Knowledge Representation

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Knowledge-based agents
- Logics in general
- Propositional Logic
- Reasoning with Propositional Logic
- First Order Logic

Introduction

- So far we have taken the following approach
- Figure out exactly what the problem is (problem definition)
- Design an algorithm to solve the problem (search algorithm)
- Execute the program

Knowledge-Based Agents

- An alternative approach
- Identify the knowledge needed to solve the problem
- Write down this knowledge in some language
- Use logical consequences to solve the problem

Knowledge-Based Agents

- Ideally
- We tell the agent what it needs to know
- The agent infers what to do and how to do it
- Agent has two parts
- Knowledge base: Set of facts expressed in a formal standard language
- Inference engine: Rules for deducing new facts

An Example: Wumpus World

- Goal:
- Get gold back to start without falling into a pit or getting eaten by the wumpus
- Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
OK	2,2	3,2	4,2
1,2	2,1	3,1	4,1
A OK			

(a)

1,4	2,4	3,4	4,4
${ }^{1,3} \mathbf{W}$!	2,3	3,3	4,3
$\begin{array}{\|c\|} \hline 1,2 \\ \hline \mathbf{A} \\ \mathbf{S} \\ \mathbf{O K} \end{array}$	$2,2$ OK	3,2	4,2
$1,1$	$\begin{array}{\|ll\|} \hline 2,1 & \mathbf{B} \\ & \mathbf{V} \end{array}$ OK	3,1 \mathbf{P} !	4,1

(a)

1,4	${ }^{2,4} \mathbf{P}$?	3,4	4,4
${ }^{1,3} \mathbf{W}$!		${ }^{3,3} \mathbf{P}$?	4,3
$\begin{array}{\|rc\|} \hline 1,2 & \mathrm{~S} \\ & \mathrm{~V} \\ \mathrm{OK} \end{array}$	$2,2$ V OK	3,2	4,2
$1,1$	$\begin{array}{\|cc\|} \hline 2,1 & \mathbf{B} \\ & \mathbf{V} \\ & \mathbf{O K} \end{array}$	3,1 P!	4,1

(b)

What Is A Logic?

- Logic
- A formal language for representing information so that conclusions can be drawn
- Logics have 2 components
- Syntax: defines the sentences of the language
- Semantics: defines the meaning of the sentences

Entailment

- Entailment means that "one thing follows from another"
- $\mathrm{KB} \mid=\mathrm{a}$
- Knowledge base (KB) entails sentence a if and only if a is true in all possible worlds where $K B$ is true
- Example:
- KB: I finished the AI assignment. I am happy
- a: I finished the AI assignment and I am happy.

Models

- A model is a formal "possible world" where a sentence can be evaluated
- m is a model of sentence a if a is true in m
- $M(\alpha)$ is the set of all models of a
- $K B I=a$ if and only of $M(K B) \subseteq M(a)$

KB: I finished the AI homework and I did not sleep last night
α : I finished the AI homework

Inference

- Given a KB, we want to be able to draw conclusions from it
- Inference procedure: KB I-i a
- Sentence a can be derived from KB by inference algorithm
- Desired properties:
- Soundness: the procedure only infers true statements
- If $\mathrm{KB} \mathrm{I}_{-\mathrm{i}} \mathrm{a}$ then $\mathrm{KB} \mathrm{I}=\mathrm{a}$
- Completeness: the procedure can generate all true statements
- $\quad \mid F K B I=a$ then it is true that $K B I-i a$

Propositional Logic

- Atomic Symbols: P, Q, R,...
- Each symbol stands for a proposition that can be either True or False
- Logical Connectives
- \neg (negation)
- $\quad \vee$ (or)
- \wedge (and)
- $\quad \Rightarrow$ (implies)
- $\quad \Leftrightarrow$ (if and only if, equivalence)

Propositional Logic: Syntax

- Grammar rules:
-Sentence \rightarrow AtomicSentence I
ComplexSentence
-Atomic Sentence \rightarrow True I False I Symbol
-Symbol \rightarrow PIQIRI...
-ComplexSentence \rightarrow Sentence $\downarrow \rightarrow$ Sentence I (Sentence \vee Sentence) I(Sentence ^ Sentence)
I (Sentence \Rightarrow Sentence)
I(Sentence \Leftrightarrow Sentence)

Propositional Logic: Semantics

- The semantics of propositional logic are defined by a truth table
- Symbols are mappings to an element in domain $\{0,1\}$

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Example: Propositional Logic

- Note that $P \Rightarrow Q$ is the same as $\neg P \vee Q$

P	Q	$\neg \mathrm{P}$	$\neg \mathrm{P} \vee \mathrm{Q}$	$\mathrm{P} \Rightarrow \mathrm{Q}$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Exercise: Show that $P \Leftrightarrow Q$ is the same as $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

Entailment: Propositional Logic

- Let
- $K B=(P \vee R) \wedge(Q \vee \neg R)$
- $a=P \vee R$
- Does KB I=a?

Entailment

- Check all possible models
- a must be true when ever $K B$ is true

P	Q	R	$P \vee R$	$Q \vee \neg R$	KB	α
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Inference: Propositional Logic

- Using truth tables is
- Sound: direct definition of entailment
- Complete: works for any KB and a and always terminates
- But...
- Really inefficient
- If there are n symbols, then there are 2^{n} models

More Terminology

- Sentences α and β are logically equivalent if they are true in the same set of models
- $\alpha \Leftrightarrow \beta$ if and only if $a l=\beta$ and $\beta l=\alpha$
- Deduction Theorem:
- For any sentences α and $\beta, a l=\beta$ if and only $(\alpha \Rightarrow \beta)$ is valid
- Useful Result (Proof by Contradiction):
- $a l=\beta$ if and only if the sentence $(\alpha \wedge \neg \beta)$ is unsatisfiable

Logical Equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Inference Rules

- Given a KB we want to derive conclusions
- Proof: sequence of inference rule applications

Modus Ponens

And Elimination
$\frac{\alpha \wedge \beta}{\alpha}$

Resolution

$$
\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}
$$

Unit Resolution

- Modus Ponens and And-Elimination together are sound

Example: KB= "If you are in AI class then you are happy and paying attention", "You are in AI class"

Modus Ponens: "You are happy and you are paying attention" And-Elimination: "You are happy"

Resolution

- Resolution is a sound and complete inference rule
- Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.

Resolution

- Resolution is a sound and complete inference rule
- Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.

Caveat: Given that α is true, we can not automatically generate $\alpha \vee \beta$ is true. However, we can find the answer to the question "Is $\alpha \vee \beta$ true".

Conjunctive Normal Form

- Resolution is applied to clauses of the form $\alpha \vee \beta \vee \ldots \vee \gamma$
- Any clause in propositional logic is logically equivalent to a clause in CNF
- conjunction of disjunctions
- eg. $(P \vee \neg Q \vee R) \wedge(\neg Q \vee A \vee B) \wedge \ldots$

Converting to CNF

1. Eliminate \Leftrightarrow, replacing $P \Leftrightarrow Q$ with

$$
(P \Rightarrow Q) \wedge(Q \Rightarrow P)
$$

2. Eliminate \Rightarrow, replacing $P \Rightarrow Q$ with $\neg P \vee Q$
3. Move " \neg " inwards, using $\neg(\neg P)=P$, $\neg(P \wedge Q)=\neg P \vee \neg Q$ and $\neg(P \vee Q)=\neg P \wedge \neg Q$
4. Distribute \vee over \wedge where possible

Resolution Algorithm

- Recall: To show $\mathrm{KBI}=\mathrm{a}$, we show that $(\mathrm{KB} \wedge \neg \mathrm{a})$ is unsatisfiable
- Resolution Algorithm:
- Convert (KB^ᄀa) to CNF
- For every pair of clauses that contain complementary literals
- Apply resolution to produce a new clause
- Add new clause to set of clauses
- Continue until
- No new clauses are being added (KB does not entail a) or
- Two clauses resolve to produce empty clause (KBl=a)

Complexity of Inference

- Inference for propositional logic is NP-complete
- If all clauses are Horn clauses, then inference is linear in size of KB!
- Horn clause: Disjunction of literals where at most one literal is positive
- $\quad \neg P \vee Q \vee \neg R$ is a Horn clause
- $\quad \mathrm{P} \vee \mathrm{Q} \vee \mathrm{R}$ is not a Horn clause
- Every Horn clauses establishes exactly one new fact
- $\quad \neg P \vee Q \vee \neg R \Leftrightarrow(P \wedge R) \Rightarrow Q$
- We add all new facts in n passes

Forward Chaining

- When a new sentence α is added to the KB
- Look for all sentences that share literals with a
- Perform resolution
- Add new sentence to KB and continue
- Forward chaining is
- Data-driven
- Eager: new facts are inferred as soon as possible

Backward Chaining

- When a query q is asked of the KB
- If q is in the KB , return True
- Otherwise, use resolution for q with other sentences in the KB and continue from result
- Backward chaining is
- Goal driven: Centers reasoning around query being asked
- Lazy: new facts are inferred only when needed

Forward vs Backward

- Which is better? That depends!
- Backward Chaining:
- Does not grow the KB as much
- Focused on proof so is generally more efficient
- Does nothing until a question is asked
- Typically used in proofs by contradiction

Forward vs Backward

- Forward Chaining
- Extends the KB and improves understanding of the world
- Typically used in tasks where the focus is on providing a model of the world

First Order Logic

- New elements
- Predicates
- Define objects, properties, relationships
- Quantifiers
- $\quad \forall$ (for all), \exists (there exists) are used in statements that apply to a class of objects
- Example: $\forall x$ On(x, Table) \Rightarrow Fruit(x)

Sentences

- Terms
- Constants, variables, function(term ${ }_{1}, \ldots$, term $_{n}$)
- Atomic Sentences
- Predicate(term ${ }_{1}$,term ${ }_{2}$), term ${ }_{1}=$ term ${ }_{2}$
- Complex Sentences
- Combine atomic sentences with connectives
- Likes(Alice, IceCream)^Likes(Bob, IceCream)

Semantics

- Sentences are true with respect to their interpretation
- Model contains objects and relations among them
- Interpretation specifies referents for
- Constant symbols (objects)
- Predicate symbols (relations)
- Function symbols (functional relations)

Semantics

- Atomic sentence Predicate(term ${ }_{1}, \ldots$, term $\left._{n}\right)$ is true if and only if the relation referred to by Predicate holds for objects term $_{1}, \ldots$ term $_{n}$

Semantics

Universal Quantification

- Form: $\forall<$ variables> <sentence>
- Everyone taking Al is smart
- $\quad \forall x$ Taking $(x, A I) \Rightarrow S m a r t(x)$
- Equivalent to
- (Taking(Alice, Al$) \Rightarrow$ Smart(Alice)) $\wedge($ Taking $(B o b, A I) \Rightarrow S m a r t(B o b)) . .$.
- Example: $\forall x$ Taking $(x, A I) \wedge \operatorname{Smart}(x)$
- Why is this unlikely not what you mean?
- Typically \Rightarrow is the main connector!

Existential Quantification

- Form: $\exists x<$ variables><sentence>
- Someone is taking AI is smart
- \quad x Taking(x, Al) ^Smart(x)
- Equivalent to
- (Taking(Alice, AI)^Smart(Alice)) $\vee($ Taking(Bob,AI) Smart(Bob) $) \vee . .$.
- Example: $\exists x$ Taking $(x, A I) \Rightarrow \operatorname{Smart}(x)$
- Why is this unlikely to be what you want?
- Typically \wedge is the main connector

Properties of Quantifiers

- Basic Rules
- $\quad \forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\forall x \exists y$ is not the same as $\exists y \forall x$
- Example
- $\exists x \forall y$ Loves (x, y)
- $\forall y \exists x$ Loves(x,y)

Quantifier Duality

- Each quantifier can be expressed using the other quantifier and negation
- $\forall x$ Likes(x,Broccoli)
- $\neg \exists x \neg$ Likes(x,Broccoli)
- $\exists x$ Likes(x,Broccoli)
- $\neg \forall \mathrm{X} \neg$ Likes(x, Broccoli)

Inference and FOL

- We know how to do inference in Propositional Logic: find a such that KBI =a
- Is it possible to use these techniques for FOL?
- Have to handle quantifiers, predicates, functions, ...

Universal Instantiation

- Given sentence $\forall x P(x) \wedge Q(x) \Rightarrow R(x)$ then we want to infer $P(J o h n) \wedge Q(J o h n) \Rightarrow R(J o h n)$ and $P($ Anne $) \wedge P($ Anne $) \Rightarrow R($ Anne $)$ and ...

Universal Instantiation (UI)

Universal Instantiation

- A ground term is a term without variables
- $\operatorname{SUBST}(\theta, a)$ is the result of applying substitution θ to sentence a
- Example
- SUBST $(\{x /$ John $\}, \forall x P(x) \wedge Q(x) \Rightarrow R(x))=P($ John $) \wedge Q($ John $) \Rightarrow R($ John $)$
$-\operatorname{SUBST}(\{x /$ Father $($ John $)\}, \forall x P(x) \wedge Q(x) \Rightarrow R(x))$ $=P($ Father $($ John $)) \wedge Q($ Father $($ John $)) \Rightarrow R($ Father $($ John $))$

Existential Instantiation

- For any sentence a, variable v and constant symbol K that does not appear anywhere in the KB

Example
$\exists x$ Crown (x) yields
Crown $\left(C_{1}\right)$ (C_{1} is a new constant)

Reduction to Propositional Inference

- Suppose the KB contained the following
- $\forall x \operatorname{Cat}(x) \wedge$ Orange $(x) \Rightarrow \operatorname{Cute}(x)$
- Orange(Kitty)
- Cat(Kitty)
- Sister(Kitty, Katy)
- Instantiating the universal sentence in all possible ways we have a new KB:
- Cat(Kitty)^Orange(Kitty) \Rightarrow Cute(Kitty)
- Cat(Katy)^Orange(Katy) \Rightarrow Cute(Katy)
- Cat(Kitty)
- Sister(Kitty, Katy)
- The new KB is in propositional form. The symbols are - Cat(Kitty), Cat(Katy), Orange(Kitty), Cute(Katy), Sister(Kitty,Katy), ...

Example

- KB: Bob is a buffalo. Pat is a pig. Buffalos are faster than pigs.

Reduction Continued

- Every FOL KB can be propositionalized
- Transformed into propositional logic
- This preserves entailment
- A ground sentence is entailed by the new KB if and only if it was entailed in the original KB
- Thus we can apply resolution (sound and complete) and return the result?

Reduction Continued

- Problem: Functions
- The set of possible ground substitutions can be infinite
- Example: Assume the KB contains function Mother(x)
- $\operatorname{SUBST}(\{x \mid J o h n\}, M o t h e r(x))=$ Mother(John)
- $\operatorname{SUBST}(\{x \mid \operatorname{Mother}(\operatorname{John})\}, \operatorname{Mother}(\mathrm{x}))=\operatorname{Mother}(\operatorname{Mother}($ John $))$
- SUBST(\{x| Mother(John) $\}$,Mother(Mother(x))=Mother(Mother(Mother(John)))

Reduction Continued

- Theorem (Herbrand 1930): If a sentence is entailed by a FOL KB, then it is entailed by a finite subset of the propositionalized KB.
- Idea: for $\mathrm{n}=0$ to ∞
- Create a propositional KB by instantiating with depth n terms
- Check if a is entailed by this KB. If yes, then stop.

Reduction Continued

- Problem: Works if a is entailed by the KB but it loops forever if a is not entailed
- Theorem: (Turing 1936, Church 1936) Entailment in FOL is semi-decidable.
- Algorithms exist that say yes to every entailed sentence
- No algorithm exists that says no to every unentailed sentence

Problems with Propositionalization

- Problem is with universal instantiation
- Generates many irrelevant sentences due to substitutions
- Idea: Find a substitution that makes different logical statements look identical
- Unification

Unification

- Unify algorithm
- Takes two sentences and returns a unifier if one exists
- $\operatorname{Unify}(p, q)=\theta$ where $\operatorname{SUBST}(\theta, p)=\operatorname{SUBST}(\theta, q)$
- $\quad \theta$ is the Unifier

p	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,Paul)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,Paul)	

Generalized Modus Ponens

- Conditions: Atomic sentences $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}$ ' and q where there is a substitution θ such that $\operatorname{SUBST}\left(\theta, \mathrm{p}_{\mathrm{i}}\right)=\operatorname{SUBST}\left(\theta, \mathrm{p}_{\mathrm{i}}\right)$

$$
\frac{p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{n}^{\prime},\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \Rightarrow q}{\operatorname{SUBST}(\theta, q)}
$$

Caveats:
GMP used with a KB of definite clauses
(exactly one positive literal).
All variables are assumed to be universally
quantified

Inference Algorithms

- You can now use
- Forward chaining
- Backward chaining
- Resolution

Forward Chaining Example

Backward Chaining Example

Resolution Review

- Resolution is a refutation procedure
- To prove $K B I=\alpha$ show that $K B \wedge \neg a$ is unsatisfiable
- Resolution used KB, $\neg a$ in CNF
- Resolution inference rule combines two clauses to make a new one
Inference
continues until an
empty clause is
derived
(contradiction)

Resolution

$$
\frac{l_{1} \vee \cdots \vee l_{k}, m_{1} \vee \cdots m_{n}}{\left(l_{1} \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_{k} \vee m_{1} \vee \cdots \vee m_{i-1} \vee m_{i+1} \vee \cdots \vee m_{n}\right) \theta}
$$

Where Unify $\left(l_{i} ; m_{i}\right)=\theta$
The two clauses, l_{i} and m_{i}, are assumed to be
standardized apart so that they share no variables

> Example $\quad \neg \operatorname{Rich}(\mathrm{x}) \vee \operatorname{Unhappy}(\mathrm{x})$
> $\operatorname{Rich}(\mathrm{John})$

Unhappy(John) with $\theta=\{x /$ John $\}$

Converting to CNF

- Example $\forall x[\forall y A(y) \Rightarrow L(x, y)] \Rightarrow[\exists y L(y, x)]$
- Eliminate \Leftrightarrow and \Rightarrow
- $\quad \forall x[\neg \forall y \neg A(y) \vee L(x, y)] \vee[\exists y L(y, x)]$
- Move \neg inwards
- $\quad \forall x[\exists y A(y) \wedge \neg L(x, y)] \vee[\exists y L(y, x)]$
- Standardize variables
- $\quad \forall x[\exists y A(y) \wedge \neg L(x, y)] \vee[\exists z L(z, x)]$
- Skolemize
- $\quad \forall x[A(F(x)) \wedge \neg L(x, F(x))] \vee[L(G(x), x)]$
- Drop universal quantifiers
- $\quad[A(F(x)) \wedge \neg L(x, F(x))] \vee[L(G(x), x)]$
- Distribute \vee over \wedge
- $\quad[A(F(x)) \vee L(G(x), x)] \wedge[\neg L(x, F(x)) \vee L(G(x), x)]$

Resolution Example

- Marcus is a person
- Marcus is a Pompeian
- All Pompeians are Roman
- Caesar is a ruler
- All Romans are either loyal to Caesar or hate Caesar
- Everyone is loyal to someone
- People only try to assassinate rulers they are not loyal to
- Marcus tries to assassinate Caesar
- Query: Does Marcus hate Caesar?

Conclusion

- Syntax, semantics, entailment and inference
- Propositional logic and FOL
- Understand how forward-chaining, backward-chaining and resolution work

