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Outline

• Reasoning under uncertainty over time

- Hidden Markov Models

- Dynamic Bayes Nets
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Introduction

• So far we have assumed

- The world does not change

- Static probability distribution

• But the world does evolve over time

- How can we use probabilistic inference for  
weather predictions, stock market predictions, 
patient monitoring, robot localization,...
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Dynamic Inference
• To reason over time we need to consider the 

following:

- Allow the world to evolve

- Set of states (all possible worlds)

- Set of time-slices (snapshots of the world)

- Different probability distributions over states at 
different time-slices

- Dynamic encoding of how distributions change over 
time
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Stochastic Process

• Set of states: S

• Stochastic dynamics: P(st|st-1,...,s0)

• Can be viewed as a Bayes Net with one 
random variable per time-slice
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Stochastic Process
• Problems:

- Infinitely many variables

- Infinitely large CPTs

• Solutions:

- Stationary process: Dynamics do not change 
over time

- Markov assumption: Current state depends 
only on a finite history of past states
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k-Order Markov Process

• Assumption: last k states are sufficient

• First-order Markov process

- P(st|st-1,...,s0)=P(st|st-1)

• Second-order Markov process

- P(st|st-1,...,s0)=P(st|st-1,st-2)
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k-Order Markov Process

• Advantages

- Can specify the entire process using finitely 
many time slices

• Example: Two slices sufficient for a first-
order Markov process

- Graph:

- Dynamics: P(st|st-1)

- Prior: P(s0)
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Example: Robot Localization

• Example of a first-order Markov process
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Problem: 
uncertainty 
increases over time

Thrun et al



Hidden Markov Models 

• In the previous example, the robot could use 
sensors to reduce location uncertainty

• In general:

- States not directly observable (uncertainty captured by 
a distribution)

- Uncertain dynamics increase state uncertainty

- Observations: made via sensors can reduce state 
uncertainty

• Solution: Hidden Markov Model
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First Order Hidden Markov 
Model (HMM)

• Set of states: S

• Set of observations: O

• Transition model: P(st|st-1)

• Observation model: P(ot|st)

• Prior: P(s0)
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Example: Robot Localization

• Hidden Markov Model

- S: (x,y) coordinates of the robot on the map

- O: distances to surrounding obstacles (measured by 
laser range fingers or sonar)

- P(st|st-1): movement of the robot with uncertainty

- P(ot|st): uncertainty in the measurements provided by 
the sensors

• Localization corresponds to the query:        
P(st|ot,...,o1)
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Inference

• There are four common tasks

- Monitoring: P(st|ot,...o1)

- Prediction: P(st+k|ot,...,o1)

- Hindsight: P(sk|ot,...,o1)

- Most likely explanation: argmaxst,...,s1 P(st,...,s1|ot,...,o1)

• What algorithms should we use?

- First 3 can be done with variable elimination and the 4th 
is a variant of variable elimination
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Monitoring
• We are interested in the distribution over current 

states given observations: P(st|ot,...,o1)
- Examples: patient monitoring, robot localization

• Forward algorithm: corresponds to variable 
elimination
- Factors: P(s0), P(si|si-1), P(oi|si) 1≤i≤t

- Restrict o1,...,ot to observations made

- Sum out s0,....,st-1

- ∑s0...st-1P(s0)∏1≤i≤tP(si|si-1)P(oi|si)
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Prediction
• We are interested in distributions over future states 

given observations: P(st+k|ot,...,o1)
- Examples: weather prediction, stock market prediction

• Forward algorithm: corresponds to variable 
elimination
- Factors: P(s0), P(si|si-1), P(oi|si) 1≤i≤t+k

- Restrict o1,...,ot to observations made

- Sum out s0,....,st+k-1,ot+1,..,ot+k

- ∑s0...st-1,ot+1,...,ot+kP(s0)∏1≤i≤t+kP(si|si-1)P(oi|si)

15



Hindsight
• Interested in the distribution over a past state given 

observations
- Example: crime scene investigation

• Forward-backward algorithm: corresponds to 
variable elimination
- Factors: P(s0), P(si|si-1), P(oi|si) 1≤i≤t

- Restrict o1,...,ot to observations made

- Sum out s0,....,sk-1,sk+1,...,st

- ∑s0...sk-1,sk+1,...st,P(s0)∏1≤i≤tP(si|si-1)P(oi|si)
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Most Likely Explanation

• We are interested in the most likely sequence of states 
given the observations: argmaxs0,...st P(s0,...,st|ot,...,o1)

- Example: speech recognition

• Viterbi algorithm: Corresponds to a variant of variable 
elimination

- Factors: P(s0), P(si|si-1), P(oi|si) 1≤i≤t

- Restrict o1,...,ot to observations made

- Max out s0,....,st-1

- maxs0...st-1P(s0)∏1≤i≤tP(si|si-1)P(oi|si)
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Complexity of Temporal 
Inference

• Hidden Markov Models are Bayes Nets 
with a polytree structure

• Variable elimination is

- Linear with respect to number of time slices

- Linear with respect to largest CPT (P(st|st-1) 
or P(ot|st))
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Dynamic Bayes Nets
• What if the number of states or observations 

are exponential?

• Dynamic Bayes Nets

- Idea: Encode states and observations with several 
random variables

- Advantage: Exploit conditional independence and 
save time and space

- Note: HMMs are just DBNs with one state variable 
and one observation variable
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Example: Robot Localization

• States: (x,y) coordinates and heading θ

• Observations: laser and sonar readings, la and 
so
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DBN Complexity
• Conditional independence allows us to 

represent the transition and observation 
models very compactly!

• Time and space complexity of inference: 
conditional independence rarely helps

- Inference tends to be exponential in the number of 
state variables

- Intuition: All state variables eventually get correlated

- No better than with HMMs
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Non-Stationary Processes

• What if the process is not stationary?

- Solution: Add new state components until 
dynamics are stationary

- Example: Robot navigation based on (x,y,θ) 
is nonstationary when velocity varies
- Solution: Add velocity to state description (x,y,v,θ)

- If velocity varies, then add acceleration,...

22



Non-Markovian Processes

• What if the process is not Markovian?

- Solution: Add new state components until 
the dynamics are Markovian

- Example: Robot navigation based on (x,y,θ) 
is non-Markovian when influenced by 
battery level
- Solution: Add battery level to state description (x,y,θ,b)
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Markovian Stationary 
Processes

• Problem: Adding components to the state 
description to force a process to be 
Markovian and stationary may significantly 
increase computational complexity

• Solution: Try to find the smallest 
description that is self-sufficient (i.e. 
Markovian and stationary)
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Summary
• Stochastic Process

- Stationary 

- Markov assumption

• Hidden Markov Process

- Prediction

- Monitoring

- Hindsight

- Most likely explanation

• Dynamic Bayes Nets

• What to do if the stationary or Markov assumptions do not hold
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