Bayes Nets

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Inference in Bayes Nets
- Variable Elimination

Inference in Bayes Nets

- Independence allows us to compute prior and posterior probabilities quite effectively
- We will start with a couple simple examples
- Networks without loops
- A loop is a cycle in the underlying undirected graph

Forward Inference

$$
\begin{array}{r}
P(J)=\Sigma_{M, E T} P(J \mid M, E T) P(M, E T) \\
\text { (marginalization) } \\
P(J)=\Sigma_{M, E T} P(J \mid M) P(M \mid E T) P(E T) \\
\text { (chain rule and independence) } \\
P(J)=\Sigma_{M} P(J \mid M) \Sigma_{E T} P(M \mid E T) P(E T) \\
\text { (distribution of sum) }
\end{array}
$$

Note: all (final) terms are CPTs in the BN Note: only ancestors of J considered

Forward Inference with "Upstream Evidence"

$$
\begin{aligned}
P(J \mid E T) & =\Sigma_{M} P(J \mid M, E T) P(M \mid E T) \\
& =\Sigma_{M} P(J \mid M) P(M \mid E T)
\end{aligned}
$$

(J is cond independent of
ET given M)

Forward Inference with Multiple Parents

$P(\mathrm{Fev})=?$

Forward Inference with Evidence

$P(\mathrm{Fev} \mid \dagger s, \sim m)=?$

Simple Backward Inference

- When evidence is downstream of a query variable, must reason "backwards". This requires Bayes Rule

Backward Inference

- Same idea applies when several pieces of evidence lie "downstream"

$$
\begin{aligned}
P(E T \mid j, f e v) & =\alpha P(j, f e v \mid E T) P(E T) \\
& =\alpha \sum_{M} P(j, f e v \mid M, E T) P(M \mid E T) P(E T) \\
& =\alpha \sum_{M} P(j, f e v \mid M) P(M \mid E T) P(E T) \\
& =\alpha \sum_{M} P(j \mid M) P(f e v \mid M) P(M \mid E T) P(E T)
\end{aligned}
$$

Variable Elimination

- Intuitions in previous examples give us a simple inference algorithm for networks without loops:
- Polytree algorithm
- What about general BN?

Variable Elimination

- Simply applies the summing-out rule (marginalization) repeatedly
- Exploits independence in network and distributes the sum inward
- Basically doing dynamic programming

Factors

- A function $f\left(X_{1}, \ldots, X_{k}\right)$ is called a factor
- View this as a table of numbers, one for each instantiation of the variables
- Exponential in k
- Each CPT in a BN is a factor
- $P(C I A, B)$ is a function of 3 variables, A, B, C
- \quad Represented as $f(A, B, C)$
- Notation: $f(\mathbf{X}, \mathbf{Y})$ denotes a factor over variables $\mathbf{X} \cup \mathbf{Y}$
- $\quad \mathbf{X}$ and \mathbf{Y} are sets of variables

Product of Two Factors

- Let $f(\mathbf{X}, \mathbf{Y})$ and $g(\mathbf{Y}, \mathbf{Z})$ be two factors with variables \mathbf{Y} in common
- The product of f and g, denoted by $h=f g$ is $h(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=f(\mathbf{X}, \mathbf{Y}) \times g(\mathbf{Y}, \mathbf{Z})$

$f(A, B)$		$g(B, C)$		$h(A, B, C)$			
$a b$	0.9	$b c$	0.7	$a b c$	0.63	$a b \sim c$	0.27
$a \sim b$	0.1	$b \sim c$	0.3	$a \sim b c$	0.08	$a \sim b \sim c$	0.02
$\sim a b$	0.4	$\sim b c$	0.8	$\sim a b c$	0.28	$\sim a b \sim c$	0.12
$\sim a \sim b$	0.6	$\sim b \sim c$	0.2	$\sim a \sim b c$	0.48	$\sim a \sim b \sim c$	0.12

Summing a Variable Out of a Factor

- Let $f(X, Y)$ be a factor with variable X and variable set \mathbf{Y}
- We sum out variable X from f to produce $h=\sum x f$ where $h(\mathbf{Y})=\sum_{x \in \operatorname{Dom}(X)} f(x, Y)$

$f(A, B)$		$h(B)$	
$a b$	0.9	b	1.3
$\mathrm{a} \sim \mathrm{b}$	0.1	$\sim \mathrm{~b}$	0.7
$\sim \mathrm{ab}$	0.4		
$\sim \mathrm{a} \sim \mathrm{b}$	0.6		

Restricting a Factor

- Let $f(X, Y)$ be a factor with variable X
- We restrict factor f to $X=x$ by setting X to the value x and "deleting". Define $h=f_{X=x}$ as: $h(Y)=f(x, Y)$

$\mathrm{f}(\mathrm{A}, \mathrm{B})$		$\mathrm{h}(\mathrm{B})=\mathrm{f}_{\mathrm{A}=\mathrm{a}}$	
ab	0.9	b	0.9
$\mathrm{a} \sim \mathrm{b}$	0.1	$\sim \mathrm{~b}$	0.1
$\sim \mathrm{ab}$	0.4		
$\sim \mathrm{a} \sim \mathrm{b}$	0.6		

Variable Elimination: No Evidence

- Computing prior probability of query variable X can be seen as applying these operations on factors

- $P(C)=\Sigma_{A, B} P(C \mid B) P(B I A) P(A)$

$$
\begin{aligned}
& =\Sigma_{B} P(C I B) \Sigma_{A} P(B \mid A) P(A) \\
& =\Sigma_{B} f_{3}(B, C) \Sigma_{A} f_{2}(A, B) f_{1}(A) \\
& =\Sigma_{B} f_{3}(B, C) f_{4}(B) \\
& =f_{5}(C)
\end{aligned}
$$

Define new factors: $f_{4}(B)=\Sigma_{A} f_{2}(A, B) f_{1}(A)$ and $f_{5}(C)=\Sigma_{B}$ $f_{3}(B, C) f_{4}(B)$

Variable Elimination: No Evidence

$f_{1}(A)$		$f_{2}(A, B)$		$f_{3}(B, C)$		$f_{4}(B)$		$f_{5}(C)$	
a	0.9	$a b$	0.9	$b c$	0.7	b	0.85	c	0.625
$\sim a$	0.1	$a \sim b$	0.1	$b \sim c$	0.3	$\sim b$	0.15	$\sim c$	0.375
		$\sim a b$	0.4	$\sim b c$	0.2				
		$\sim a \sim b$	0.6	$\sim b \sim c$	0.8				

Variable Elimination: No Evidence

$$
\begin{aligned}
P(D) & =\Sigma_{A, B, C} P(D I C) P(C l B, A) P(B) P(A) \\
& =\Sigma_{C} P(D I C) \Sigma_{B} P(B) \Sigma_{A} P(C I B, A) P(A) \\
& =\Sigma_{C} f_{4}(C, D) \Sigma_{B} f_{2}(B) \Sigma_{A} f_{3}(A, B, C) f_{1}(A) \\
& =\Sigma_{C} f_{4}(C, D) \Sigma_{B} f_{2}(B) f_{5}(B, C) \\
& =\Sigma_{C} f_{4}(C, D) f_{6}(C) \\
& =f_{7}(D)
\end{aligned}
$$

Define new factors: $f_{5}(B, C), f_{6}(C), f_{7}(D)$, in the obvious way

Variable Elimination: One View

- Write out desired computation using chain rule, exploiting independence relations in networks
- Arrange terms in convenient fashion
- Distribution each sum (over each variable) in as far as it will go
- Apply operations "inside out", repeatedly elimination and creating new factors
- Note that each step eliminates a variable

The Algorithm

- Given query variable Q , remaining variables \mathbf{Z}. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.

1. Choose an elimination ordering Z_{1}, \ldots, Z_{n} of variables in \mathbf{Z}.
2. For each Z_{j}-- in the order given -- eliminate $Z_{j} \in \mathbf{Z}$ as follows:
(a) Compute new factor $g_{j}=\Sigma_{Z j} f_{1} \times f_{2} \times \ldots \times f_{k}$, where the f_{i} are the factors in F that include Z_{j}
(b) Remove the factors f_{i} (that mention Z_{j}) from F and add new factor g_{j} to F
3. The remaining factors refer only to the query variable Q. Take their product and normalize to produce $P(Q)$

Example Again

Factors: $f_{1}(A) f_{2}(B) f_{3}(A, B, C)$ $f_{4}(C, D)$
Query: $P(D)$?
Elim. Order: A, B, C

Step 1: Add $f_{5}(B, C)=\Sigma_{A} f_{3}(A, B, C) f_{1}(A)$
Remove: $f_{1}(A), f_{3}(A, B, C)$
Step 2: $\operatorname{Add} f_{6}(C)=\sum_{B} f_{2}(B) f_{5}(B, C)$
Remove: $f_{2}(B), f_{5}(B, C)$
Step 3: Add $f_{7}(D)=\Sigma_{C} f_{4}(C, D) f_{6}(C)$
Remove: $\mathrm{f}_{4}(\mathrm{C}, \mathrm{D}), \mathrm{f}_{6}(\mathrm{C})$
Last factor $f_{7}(D)$ is (possibly unnormalized) probability $P(D)$

Variable Elimination: Evidence

- Computing posterior of query variable given evidence is similar; suppose we observe $\mathrm{C}=\mathrm{c}$:

$$
\begin{aligned}
P(A l c) & =a P(A) P(c l A) \\
& =a P(A) \Sigma_{B} P(c l B) P(B \mid A) \\
= & a f_{1}(A) \Sigma_{B} f_{3}(B, c) f_{2}(A, B) \\
= & a f_{1}(A) \Sigma_{B} f_{4}(B) f_{2}(A, B) \\
= & a f_{1}(A) f_{5}(A) \\
= & a f_{6}(A)
\end{aligned}
$$

New factors: $f_{4}(B)=f_{3}(B, c) ; f_{5}(A)=\Sigma_{B} f_{2}(A, B) f_{4}(B)$;

$$
f_{6}(A)=f_{1}(A) f_{5}(A)
$$

The Algorithm (with Evidence)

- Given query variable Q, evidence variables E (observed to be \mathbf{e}), remaining variables \mathbf{Z}. Let F be the set of factors corresponding to CPTs for $\{Q\} \cup Z$.

1. Replace each factor $f \in F$ that mentions a variable(s) in E with its restriction $\mathrm{f}_{\mathrm{E}=\mathrm{e}}$ (somewhat abusing notation)
2. Choose an elimination ordering Z_{1}, \ldots, Z_{n} of variables in \mathbf{Z}.
3. Run variable elimination as above.
4. The remaining factors refer only to the query variable Q . Take their product and normalize to produce $P(Q)$

Example

```
Factors: f
    f
Query: P(A)?
Evidence: D = d
Elim. Order: C, B
```


Restriction: replace $f_{4}(C, D)$ with $f_{5}(C)=f_{4}(C, d)$
Step 1: Add $f_{6}(A, B)=\Sigma_{C} f_{5}(C) f_{3}(A, B, C)$
Remove: $f_{3}(A, B, C), f_{5}(C)$
Step 2: Add $f_{7}(A)=\Sigma_{B} f_{6}(A, B) f_{2}(B)$
Remove: $f_{6}(A, B), f_{2}(B)$
Last factors: $f_{7}(A), f_{1}(A)$. The product $f_{1}(A) \times f_{7}(A)$ is (possibly unnormalized) posterior.
So $P(A l d)=a f_{1}(A) x f_{7}(A)$.

Some Notes on VE

- After each iteration j (elimination of Z_{i}) factors remaining in set F refer only to variables $\mathrm{Z}_{\mathrm{j}+1}, \ldots, \mathrm{Z}_{\mathrm{n}}$ and Q
- No factor mentions an evidence variable after the initial restriction
- Number of iterations is linear in number of variables

Some Notes on VE

- Complexity is linear in number of variables and exponential in size of the largest factor
- Recall each factor has exponential size in its number of variables
- Can't do any better than size of BN (since its original factors are part of the factor set)
- When we create new factors, we might make a set of variables larger

Some Notes on VE

- Size of resulting factors is determined by elimination ordering
- For polytrees, easy to find a good ordering
- For general BN, sometimes good orderings exist and sometimes they don't
- in which case inference is exponential in number of variables
- Finding the optimal elimination ordering is NP-hard

Elimination Ordering: Polytrees

- Inference is linear in size of the network
- Ordering: eliminate only "singly-connected" nodes
- Result: no factor ever larger than original CPTs
- What happens if we
 eliminate B first?

Effect of Different Orderings

- Suppose query variable is D. Consider different orderings for this network
- A,F,H,G,B,C,E: Good
- E,C,A,B,G,H,F: Bad

Relevance

- Certain variables have no impact on the query
- In ABC network, computing $\mathrm{P}(\mathrm{A})$ with no evidence requires elimination of B and C
- But when you sum out these variables, you compute a trivial factor
- Eliminating $\mathrm{C}: \mathrm{g}(\mathrm{C})=\sum \mathrm{cf}(\mathrm{B}, \mathrm{C})=\sum \mathrm{cPr}(\mathrm{CIB})$.
- Note that $\mathrm{P}(\mathrm{clb})+\mathrm{P}(\sim \mathrm{clb})=1$ and $\mathrm{P}(\mathrm{cl} \sim \mathrm{b})+\mathrm{P}(\sim \mathrm{cl} \sim \mathrm{b})=1$

Relevance: A Sound Approximation

- Can restrict our attention to relevant variables
- Given query Q, evidence E
- Q is relevant
- If any node Z is relevant, its parents are relevant
- If $E \in \mathbf{E}$ is a descendant of a relevant node, then E is relevant

Example

- $P(F)$
- $P($ FIE $)$
- $P($ FIE,C $)$

Probabilistic Inference

- Applications of BN in Al are virtually limitless
- Examples
- mobile robot navigation
- speech recognition
- medical diagnosis, patient monitoring
- fault diagnosis (e.g. car repairs)
- etc

Where do BNs Come From?

- Often handcrafted
- Interact with a domain expert to
- Identify dependencies among variables (causal structure)
- Quantify local distributions (CPTs)
- Empirical data, human expertise often used as a guide

Where do BNs Come From?

- Recent emphasis on learning BN from data
- Input: a set of cases (instantiations of variables)
- Output: network reflecting empirical distribution
- Issues: identifying causal structure, missing data, discovery of hidden (unobserved) variables, incorporating prior knowledge (bias) about structure

