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Introduction

e So far we have taken the following
approach

- Figure out exactly what the problem is
(problem definition)

- Design an algorithm to solve the problem
(search algorithm)

- EXxecute the program



Knowledge-Based Agents

e An alternative approach

- |dentify the knowledge needed to solve the
problem

- Write down this knowledge in some
language

- Use logical consequences to solve the
problem



Knowledge-Based Agents

o |deally

- We tell the agent what it needs to know

- The agent infers what to do and how to do it

e Agent has two parts

- Knowledge base: Set of facts expressed in a formal

standard language

- Inference engine: Rules for deducing new facts

Inference engine

Knowledge base

g domain-independent algorithms

~e—————— domain-specific content



An Example: Wumpus World

 Goal:

— Get gold back to start without falling into a pit or getting
eaten by the wumpus

 Environment S 555 S
. 4 Stench 5
— Squares adjacent to wumpus are smelly

— Squares adjacent to pit are breezy

— Gilitter iff gold is in the same square 8 .\?
o= . o 3 L
— Shooting kills wumpus if you are facing it $od
— Shooting uses up the only arrow I
é< n e Z Broee —
— Grabbing picks up gold if in same square 5 iy |~ ——

— Releasing drops the gold in same square

—
|
) ‘

- Sensors: Stench, Breeze, Glitter, Bump, Scream Vép
I\
* Actuators: Left turn, Right turn, Forward, Grab, START

Release, Shoot , i 2

NN



Wumpus World

1,4 2,4 3,4 4.4 = Agent 1,4 2,4 3,4 4.4
B = Breeze
G = Glitter, Gold
OK = Safe square
1,3 2,3 3,3 4.3 P = Pit 1,3 2,3 3,3 4.3
S = Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 4,2
P?
OK OK
1,1 2.1 1 4.1 1,1 2.1 1 4.1
v B
OK OK OK OK
(a) ()
1,4 2,4 3,4 4,4 la] = Agent 1,4 24 3,4 4,4
B = Breeze P
G = Glitter, Gold
OK = Safe square
1,3 - 2,3 3,3 4,3 P =Pt 1,3 w! 2,3 3,3 P2 4,3
S = Stench S G
V = Visited B
W = Wumpus
1,2 2,2 3,2 4,2 1,2 S 2,2 3,2 4,2
S \% A%
OK OK OK OK
1,1 2.1 B 3.1 P 4.1 1,1 2,1 B 3.1 p! 4,1
A% \% \% \%
OK OK OK OK
(a) (b)




What Is A Logic?

e Logic

- Aformal language for representing
information so that conclusions can be drawn

e | ogics have 2 components

- Syntax: defines the sentences of the
language

- Semantics: defines the meaning of the
sentences



Entallment

e Entailment means that “one thing follows from
another”

- KBIl=a

e Knowledge base (KB) entails sentence a if and
only if a is true in all possible worlds where KB is
true

e Example:
- KB: | finished the Al assignment. | am happy

- a: | finished the Al assignment and | am happy.



Models

e A model is a formal “possible world” where a
sentence can be evaluated

- mis a model of sentence a if a is true in m
e M(a) is the set of all models of a
e KB |=a if and only of M(KB)cM(a)

KB: I finished the AT homework and I did
not sleep last night

o : I finished the AT homework




Inference

e Given a KB, we want to be able to draw conclusions
from it

e Inference procedure: KB I-i a

- Sentence a can be derived from KB by inference
algorithm

e Desired properties:

- Soundness: the procedure only infers true statements

- If KB |- a then KB |=a

- Completeness: the procedure can generate all true
statements

- IF KB I=a then it is true that KBI-i a



Propositional Logic

e Atomic Symbols: P, Q, R,...

- Each symbol stands for a proposition that can be either True
or False

e Logical Connectives
- - (negation)
- v (or)
- A (and)

- = (implies)

- & (if and only if, equivalence)



Propositional Logic: Syntax

« Grammar rules:

—Sentence — AtomicSentence |
ComplexSentence

—Atomic Sentence — True | False | Symbol

—Symbol = PIQIRI ...
—ComplexSentence — Sentence |- Sentence
(Sentence v Sentence)

(Sentence A Sentence)
(Sentence = Sentence)

|(Sentence & Sentence)



Propositional Logic: Semantics

e The semantics of propositional logic are defined by a
truth table

- Symbols are mappings to an element in domain {0,1}

Pv Q

P=Q

_\_\OO'U

OO0

O Ol = =

—\O—\—\“'

— O O —




Example: Propositional Logic

e Note that P=Q is the same as -PvQ

- P -Pv Q P=Q

_\_\OO'U

Q
0
1
0
1

1
1
0
0

Exercise: Show that P&Q is the same as (P =Q)A(Q=P)

|5



Entailment: Propositional Logic

o | et
- KB=(PvR)A(Qv-R)
- a=PvR

e Does KB [=a?



Entallment

Check all possible models

a must be true when ever KB is true

P Q R PVvR Qv R KB a
0 0 0 0 1 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 1
0 1 1 1 1 1 1
1 0 0 1 1 1 1
1 0 1 1 0 0 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1




Inference: Propositional Logic

e Using truth tables is
- Sound: direct definition of entailment

- Complete: works for any KB and a and always
terminates

e But...

- Really inefficient

- If there are n symbols, then there are 2" models



More Terminology

e Sentences a and (3 are logically equivalent if
they are true in the same set of models

- aefif and only if al=p and Bl=a

e Deduction Theorem:

- For any sentences a and 3, al=f if and only (a=f) is

valid

o Useful Result (Proof by Contradiction):

- al=B if and only if the sentence (aA—f) is unsatisfiable



Logical Equivalences

(@A PB) = (BAa) commutativity of A
(V) = (Va) commutativity of V
((@AB)Ay) = (aA(BA7y)) associativity of A
((@aVpB)Vy) = (aV(BVry)) associativity of V
(=) = a double-negation elimination
(@ = B) = (- = —a) contraposition
(@ = [) = (-aV[3) implication elimination
(@ & ) = ((@ = B)AN(B = «)) biconditional elimination
“(aAB) = (~aV-fF) de Morgan
“(aV ) = (raA—f3) de Morgan
(@A (BVY) = ((aAB)V(aAy)) distributivity of A over V
(aV(BAY) = ((aVB)A(aVy)) distributivity of V over A

20



Inference Rules

e (Given a KB we want to derive conclusions

Proof: sequence of inference rule applications

Modus Ponens Resolution
o, = 3 aV B,78Vy
I¥) N
And Elimination Unit Resolution
v /\ /3 oV /3 —lﬁ

(@4 X

21



Inference

e Modus Ponens and And-Elimination
together are sound

Example: KB= "If you are in AI class then you are happy and
paying attention”, "You are in AT class”

Modus Ponens: "You are happy and you are paying attention”

And-Elimination: "You are happy"

22



Resolution

e Resolution is a sound and complete
inference rule

- Any complete search algorithm, applying
only the resolution rule, can derive any
conclusion entailed by any knowledge base
In propositional logic.

23



Resolution

e Resolution is a sound and complete
inference rule

- Any complete search algorithm, applying only
the resolution rule, can derive any conclusion
entailed by any knowledge base in
propositional logic.

24



Conjunctive Normal Form

e Resolution is applied to clauses of the
form avBv...vy

e Any clause In propositional logic Is
logically equivalent to a clause in CNF

- conjunction of disjunctions

- eg. (Pv-QvR)A(-QVAVB)A...

25



Converting to CNF

1. Eliminate &, replacing P=Q with
(P=Q)A(Q=P)

2. Eliminate =, replacing P=Q with =PvQ

3. Move “=” inwards, using =(—-P)=P,
—(PAQ)=-Pv-Q and =(PvQ)=—PA-Q

4. Distribute v over A where possible

26



Resolution Algorithm

e Recall: To show KBI=a, we show that (KBA-q) is
unsatisfiable

e Resolution Algorithm:
- Convert (KBA-a) to CNF

- For every pair of clauses that contain complementary
literals

- Apply resolution to produce a new clause
- Add new clause to set of clauses
- Continue until
o No new clauses are being added (KB does not entail a) or

o Two clauses resolve to produce empty clause (KBl=a)

27



Complexity of Inference

e |nference for propositional logic is NP-complete

e |f all clauses are Horn clauses, then inference
IS linear In size of KB!

- Horn clause: Disjunction of literals where at most one
literal is positive

- -PvQv-R is a Horn clause

- PvQVR is not a Horn clause

- Every Horn clauses establishes exactly one new fact

- -PvQv-R & (P/\R)=>Q

- We add all new facts in n passes

28



Forward Chaining

e When a new sentence a is added to the KB
- Look for all sentences that share literals with a
- Perform resolution
- Add new sentence to KB and continue

e Forward chaining is

- Data-driven

- Eager: new facts are inferred as soon as possible

29



Backward Chaining

e \WWhen a query q is asked of the KB
- If qisinthe KB, return True

- Otherwise, use resolution for g with other
sentences in the KB and continue from result

e Backward chaining is

- (@Goal driven: Centers reasoning around query
being asked

- Lazy: new facts are inferred only when needed

30



Forward vs Backward

e \Which is better? That depends!

e Backward Chaining:
- Does not grow the KB as much

- Focused on proof so is generally more
efficient

- Does nothing until a question is asked

- Typically used in proofs by contradiction

31



Forward vs Backward

e Forward Chaining

- Extends the KB and improves
understanding of the world

- Typically used in tasks where the focus is on
providing a model of the world

32



First Order Logic

e New elements

- Predicates

- Define objects, properties, relationships

- Quantifiers

- Vv (for all), 3 (there exists) are used in statements that apply to a
class of objects

e Example: vx On(x, Table)=Fruit(x)

33



Sentences

e Jerms

- Constants, variables, function(terms,...,termp)

e Atomic Sentences

- Predicate(termq,termy), termi=termso

e Complex Sentences
- Combine atomic sentences with connectives

- Likes(Alice, IceCream)aLikes(Bob, IceCream)

34



Semantics

e Sentences are true with respect to their
interpretation

- Model contains objects and relations among
them

- Interpretation specifies referents for

- Constant symbols (objects)
- Predicate symbols (relations)

- Function symbols (functional relations)

35



Semantics

e Atomic sentence Predicate(terms,...,termn)
IS true if and only if the relation referred to

by Predicate holds for objects
terms,...termp

36



Semantics




Universal Quantification

Form: v<variables> <sentence>

- Everyone taking Al is smart

- vx Taking(x,Al)=Smart(x)

Equivalent to
- (Taking(Alice, Al)=Smart(Alice))A(Taking(Bob, Al)=Smart(Bob))...

Example: vx Taking(x,Al) ASmart(x)
- Why is this unlikely not what you mean?

Typically = is the main connector!

38



Existential Quantification

e [orm: Ix<variables><sentence>

- Someone is taking Al is smart

- 3x Taking(x,Al)ASmart(x)

e [Equivalentto

- (Taking(Alice,
Al)ASmart(Alice))v(Taking(Bob,Al)ASmart(Bob))v...

e Example: ax Taking(x,Al)=Smart(x)

- Why is this unlikely to be what you want?

o Typically A is the main connector

39



Properties of Quantifiers

e Basic Rules

- VvXVy Is the same as vyvx

- 3Ix3y IS the same as 3Iyax

- Vvx3y IS not the same as 3yvx
e Example

- 3xvy Loves (Xx,y)

- Vvyax Loves(x,y)

40



Quantifier Duality

e Fach quantifier can be expressed using
the other quantifier and negation

- VX Likes(x,Broccoli)

- =3x-Likes(x,Broccoli)

- 3x Likes(x,Broccoli)

- =vXx-Likes(x,Broccoli)

4]



Inference and FOL

e \We know how to do inference in
Propositional Logic: find a such that KBI
=l

- |s it possible to use these techniques for
FOL?

- Have to handle quantifiers, predicates,
functions, ...

42



Universal Instantiation

e Given sentence vx P(x)AQ(x)=R(x) then
we want to infer P(John)AQ(John)=R(John)
and P(Anne)AP(Anne)=R(Anne) and ...

Universal Instantiation (UI)

— V is a variable

k
VUO{ - o. IS a sentence

SUBST ({v/g}a)

Substitute g for all occurrences \
of vina

g is a ground term*

43



Universal Instantiation

e Aground term is a term without
variables

e SUBST(6,a) is the result of applying
substitution 8 to sentence a

e Example

— SUBST({x/John},v x P(x)AQ(x)= R(x)) = P(John)Aa Q(John)=R(John)
— SUBST({x/Father(John)},v x P(X)AQ(X)= R(x))
=P(Father(John))AQ(Father(John))=R(Father(John))

44



Existential Instantiation

e For any sentence q, variable v and
constant symbol K that does not
appear anywhere in the KB

Skolum Constant

=(3e
SUBST({x/k"},a)/
Example

3 X Crown(x) yields

CPOWH(CI) (C, is a new constant)

45



Reduction to Propositional
Inference

» Suppose the KB contained the following
— vx Cat(x)A Orange(x)=Cute(x)

— Orange(Kitty)
— Cat(Kitty)
— Sister(Kitty, Katy)

* |Instantiating the universal sentence in all possible ways
we have a new KB:
— Cat(Kitty) AOrange(Kitty)=Cute(Kitty)

— Cat(Katy)AOrange(Katy)=Cute(Katy)

— Cat(Kitty)
— Sister(Kitty, Katy)

* The new KB is in propositional form. The symbols are
— Cat(Kitty), Cat(Katy), Orange(Kitty), Cute(Katy), Sister(Kitty,Katy), ...

46



Example

e KB: Bob is a buffalo. Pat is a pig.
Buffalos are faster than pigs.

47



Reduction Continued

e Every FOL KB can be propositionalized
- Transformed into propositional logic

e This preserves entailment

- A ground sentence is entailed by the new KB
If and only if it was entailed in the original KB

e Thus we can apply resolution (sound
and complete) and return the result?

48



Reduction Continued

e Problem: Functions
- The set of possible ground substitutions can
be infinite

- Example: Assume the KB contains function
Mother(x)

- SUBST({xlJohn},Mother(x))=Mother(John)
- SUBST({xIMother(John)},Mother(x))=Mother(Mother(John))

- SUBST(xI
Mother(John)},Mother(Mother(x))=Mother(Mother(Mother(John)))

49



Reduction Continued

e Theorem (Herbrand 1930): If a sentence is
entailed by a FOL KB, then it is entailed by
a finite subset of the propositionalized KB.

e |dea: for n=0 to oo

- Create a propositional KB by instantiating with
depth n terms

- Check if a is entailed by this KB. If yes, then
stop.

50



Reduction Continued

e Problem: Works if a is entailed by the
KB but it loops forever if a is not entailed

e Theorem: (Turing 1936, Church 1936)
Entailment in FOL is semi-decidable.

- Algorithms exist that say yes to every
entailed sentence

- No algorithm exists that says no to every
unentailed sentence

51



Problems with
Propositionalization

e Problem is with universal instantiation

- (Generates many irrelevant sentences due to
substitutions

¢ |dea: Find a substitution that makes
different logical statements look
identical

- Unification

52



Unification

e Unify algorithm
- Takes two sentences and returns a unifier if one exists

- Unify(p,q)=6 where SUBST(6,p)=SUBST(8,q)

- O is the Unifier

p q 0
Knows(John,x) Knows(John,Jane)
Knows(John,x) Knows(y,Paul)
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Paul)

53



(Generalized Modus Ponens

e Conditions: Atomic sentences pi, pi’ and g
where there Is a substitution 6 such that
SUBST(0,pi)=SUBST(0,pi’)

PPy 3Dy (PLAD2A ... Apn) = g
SUBST (0, q)

Caveats:

GMP used with a KB of definite clauses
(exactly one positive literal).

All variables are assumed to be universally
quantified

54



Inference Algorithms

e You can now use
- Forward chaining
- Backward chaining

- Resolution

55



Forward Chaining Example




Backward Chaining Example




Resolution Review

e Resolution is a refutation procedure

- To prove KB I=a show that KBA—a is unsatisfiable

e Resolution used KB, -a in CNF

e Resolution inference rule combines two clauses to make a
new one

Inference
continues until an

\/ empty clause is

C, derived
(contradiction)

58



Resolution

Vo Vi my Ve

(Ve VL Vg Ve VI VMg Ve Vo Vimg g Ve Vimg )6

Where Unify(l.,: m)=6

The two clauses, |. and m,, are assumed to be
standardized apart so that they share no variables

Example =Rich(x)vUnhappy(x)
Rich(John)

Unhappy(John) with 6 = {x/John}

59



Converting to CNF

Example vx[vy A(y)=L(x,y)]=[3y L(y,x)]
Eliminate & and =

- WX[=vy-A(y)vL(xy)lv3y L(y,x)]
Move - inwards

- Wx[ayA(y)a-L(xy)lv(ay L(y.x)]
Standardize variables

- WX[3yA(y)A-L(xy)lv[3z L(z,X)]
Skolemize

- IX[A(F(x))A-L(x,F(x))]v[ L(G(x),x)]
Drop universal quantifiers

- [AF(X)A-LXFE)IVE L(G(X),x)]
Distribute v over A

- [A(F(x)) vL(G(x),x)] A [L(x,F(x)) vL(G(x),x)]

60



Resolution Example

Marcus is a person

Marcus is a Pompeian

All Pompeians are Roman

Caesar is a ruler

All Romans are either loyal to Caesar or hate Caesar
Everyone is loyal to someone

People only try to assassinate rulers they are not loyal to
Marcus tries to assassinate Caesar

Query: Does Marcus hate Caesar?

61



Conclusion

¢ Syntax, semantics, entailment and
inference

e Propositional logic and FOL

e Understand how forward-chaining,
backward-chaining and resolution work
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