
Introduction to
Decision Making

CS 486/686: Introduction to Artificial Intelligence
Fall 2013

1

Outline

• Utility Theory

• Decision Trees

2

Decision Making Under
Uncertainty

• I give a robot a planning problem: “ I
want coffee”

- But the coffee maker is broken: Robot
reports “No plan!”

3

?

Decision Making Under
Uncertainty

• I want more robust behavior

• I want my robot to know what to do when
my primary goal is not satisfied

- Provide it with some indication of my
preferences over alternatives
- e.g. coffee better than tea, tea better than water, water better than

nothing,...

4

Decision Making Under
Uncertainty

• But it is more complicated than that

- It could wait 45 minutes for the coffee maker
to be fixed

• What is better?

- Tea now?

- Coffee in 45 minutes?

5

Preferences
• A preference ordering ≿ is a ranking over all

possible states of the world s

• These could be outcomes of actions, truth
assignments, states in a search problem, etc

- s ≿ t: state s is at least as good as state t

- s > t: state s is strictly preferred to state t

- s ~ t: agent is ambivalent between states s and
t

6

Preferences

• If an agentʼs actions are deterministic,
then we know what states will occur

• If an agentʼs actions are not deterministic,
then we represent this by lotteries

- Probability distribution over outcomes

- Lottery L=[p1,s1;p2,s2;…;pn,sn]

- s1 occurs with probability p1, s2 occurs with probability p2, ...

7

Axioms
• Orderability: Given 2 states A and B

- (A≿B)⋁(B≿A)⋁(A~B)

• Transitivity: Given 3 states A, B, C

- (A≿B)⋀(B≿C)→(A≿C)

• Continuity:

- A≿B≿C→Exists p, [p,A;(1-p),C]~B

• Substitutability

- A~B→[p,A;1-p,C]~[p,B,1-p,C]

• Monotonicity:

- (A≿B)→(p≥q↔[p,A;1-p,B]≿[q,A;1-q,B]

• Decomposability

- [p,A;1-p[q,B;1-q,C]]~[p,A; (1-p)q,B;(1-p)(1-q),C]

8

Why Impose These Conditions?

• Structure of preference ordering
imposes certain “rationality
requirements”

- It is a weak ordering

• Example: Why transitivity?

- Without transitivity, I can construct a “Money
pump”

9

Money Pump

10

A>B>C>A

Assume that agent currently
has item A. We offer to sell it
item C for some small amount.
Since C>A it accepts. Then sell
it B. Since B>A it accepts.
Sell it A. Since A>B it
accepts….

Decision Problem: Certainty

• A decision problem under certainty is <D,
S, f, ≿> where

- D is a set of decisions

- S is a set of outcomes or states

- f is an outcome function f:D→S

- ≿ is a preference ordering over S

• A solution to a decision problem is any d* in
D such that f(d*)≿f(d) for all d in D

11

Computational Issues
• At some level, a solution to a decision problem is

trivial

- But decisions and outcome functions are rarely specified
explicitly

- For example: In search you construct the set of decisions
by exploring search paths

- Do not know the outcomes in advance

12

Preferences
c, b, bc

≻

c, b, ~bc
≻

c, ~b, ~bc
≻

c, ~b, bc

Decision Making Under
Uncertainty

• Suppose actions do not have deterministic outcomes

- Example: When the robot pours coffee, 20% of the time it spills it,
making a mess

- Preferences: c,~mess>~c,~mess>~c, mess

• What should your robot do?

- Decision getcoffee leads to a good outcome and a bad outcome with
some probability

- Decision donothing leads to a medium outcome

13

getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess

Utilities
• Rather than just ranking outcomes, we need to

quantify our degree of preference

- How much more we prefer one outcome to another
(e.g c to ~mess)

• A utility function U:S→R associates a real-valued
utility to each outcome

- Utility measures your degree of preference for s

• U induces a preference ordering ≿U over S where
s≿Ut if and only if U(s)≥U(t)

14

Expected Utility

• Under conditions of uncertainty,
decision d induces a distribution over
possible outcomes

- Pd(s) is the probability of outcome s under
decision d

• The expected utility of decision d is
EU(d)=∑s in S Pd(s)U(s)

15

Example

• When my robot pours coffee, it makes a mess 20% of the
time

• If U(c,~ms)=10, U(~c,~ms)=5, U(~c,ms)=0 then

- EU(getcoffee)=(0.8)10+(0.2)0=8

- EU(donothing)=5

• If U(c,~ms)=10, U(~c,~ms)=9, U(~c,ms)=0 then

- EU(getcoffee)=8

- EU(donothing)=9

16

getcoffee
c, ~mess

~c, mess
donothing ~c, ~mess

Maximum Expected Utility
Principle

• Principle of Maximum Expected Utility

- The optimal decision under conditions of
uncertainty is that with the greatest
expected utility

• Robot example:

- First case: optimal decision is getcoffee

- Second case: optimal decision is donothing

17

Decision Problem: Uncertainty

• A decision problem under uncertainty is
- Set of decisions D

- Set of outcomes S

- Outcome function P:D→Δ(S)
- Δ(S) is the set of distributions over S

- Utility function U over S

• A solution is any d* in D such that EU(d*)≥EU(d)
for all d in D

18

Notes: Expected Utility
• This viewpoint accounts for

- Uncertainty in action outcomes

- Uncertainty in state of knowledge

- Any combination of the two

19

s0

s1

s2
a

0.8
0.2

s3

s4

b 0.3

0.7

Stochastic actions

0.7 s1

0.3 s2

0.7 t1

0.3 t2

0.7 w1

0.3 w2

a

b

Uncertain knowledge

Notes: Expected Utility

• Why Maximum Expected Utility?

• Where do these utilities come from?

- Preference elicitation

20

Notes: Expected Utility
• Utility functions need not be unique

- If you multiply U by a positive constant, all decisions have
the same relative utility

- If you add a constant to U, then the same thing is true

• U is unique up to a positive affine transformation

21

If d*=argmax ∑d Pr(d)U(d)
then
d*=argmax ∑dPr(d)[aU(d)+b]
a>0

What are the Complications?

• Outcome space can be large

- State space can be huge

- Do not want to spell out distributions explicitly

- Solution: Use Bayes Nets (or related Influence diagrams)

• Decision space is large

- Usually decisions are not one-shot
- Sequential choice

- If we treat each plan as a distinct decision, then the space is too large to handle directly

- Solution: Use dynamic programming to construct optimal
plans

22

Simple Example
• Two actions: a,b

- That is, either [a,a], [a,b], [b,a], [b,b]

• We can execute two actions in sequence

• Actions are stochastic: action a induces distribution
Pa(si|sj) over states

- Pa(s2|s1)=0.9 means that the prob. of moving to state s2
when taking action a in state s1 is 0.9

- Similar distribution for action b

• How good is a particular plan?

23

Distributions for Action
Sequences

24

How Good is a Sequence?

• We associate utilities with the final
outcome

- How good is it to end up at s4, s5, s6, ...

• Now we have:

- EU(aa)=.45U(s4)+.45U(s5)+.02U(s8)+.08(s9)

- EU(ab)=.54U(s6)+.36U(s7)+.07U(s10)+.03U(s11)

- etc

25

Utilities for Action Sequences

26

Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)

Why Sequences Might Be Bad

• Suppose we do a first; we could reach s2 or s3

- At s2, assume: EU(a)=.5U(s4)+.5U(s 5)>EU(b)=.6U(s6)+.4U(s7)

- At s3 assume: EU(a)=.2U(s8)+.8U(s9)<EU(b)=.7U(s10)+.3U(s11)

• After doing a first, we want to do a next if we reach s2, but
we want to be b second if we reach s3

27

Policies
• We want to consider policies, not sequences of actions (plans)

• We have 8 policies for the decision tree:

• We have 4 plans

- [a;a], [a;b], [b;a], [b;b]

- Note: each plans corresponds to a policy so we can only gain by
allowing the decision maker to use policies

28

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, is s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b. if s13 b]

Evaluating Policies
• Number of plans (sequences) of length k

- Exponential in k: |A|k if A is the action set

• Number of policies is much larger

- If A is the action set and O is the outcome set, then we have
(|A||O|)k policies

• Fortunately, dynamic programming can be used

- Suppose EU(a)>EU(b) at s2

- Never consider a policy that does anything else at s2

• How to do this?
- Back values up the tree much like minimax search

29

Decision Trees
• Squares denote

choice nodes
(decision nodes)

• Circles denote chance
nodes

• Uncertainty regarding
action effects

• Terminal nodes
labelled with utilities

30

Evaluating Decision Trees

• Procedure is exactly like game trees except

- “MIN” is “nature” who chooses outcomes at
chance nodes with specified probability
- Average instead of minimize

• Back values up the tree

- U(t) defined for terminal nodes

- U(n)=avg {U(c):c a child of n} if n is chance node

- U(n)=max{U(c:c is child of n} if n is a choice node

31

Evaluating a Decision Tree

32

Decision Tree Policies
• Note that we donʼt just compute values,

but policies for the tree

• A policy assigns a decision to each
choice node in the tree

• Some policies canʼt be distinguished in
terms of their expected values

- Example: If a policy chooses a at s1, the
choice at s4 does not matter because it wonʼt
be reached

- Two policies are implementationally
indistinguishable if they disagree only on
unreachable nodes

33

Computational Issues

• Savings compared to explicit policy
evaluation is substantial

• Let n=|A| and m=|O|

- Evaluate only O((nm)d) nodes in tree of depth d
- Total computational cost is thus O((nm)d)

- Note that there are also (nm)d policies
- Evaluating a single policy requires O(md)

- Total computation for explicitly evaluating each policy would be O(ndm2d)

34

Computational Issues

• Tree size: Grows exponentially with depth

- Possible solutions: Bounded lookahead,
heuristic search procedures

• Full Observability: We must know the
initial state and outcome of each action

- Possible solutions: Handcrafted decision trees,
more general policies based on observations

35

Other Issues
• Specification: Suppose each state is an

assignment of values to variables

- Representing action probability distributions is
complex
- Large branching factor

• Possible solutions:

- Bayes Net representations

- Solve problems using decision networks

36

Key Assumption: Observability

• Full observability: We must know the
initial state and outcome of each action

- To implement a policy we must be able to
resolve the uncertainty of any chance node
that is followed by a decision node
- e.g. After doing a at s1, we must know which of the outcomes (s2

or s3) was realized so that we know what action to take next

- Note: We donʼt need to resolve the uncertainty
at a chance node if no decision follows it

37

Partial Observability

38

Large State Spaces (Variables)

• To represent outcomes of actions or decisions, we need to
specify distributions

- P(s|d): probability of outcome s given decision d

- P(s|a,sʼ): probability of state s given action a was taken in state sʼ

• Note that the state space is exponential in the number of
variables

- Spelling out distributions explicitly is intractable

• Bayes Nets can be used to represent actions

- Joint distribution over variables, conditioned on action/decision
and previous state

39

Example Action Using a
Dynamic Bayes Net

40

Deliver Coffee action
T T(t+1) T(t+1)

T 1.0 0.0

F 0.0 1.0

L R C C(t+1) C(t+1)

T T T 1.0 0.0

F T T 1.0 0.0

T F T 1.0 0.0

F F T 1.0 0.0

T T F 0.8 0.2

M – mail waiting C – Kate has coffee
T – lab tidy R – robot has coffee
L – robot located in Kate’s office

fR(Lt,Rt,Ct,Ct+1)

fJ(Tt,Tt+1)

Dynamic BN Action
Representation

• Dynamic Bayes Nets (DBN)
- List all state variables for time t (pre-action)

- List all state variables for time t+1 (post-action)

- Indicate parents of all t+1 variables
- Can include time t and t+1 variables, but network must be acyclic

- Specify CPT for each time t+1 variable

• Note: Generally no prior given for time t variables
- We are generally interested in conditional distributions over

post-action states given pre-action states

- Time t variables are instantiated as “evidence” when using a DBN
(generally)

41

Example

42

Throw rock at window action

P(alt+1 | alt, Brt+1) = 1
P(alt+1 | ~alt,~brt+1) = 0
P(alt+1 | ~alt,brt+1) = .95

P(brokent+1 | brokent) = 1
P(brokent+1 | ~brokent) = .6

Throwing rock has certain probability of breaking window and
setting off alarm; but whether alarm is triggered depends on
whether rock actually broke the window.

Use of BN Action
Representation

• DBNs: Actions concisely, naturally specified

• Can be used in two ways

- To generate “expectimax” search tree to solve decision
problems

- Used directly in stochastic decision making algorithms

• First use does not buy us that much computationally
when solving decision problems

• Second use allows us to compute expected utilities
without enumerating the outcome space (tree)

- Decision networks (next week)

43

Summary

• Basic properties of preferences

• Relationship between preferences and
utilities

• Principle of Maximum Expected Utility

• Decision Trees

44

