Introduction to
Decision Making

CS 486/686: Introduction to Artificial Intelligence
Fall 2013

Outline

e Utility Theory

e Decision Trees

Decision Making Under
Uncertainty

e | give a robot a planning problem: “ |
want coffee”

- But the coffee maker is broken: Robot
reports “No plan!”

Decision Making Under
Uncertainty

| want more robust behavior

e | want my robot to know what to do when
my primary goal is not satisfied

Provide it with some indication of my
preferences over alternatives

e.g. coffee better than tea, tea better than water, water better than
nothing,...

.

&

e~
— ~ ‘,2,‘4:‘3'"9
- L

. /_)/
——— '—:-‘/

—

;’_3 J\ |

4

Decision Making Under
Uncertainty

e But it is more complicated than that

- |t could walit 45 minutes for the coffee maker
to be fixed

e \What is better?

- Jea now?

- Coffee in 45 minutes?

Preferences

e A preference ordering = is a ranking over all
possible states of the world s

e These could be outcomes of actions, truth
assignments, states in a search problem, etc

- S = 1: state s is at least as good as state t

- S>1: state s is strictly preferred to statet

- S ~1t:agentis ambivalent between states s and
t

Preferences

e |f an agent’s actions are deterministic,
then we know what states will occur

e |f an agent’s actions are not deterministic,
then we represent this by lotteries

- Probability distribution over outcomes

- Lottery L=[p{,51;P5,S5;---iPnsS]

- S1 0ccurs with probability p1, s2 occurs with probability p2, ...

AXIOMmS

Orderability: Given 2 states A and B
(A=B)v(B=zA)Vv(A~B)
Transitivity: Given 3 states A, B, C
(A=B)A(B=C)—(A=C)
Continuity:
A=B=C—Exists p, [p,A;(1-p),C]~B
Substitutability
A~B—[p,A;1-p,C]~[p,B,1-p,C]
Monotonicity:
(A=B)— (p=q<[p,A;1-p,B]=[q,A;1-q,B]

Decomposability
[p,A;1-p[q,B;1-q,Cll~[p,A; (1-p)a,B;(1-p)(1-q),C]

8

Why Impose These Conditions?

e Structure of preference ordering
iImposes certain “rationality
requirements”

- ltis a weak ordering
e Example: Why transitivity?

- Without transitivity, | can construct a “Money
pump!!

Money Pump

A>B>C>A

Assume that agent currently
has item A. We offer to sell it
item C for some small amount.
Since C>A it accepts. Then sell
it B. Since B>A it accepts.

Sell it A. Since A>B it
accepts....

(//A*\\\
3\\“//C

Ilc

Decision Problem: Certainty

e A decision problem under certainty is <D,
S, f, => where

- D is a set of decisions
- S s a set of outcomes or states
- fis an outcome function :D—S

- = is a preference ordering over S

e A solution to a decision problem is any d* in
D such that f(d*)=f(d) for all d in D

Computational Issues

e At some level, a solution to a decision problem is
trivial

- But decisions and outcome functions are rarely specified
explicitly

For example: In search you construct the set of decisions
by exploring search paths

- Do not know the outcomes in advance

=, Preferences
/ ‘K c, b, bc
>~
c, b, ~bc

>

K
@/ \ﬁ) c, ~b, ~be

c, ~b, bc

Decision Making Under
Uncertainty

e Suppose actions do not have deterministic outcomes

- Example: When the robot pours coffee, 20% of the time it spills it,
making a mess

- Preferences: c,~mess>~C,~mess>~C, mess
e What should your robot do?

- Decision getcoffee leads to a good outcome and a bad outcome with
some probability

- Decision donothing leads to a medium outcome

C, ~Mess
getcoffe< donothing ~C, ~MEeSS
~C, MeSS

N

Utilities

e Rather than just ranking outcomes, we need to
guantify our degree of preference

- How much more we prefer one outcome to another
(e.g c to ~mess)

e A utility function U:S—R associates a real-valued
utility to each outcome

- Utility measures your degree of preference for s

e U induces a preference ordering =y over S where
s=zyt if and only if U(s)=U(t)

Expected Utility

e Under conditions of uncertainty,
decision d induces a distribution over
possible outcomes

- Pd(s) is the probability of outcome s under
decision d

e The expected utility of decision d is
EU(d)=3sins Pa(s)U(s)

Example

C, ~mess
getcoffee<: donothing y ~C, ~mess
~C, Mess

e \When my robot pours coffee, it makes a mess 20% of the
time

e IfU(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then
- EU(getcoffee)=(0.8)10+(0.2)0=8
- EU(donothing)=5

e |f U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then
- EU(getcoffee)=8
- EU(donothing)=9

Maximum Expected Utility
Principle

e Principle of Maximum Expected Ultility

- The optimal decision under conditions of
uncertainty is that with the greatest
expected utility

e Robot example:

- First case: optimal decision is getcoffee

- Second case: optimal decision is donothing

Decision Problem: Uncertainty

e A decision problem under uncertainty is
- Set of decisions D
- Set of outcomes S

- Outcome function P:D—A(S)

- A(S) is the set of distributions over S

- Utility function U over S

e A solutionis any d* in D such that EU(d*)=EU(d)
foralldin D

Notes: Expected Utility

e This viewpoint accounts for
- Uncertainty in action outcomes

- Uncertainty in state of knowledge

- Any combination of the two

b\o§ S3
\‘7
s4

Stochastic actions

s2
sO

Uncertain knowledge

19

Notes: Expected Utility

e Why Maximum Expected Utility?

e \Where do these utilities come from?

- Preference elicitation

20

Notes: Expected Utility

e Utility functions need not be unique

- If you multiply U by a positive constant, all decisions have
the same relative utility

- If you add a constant to U, then the same thing is true

e U is unique up to a positive affine transformation

If d*=argmax 34 Pr(d)U(d)
then
d*=argmax Y 4Pr(d)[aU(d)+Db]

a>0

21

What are the Complications?

e (Qutcome space can be large
- State space can be huge
- Do not want to spell out distributions explicitly

- Solution: Use Bayes Nets (or related Influence diagrams)

e Decision space is large

- Usually decisions are not one-shot

- Sequential choice

- If we treat each plan as a distinct decision, then the space is too large to handle directly

- Solution: Use dynamic programming to construct optimal
plans

22

Simple Example

Two actions: a,b
- That s, either [a,a], [a,b], [b,a], [b,b]

We can execute two actions in sequence

Actions are stochastic: action a induces distribution
Pa(silsj) over states

- Pa(s2ls1)=0.9 means that the prob. of moving to state s2
when taking action a in state s1is 0.9

- Similar distribution for action b

How good is a particular plan?

23

Distributions for Action

Sequences
\O
/\-a N

NN

.5/\.5 @/\.4 z/\.s 1/\3 L/\.9 a/\.s 2/\.8 1/\3

s4d s5 s6 s7 s8 s9 s10 s11 s14 s15 s16 s17 s18 s19 s20 s21

24

How Good is a Sequence?

e \We associate utilities with the final
outcome

- How good is it to end up at s4, Ss, S, ...
e Now we have:
- EU(aa)=.45U(s4)+.45U(s5)+.02U(ss)+.08(s9)
- EU(ab)=.54U(se)+.36U(s7)+.07U(s10)+.03U(s11)

- etc

25

Utilities for Action Sequences

/\a ./O\.
B

/\ AN /\ /\

5/\.5 @/\.4 a/\.8 Z/\.3 1/\.9 2/\8 a/\.8 z/\.3

u(s4) u(sd)u(s6) etc... u(s21)

Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)

26

Why Sequences Might Be Bad

s1

o s,
Fa S

/\ /\ /\ /\

5/\.5 @/\.4 e/\.8 Z/\.3 1/\.9 2/\.8 a/\.s Z/\.3

s4 s5 sb6b s7 s8 s9 s10 si11 s14 s15 s16 s17 s18 s19 s20 s21

e Suppose we do afirst; we could reach sz or s3
- At s2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)
- At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)

e After doing a first, we want to do a next if we reach sp, but
we want to be b second if we reach ss

27

Policies

e We want to consider policies, not sequences of actions (plans)

e We have 8 policies for the decision tree:

[a;ifs2a,ifs3a] [b;ifs12a,if s13 a]
[a;ifs2a,ifs83b] [b;ifsl12a, if s13 b]
[a;ifs2b,iss3a] [b;ifs12Db,if s13 a]
[a;ifs2b,ifs3b] [b;ifs12Db.ifs13 Db]

e We have 4 plans
- [asa], [asb], [bsa], [bb]

- Note: each plans corresponds to a policy so we can only gain by
allowing the decision maker to use policies

28

Evaluating Policies

e Number of plans (sequences) of length k

- Exponential in k: IAlx if Ais the action set

e Number of policies is much larger

- If Ais the action set and O is the outcome set, then we have
(IAIIONk policies

e Fortunately, dynamic programming can be used
- Suppose EU(a)>EU(b) at s2
- Never consider a policy that does anything else at s2

e How to do this?

- Back values up the tree much like minimax search

29

Decision lrees

e Squares denote
choice nodes 1
(decision nodes) - S "
e (Circles denote chance / \‘
nodes O O
Y\t Y \s
e Uncertainty regarding
action effects 5 2 4 3

e TJerminal nodes
labelled with utilities

30

Evaluating Decision Trees

e Procedure is exactly like game trees except

- “MIN” Iis “nature” who chooses outcomes at
chance nodes with specified probability

- Average instead of minimize

e Back values up the tree
- U(t) defined for terminal nodes
- U(n)=avg {U(c):c a child of n} if n is chance node

- U(n)=max{U(c:c is child of n} if n is a choice node

31

Evaluating a Decision Tree
(nD)
/
Y \?

Decision Iree Policies

e Note that we don’t just compute values,
but policies for the tree =

e A policy assigns a decision to each @ \b@
choice node In the tree g sl TN
s2 s3
e Some policies can’t be distinguished in @y b @ 4V :
terms of their expected values DAY o\ :
5 2 3 -

- Example: If a policy chooses a at s1, the
choice at s4 does not matter because it won't

be reached

- Two policies are implementationally
indistinguishable if they disagree only on
unreachable nodes

33

Computational Issues

e Savings compared to explicit policy
evaluation is substantial

e | et n=lAl and m=IOl

- Evaluate only O((nm)9) nodes in tree of depth d

- Total computational cost is thus O((nm)d)

- Note that there are also (nm)d policies
- Evaluating a single policy requires O(md)

- Total computation for explicitly evaluating each policy would be O(ndm2d)

34

Computational Issues

e Tree size: Grows exponentially with depth

- Possible solutions: Bounded lookahead,
heuristic search procedures

e Full Observability: We must know the
initial state and outcome of each action

- Possible solutions: Handcrafted decision trees,
more general policies based on observations

35

Other Issues

o Specification: Suppose each state is an
assignment of values to variables

- Representing action probability distributions is
complex

- Large branching factor

® Possible solutions:
- Bayes Net representations

- Solve problems using decision networks

36

Key Assumption: Observability

e Full observability: We must know the
initial state and outcome of each action

- To implement a policy we must be able to
resolve the uncertainty of any chance node
that is followed by a decision node

- e.g. After doing a at s1, we must know which of the outcomes (s2
or s3) was realized so that we know what action to take next

- Note: We don’t need to resolve the uncertainty
at a chance node if no decision follows it

37

Partial Observability

e If we push

Fl

(unobservable) o Dy
uncertainty to the e o Om
“end of the tree” » _Fluy
then we can o ()*
evaluate the tree ’Nﬁ:
- often used in . .

handcrafted A rugly Om

Prescrib

decision trees e _Fluy
. drug?2 Om

Examinj Yes
Cough df‘/UQk O \
Here we push uncertainty re: \‘lPrescr'ib l MIria
_ Fluy

disease to end of tree. All chance
outcomes preceding decision are drug m’

fully observable.

38

Large State Spaces (Variables)

e To represent outcomes of actions or decisions, we need to
specify distributions

- P(sld): probability of outcome s given decision d

- P(sla,s’): probability of state s given action a was taken in state s’

e Note that the state space is exponential in the number of
variables

- Spelling out distributions explicitly is intractable

e Bayes Nets can be used to represent actions

- Joint distribution over variables, conditioned on action/decision
and previous state

39

Example Action Using a
Dynamic Bayes Net

M - mail waiting C - Kate has coffee

Deliver' Coffee action T - lab tidy R - robot has coffee
L - robot located in Kate's office

L T(ee1) T(te1)

>@ T 1.0 0.0
=" F 00 1.0 F3(Te.Tr)
'@ LB C |Gty Coany
O—© /it

\ """" FTT|10 00 fr(L+.Rt,Ct,Cte1)

@ “TFTI|10 0.0
FFT 10 00
(

T TF 0.8 0.2

40

Dynamic BN Action
Representation

e Dynamic Bayes Nets (DBN)
- List all state variables for time t (pre-action)
- List all state variables for time t+1 (post-action)

- Indicate parents of all t+1 variables

- Can include time t and t+1 variables, but network must be acyclic

- Specify CPT for each time t+1 variable

e Note: Generally no prior given for time t variables

- We are generally interested in conditional distributions over
post-action states given pre-action states

- Time t variables are instantiated as “evidence” when using a DBN
(generally)

4]

Example

Throw rock at window action

P(GIT+1 alT, Br'1'+1) - 1
[P(Cl|1+1 "‘C(If,br'1'+1) =.95
. P(brokeni.1 | broken:) = 1
Brokenf - P(brokeni.1 | ~brokens) = .6

Throwing rock has certain probability of breaking window and
setting of f alarm; but whether alarm is triggered depends on
whether rock actually broke the window.

42

Use of BN Action
Representation

DBNSs: Actions concisely, naturally specified

Can be used in two ways

- To generate “expectimax” search tree to solve decision
problems

- Used directly in stochastic decision making algorithms

First use does not buy us that much computationally
when solving decision problems

Second use allows us to compute expected utilities
without enumerating the outcome space (tree)

- Decision networks (next week)

43

Summary

Basic properties of preferences
Relationship between preferences and
utilities

Principle of Maximum Expected Utility

Decision Trees

44

