)U(d)
then
d*=argmax ∑dPr(d)[aU(d)+b]
a>0



What are the Complications?

• Outcome space can be large

- State space can be huge

- Do not want to spell out distributions explicitly

- Solution: Use Bayes Nets (or related Influence diagrams)

• Decision space is large

- Usually decisions are not one-shot
- Sequential choice

- If we treat each plan as a distinct decision, then the space is too large to handle directly

- Solution: Use dynamic programming to construct optimal 
plans
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Simple Example
• Two actions: a,b

- That is, either [a,a], [a,b], [b,a], [b,b]

• We can execute two actions in sequence

• Actions are stochastic: action a induces distribution 
Pa(si|sj) over states

- Pa(s2|s1)=0.9 means that the prob. of moving to state s2 
when taking action a in state s1 is 0.9

- Similar distribution for action b

• How good is a particular plan?
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Distributions for Action 
Sequences
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How Good is a Sequence?

• We associate utilities with the final 
outcome

- How good is it to end up at s4, s5, s6, ...

• Now we have:

- EU(aa)=.45U(s4)+.45U(s5)+.02U(s8)+.08(s9)

- EU(ab)=.54U(s6)+.36U(s7)+.07U(s10)+.03U(s11)

- etc
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Utilities for Action Sequences
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Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)



Why Sequences Might Be Bad

• Suppose we do a first; we could reach s2 or s3

- At s2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)

- At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)

• After doing a first, we want to do a next if we reach s2, but 
we want to be b second if we reach s3
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Policies
• We want to consider policies, not sequences of actions (plans)

• We have 8 policies for the decision tree:

• We have 4 plans

- [a;a], [a;b], [b;a], [b;b]

- Note: each plans corresponds to a policy so we can only gain by 
allowing the decision maker to use policies
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[a; if s2 a, if s3 a]    [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b]    [b; if s12 a, if s13 b]
[a; if s2 b, is s3 a]    [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b]    [b; if s12 b. if s13 b]



Evaluating Policies
• Number of plans (sequences) of length k

- Exponential in k: |A|k if A is the action set

• Number of policies is much larger

- If A is the action set and O is the outcome set, then we have           
(|A||O|)k policies

• Fortunately, dynamic programming can be used

- Suppose EU(a)>EU(b) at s2

- Never consider a policy that does anything else at s2

• How to do this?
- Back values up the tree much like minimax search
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Decision Trees
• Squares denote 

choice nodes 
(decision nodes)

• Circles denote chance 
nodes

• Uncertainty regarding 
action effects

• Terminal nodes 
labelled with utilities
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Evaluating Decision Trees

• Procedure is exactly like game trees except

- “MIN” is “nature” who chooses outcomes at 
chance nodes with specified probability
- Average instead of minimize

• Back values up the tree

- U(t) defined for terminal nodes

- U(n)=avg {U(c):c a child of n} if n is chance node

- U(n)=max{U(c:c is child of n} if n is a choice node
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Evaluating a Decision Tree
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Decision Tree Policies
• Note that we donʼt just compute values, 

but policies for the tree

• A policy assigns a decision to each 
choice node  in the tree

• Some policies canʼt be distinguished in 
terms of their expected values

- Example: If a policy chooses a at s1, the 
choice at s4 does not matter because it wonʼt 
be reached

- Two policies are implementationally 
indistinguishable if they disagree only on 
unreachable nodes
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Computational Issues

• Savings compared to explicit policy 
evaluation is substantial

• Let n=|A| and m=|O|

- Evaluate only O((nm)d) nodes in tree of depth d
- Total computational cost is thus O((nm)d)

- Note that there are also (nm)d policies 
- Evaluating a single policy requires O(md)

- Total computation for explicitly evaluating each policy would be O(ndm2d)
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Computational Issues

• Tree size: Grows exponentially with depth

- Possible solutions: Bounded lookahead, 
heuristic search procedures

• Full Observability: We must know the 
initial state and outcome of each action

- Possible solutions: Handcrafted decision trees, 
more general policies based on observations
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Other Issues
• Specification: Suppose each state is an 

assignment of values to variables

- Representing action probability distributions is 
complex
- Large branching factor

• Possible solutions: 

- Bayes Net representations

- Solve problems using decision networks
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Key Assumption: Observability

• Full observability: We must know the 
initial state and outcome of each action

- To implement a policy we must be able to 
resolve the uncertainty of any chance node 
that is followed by a decision node
- e.g. After doing a at s1, we must know which of the outcomes (s2 

or s3) was realized so that we know what action to take next

- Note: We donʼt need to resolve the uncertainty 
at a chance node if no decision follows it
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Partial Observability
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Large State Spaces (Variables)

• To represent outcomes of actions or decisions, we need to 
specify distributions

- P(s|d): probability of outcome s given decision d

- P(s|a,sʼ): probability of state s given action a was taken in state sʼ

• Note that the state space is exponential in the number of 
variables

- Spelling out distributions explicitly is intractable

• Bayes Nets can be used to represent actions

- Joint distribution over variables, conditioned on action/decision 
and previous state

39



Example Action Using a 
Dynamic Bayes Net
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Deliver Coffee action
T   T(t+1) T(t+1)

T    1.0   0.0

F    0.0   1.0

L  R  C   C(t+1) C(t+1)

T  T  T    1.0  0.0

F  T  T    1.0  0.0

T  F  T    1.0  0.0

F  F  T    1.0  0.0

T  T  F    0.8  0.2

M – mail waiting   C – Kate has coffee
T – lab tidy          R – robot has coffee
L – robot located in Kate’s office

fR(Lt,Rt,Ct,Ct+1)

fJ(Tt,Tt+1)



Dynamic BN Action 
Representation

• Dynamic Bayes Nets (DBN)
- List all state variables for time t (pre-action)

- List all state variables for time t+1 (post-action)

- Indicate parents of all t+1 variables
- Can include time t and t+1 variables, but network must be acyclic

- Specify CPT for each time t+1 variable

• Note: Generally no prior given for time t variables
- We are generally interested in conditional distributions over 

post-action states given pre-action states

- Time t variables are instantiated as “evidence” when using a DBN 
(generally)
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Example
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Throw rock at window action

P(alt+1 | alt, Brt+1) = 1
P(alt+1 | ~alt,~brt+1) = 0
P(alt+1 | ~alt,brt+1) = .95

P(brokent+1 | brokent) = 1
P(brokent+1 | ~brokent) = .6

Throwing rock has certain probability of breaking window and
setting off alarm; but whether alarm is triggered depends on
whether rock actually broke the window.



Use of BN Action 
Representation

• DBNs: Actions concisely, naturally specified

• Can be used in two ways

- To generate “expectimax” search tree to solve decision 
problems

- Used directly in stochastic decision making algorithms

• First use does not buy us that much computationally 
when solving decision problems

• Second use allows us to compute expected utilities 
without enumerating the outcome space (tree)

- Decision networks (next week)
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Summary

• Basic properties of preferences

• Relationship between preferences and 
utilities

• Principle of Maximum Expected Utility

• Decision Trees
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