Reasoning Under Uncertainty Over Time

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Reasoning under uncertainty over time
 - Hidden Markov Models
 - Dynamic Bayes Nets

Introduction

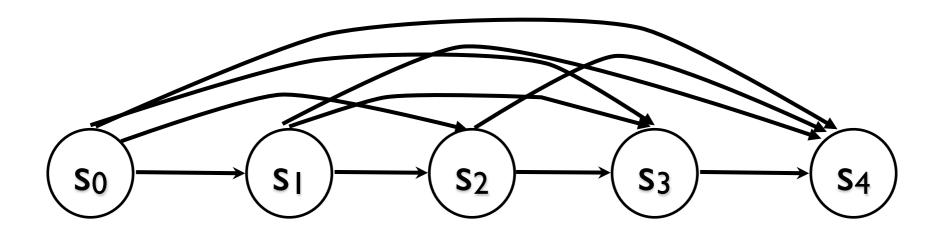
- So far we have assumed
 - The world does not change
 - Static probability distribution
- But the world does evolve over time
 - How can we use probabilistic inference for weather predictions, stock market predictions, patient monitoring, robot localization,...

Dynamic Inference

- To reason over time we need to consider the following:
 - Allow the world to evolve
 - Set of states (all possible worlds)
 - Set of time-slices (snapshots of the world)
 - Different probability distributions over states at different time-slices
 - Dynamic encoding of how distributions change over time

Stochastic Process

- Set of states: **S**
- Stochastic dynamics: P(stlst-1,...,s0)
- Can be viewed as a Bayes Net with one random variable per time-slice

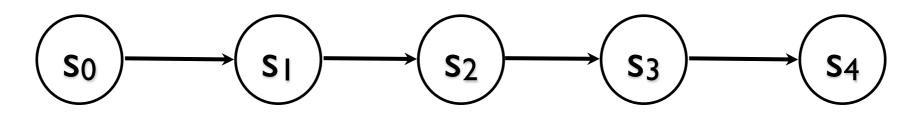


Stochastic Process

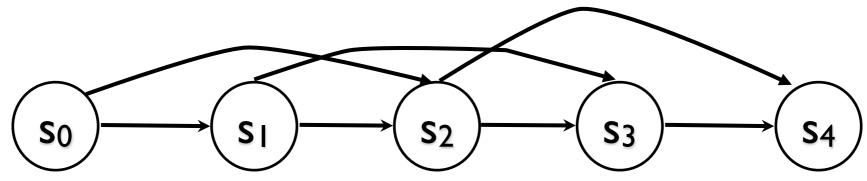
- Problems:
 - Infinitely many variables
 - Infinitely large CPTs
- Solutions:
 - Stationary process: Dynamics do not change over time
 - Markov assumption: Current state depends only on a finite history of past states

k-Order Markov Process

- Assumption: last k states are sufficient
- First-order Markov process
 - $P(s_t | s_{t-1}, ..., s_0) = P(s_t | s_{t-1})$

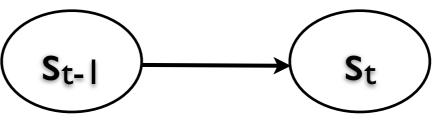


- Second-order Markov process
 - $P(s_t|s_{t-1},...,s_0)=P(s_t|s_{t-1},s_{t-2})$



k-Order Markov Process

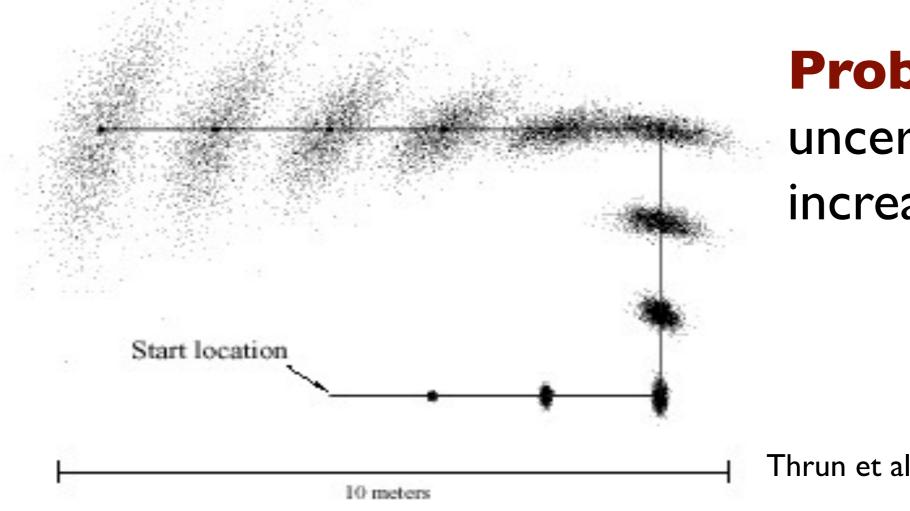
- Advantages
 - Can specify the entire process using finitely many time slices
- Example: Two slices sufficient for a firstorder Markov process
 - Graph:



- Dynamics: P(stlst-1)
- Prior: $P(s_0)$

Example: Robot Localization

Example of a first-order Markov process



Problem:

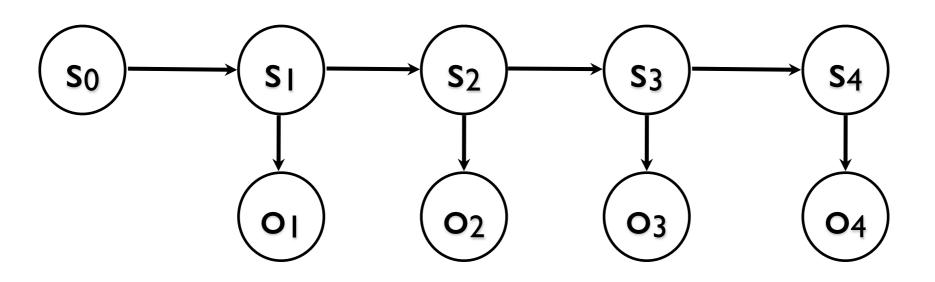
uncertainty increases over time

Hidden Markov Models

- In the previous example, the robot could use sensors to reduce location uncertainty
- In general:
 - States not directly observable (uncertainty captured by a distribution)
 - Uncertain dynamics increase state uncertainty
 - Observations: made via sensors can reduce state uncertainty
- Solution: Hidden Markov Model

First Order Hidden Markov Model (HMM)

- Set of states: S
- Set of observations: O
- Transition model: P(stlst-1)
- **Observation model**: P(Ot|St)
- Prior: P(s₀)



Example: Robot Localization

- Hidden Markov Model
 - S: (x,y) coordinates of the robot on the map
 - O: distances to surrounding obstacles (measured by laser range fingers or sonar)
 - P(stlst-1): movement of the robot with uncertainty
 - P(otlst): uncertainty in the measurements provided by the sensors
- Localization corresponds to the query: P(stlot,...,01)

Inference

- There are four common tasks
 - Monitoring: P(stlot,...o1)
 - **Prediction**: P(st+klot,...,o1)
 - Hindsight: P(s_klo_t,...,o₁)
 - Most likely explanation: argmax_{st,...,s1} P(s_t,...,s₁lo_t,...,o₁)
- What algorithms should we use?
 - First 3 can be done with variable elimination and the 4th is a variant of variable elimination

Monitoring

- We are interested in the distribution over current states given observations: P(stlot,...,o1)
 - Examples: patient monitoring, robot localization
- Forward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \le i \le t$
 - Restrict o₁,...,o_t to observations made
 - Sum out s₀,....,s_{t-1}
 - $\sum_{s0...st-1} P(s_0) \prod_{1 \le i \le t} P(s_i | s_{i-1}) P(o_i | s_i)$

Prediction

- We are interested in distributions over future states given observations: P(st+klot,...,o1)
 - Examples: weather prediction, stock market prediction
- Forward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \le i \le t+k$
 - Restrict o₁,...,o_t to observations made
 - Sum out s₀,...,s_{t+k-1},O_{t+1},..,O_{t+k}
 - $\sum_{s0...st-1,ot+1,...,ot+k} P(s_0) \prod_{1 \le i \le t+k} P(s_i | s_{i-1}) P(o_i | s_i)$

Hindsight

- Interested in the distribution over a past state given observations
 - Example: crime scene investigation
- Forward-backward algorithm: corresponds to variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \le i \le t$
 - Restrict o₁,...,o_t to observations made
 - Sum out s₀,...,s_{k-1},s_{k+1},...,s_t
 - $\sum_{s0...sk-1,sk+1,...st} P(s_0) \prod_{1 \le i \le t} P(s_i | s_{i-1}) P(o_i | s_i)$

Most Likely Explanation

- We are interested in the most likely sequence of states given the observations: argmax_{s0,...st} P(s₀,...,s_tlo_t,...,o₁)
 - Example: speech recognition
- Viterbi algorithm: Corresponds to a variant of variable elimination
 - Factors: $P(s_0)$, $P(s_i|s_{i-1})$, $P(o_i|s_i)$ $1 \le i \le t$
 - Restrict o₁,...,o_t to observations made
 - Max out s₀,....,s_{t-1}
 - $\max_{s0...st-1}P(s_0)\prod_{1\leq i\leq t}P(s_i|s_{i-1})P(o_i|s_i)$

Complexity of Temporal Inference

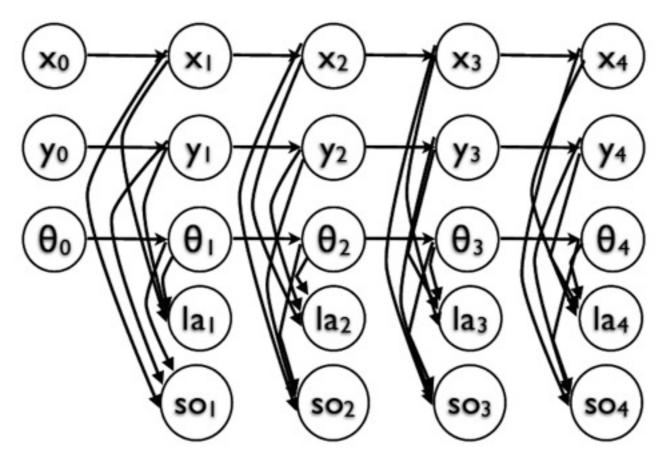
- Hidden Markov Models are Bayes Nets with a polytree structure
- Variable elimination is
 - Linear with respect to number of time slices
 - Linear with respect to largest CPT (P(stlst-1))
 or P(otlst))

Dynamic Bayes Nets

- What if the number of states or observations are exponential?
- Dynamic Bayes Nets
 - Idea: Encode states and observations with several random variables
 - Advantage: Exploit conditional independence and save time and space
 - Note: HMMs are just DBNs with one state variable and one observation variable

Example: Robot Localization

- **States**: (x,y) coordinates and heading θ
- Observations: laser and sonar readings, la and so



DBN Complexity

- Conditional independence allows us to represent the transition and observation models very compactly!
- Time and space complexity of inference: conditional independence rarely helps
 - Inference tends to be exponential in the number of state variables
 - Intuition: All state variables eventually get correlated
 - No better than with HMMs

Non-Stationary Processes

- What if the process is not stationary?
 - Solution: Add new state components until dynamics are stationary
 - Example: Robot navigation based on (x,y,θ) is nonstationary when velocity varies
 - Solution: Add velocity to state description (x,y,v,θ)
 - If velocity varies, then add acceleration,...

Non-Markovian Processes

- What if the process is not Markovian?
 - Solution: Add new state components until the dynamics are Markovian
 - Example: Robot navigation based on (x,y,θ) is non-Markovian when influenced by battery level
 - Solution: Add battery level to state description (x,y,θ,b)

Markovian Stationary Processes

 Problem: Adding components to the state description to force a process to be Markovian and stationary may significantly increase computational complexity

 Solution: Try to find the smallest description that is self-sufficient (i.e. Markovian and stationary)

Summary

- Stochastic Process
 - Stationary
 - Markov assumption
- Hidden Markov Process
 - Prediction
 - Monitoring
 - Hindsight
 - Most likely explanation
- Dynamic Bayes Nets
- What to do if the stationary or Markov assumptions do not hold