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Outline

• Knowledge-based agents

• Logics in general

• Propositional Logic

• Reasoning with Propositional Logic

• First Order Logic
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Introduction

• So far we have taken the following 
approach

- Figure out exactly what the problem is 
(problem definition)

- Design an algorithm to solve the problem 
(search algorithm)

- Execute the program
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Knowledge-Based Agents

• An alternative approach

- Identify the knowledge needed to solve the 
problem

- Write down this knowledge in some 
language

- Use logical consequences to solve the 
problem
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Knowledge-Based Agents

• Ideally
- We tell the agent what it needs to know

- The agent infers what to do and how to do it

• Agent has two parts

- Knowledge base: Set of facts expressed in a formal 
standard language

- Inference engine: Rules for deducing new facts
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An Example: Wumpus World

• Goal: 
– Get gold back to start without falling into a pit or getting 

eaten by the wumpus

• Environment
– Squares adjacent to wumpus are smelly
– Squares adjacent to pit are breezy
– Glitter iff gold is in the same square
– Shooting kills wumpus if you are facing it
– Shooting uses up the only arrow
– Grabbing picks up gold if in same square
– Releasing drops the gold in same square

• Sensors: Stench, Breeze, Glitter, Bump, Scream
• Actuators: Left turn, Right turn, Forward, Grab, 

Release, Shoot
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Wumpus World
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What Is A Logic?
• Logic

- A formal language for representing 
information so that conclusions can be drawn

• Logics have 2 components

- Syntax: defines the sentences of the 
language

- Semantics: defines the meaning of the 
sentences
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Entailment
• Entailment means that “one thing follows from 

another”

- KB |= α

• Knowledge base (KB) entails sentence α if and 
only if α is true in all possible worlds where KB is 
true

• Example:

- KB: I finished the AI assignment. I am happy

- α: I finished the AI assignment and I am happy.
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Models
• A model is a formal “possible world” where a 

sentence can be evaluated

- m is a model of sentence α if α is true in m

• M(α) is the set of all models of α

• KB |=α if and only of M(KB)⊆M(α)
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KB: I finished the AI homework and I did 
not sleep last night

α : I finished the AI homework



Inference
• Given a KB, we want to be able to draw conclusions 

from it

• Inference procedure: KB |-i α

- Sentence α can be derived from KB by inference 
algorithm 

• Desired properties:

- Soundness: the procedure only infers true statements
- If KB |-i α then KB |= α

- Completeness: the procedure can generate all true 
statements

- IF KB |=α then it is true that KB|-i α
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Propositional Logic
• Atomic Symbols: P, Q, R,...

- Each symbol stands for a proposition that can be either True 
or False

• Logical Connectives

- ¬ (negation)

- ∨ (or)

- ∧ (and)

- ⇒ (implies)

- ⇔ (if and only if, equivalence)
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Propositional Logic: Syntax
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• Grammar rules:
–Sentence →AtomicSentence |

ComplexSentence
–Atomic Sentence → True | False | Symbol
–Symbol → P | Q | R | …
–ComplexSentence → Sentence |¬ Sentence

| (Sentence ∨ Sentence)
|(Sentence ∧ Sentence)
| (Sentence ⇒ Sentence)
|(Sentence ⇔ Sentence)



Propositional Logic: Semantics

• The semantics of propositional logic are defined by a 
truth table

- Symbols are mappings to an element in domain {0,1}
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P Q ¬P P∧ Q P∨ Q P⇒ Q P⇔Q
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1



Example: Propositional Logic

• Note that P⇒Q is the same as ¬P∨Q
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P Q ¬ P ¬P∨ Q P⇒ Q

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 0 1 1

Exercise: Show that P⇔Q is the same as (P ⇒Q)∧(Q⇒P)



Entailment: Propositional Logic

• Let 

- KB=(P∨R)∧(Q∨¬R)

- α=P∨R

• Does KB |=α?
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Entailment
• Check all possible models

- α must be true when ever KB is true

17

P Q R P∨R Q∨¬ R KB α

0 0 0 0 1 0 0

0 0 1 1 0 0 0

0 1 0 0 1 0 1

0 1 1 1 1 1 1

1 0 0 1 1 1 1

1 0 1 1 0 0 1

1 1 0 1 1 1 1

1 1 1 1 1 1 1



Inference: Propositional Logic

• Using truth tables is

- Sound: direct definition of entailment

- Complete: works for any KB and α and always 
terminates

• But...

- Really inefficient

- If there are n symbols, then there are 2n models
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More Terminology
• Sentences α and β are logically equivalent if 

they are true in the same set of models

- α⇔β if and only if α|=β and β|=α

• Deduction Theorem:

- For any sentences α and β, α|=β if and only (α⇒β) is 
valid 

• Useful Result (Proof by Contradiction):

- α|=β if and only if the sentence (α∧¬β) is unsatisfiable

19



Logical Equivalences
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Inference Rules

• Given a KB we want to derive conclusions

- Proof: sequence of inference rule applications
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Modus Ponens Resolution

And Elimination Unit Resolution



Inference

• Modus Ponens and And-Elimination 
together are sound
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Example:  KB= “If you are in AI class then you are happy and 
paying attention”, “You are in AI class”

Modus Ponens:  “You are happy and you are paying attention”

And-Elimination: “You are happy”



Resolution

• Resolution is a sound and complete 
inference rule

- Any complete search algorithm, applying 
only the resolution rule, can derive any 
conclusion entailed by any knowledge base 
in propositional logic.
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Resolution
• Resolution is a sound and complete 

inference rule

- Any complete search algorithm, applying only 
the resolution rule, can derive any conclusion 
entailed by any knowledge base in 
propositional logic.
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Caveat: Given that α is true, we can not automatically generate 
α∨β is true.  However, we can find the answer to the question “Is 
α∨β true”.



Conjunctive Normal Form

• Resolution is applied to clauses of the 
form α∨β∨...∨γ

• Any clause in propositional logic is 
logically equivalent to a clause in CNF

- conjunction of disjunctions

- eg. (P∨¬Q∨R)∧(¬Q∨A∨B)∧...
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Converting to CNF
1. Eliminate ⇔, replacing P⇔Q with 

(P⇒Q)∧(Q⇒P)

2. Eliminate ⇒, replacing P⇒Q with ¬P∨Q

3. Move “¬” inwards, using ¬(¬P)=P, 
¬(P∧Q)=¬P∨¬Q and ¬(P∨Q)=¬P∧¬Q

4. Distribute ∨ over ∧ where possible
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Resolution Algorithm
• Recall: To show KB|=α, we show that (KB∧¬α) is 

unsatisfiable

• Resolution Algorithm:

- Convert (KB∧¬α) to CNF

- For every pair of clauses that contain complementary 
literals

- Apply resolution to produce a new clause

- Add new clause to set of clauses

- Continue until

• No new clauses are being added (KB does not entail α) or

• Two clauses resolve to produce empty clause (KB|=α)
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Complexity of Inference
• Inference for propositional logic is NP-complete

• If all clauses are Horn clauses, then inference 
is linear in size of KB!

- Horn clause: Disjunction of literals where at most one 
literal is positive

- ¬P∨Q∨¬R is a Horn clause

- P∨Q∨R is not a Horn clause

- Every Horn clauses establishes exactly one new fact
- ¬P∨Q∨¬R  ⇔ (P∧R)⇒Q

- We add all new facts in n passes
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Forward Chaining

• When a new sentence α is added to the KB

- Look for all sentences that share literals with α

- Perform resolution

- Add new sentence to KB and continue

• Forward chaining is

- Data-driven

- Eager: new facts are inferred as soon as possible
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Backward Chaining
• When a query q is asked of the KB

- If q is in the KB, return True

- Otherwise, use resolution for q with other 
sentences in the KB and continue from result

• Backward chaining is

- Goal driven: Centers reasoning around query 
being asked

- Lazy: new facts are inferred only when needed

30



Forward vs Backward

• Which is better? That depends!

• Backward Chaining:

- Does not grow the KB as much

- Focused on proof so is generally more 
efficient

- Does nothing until a question is asked

- Typically used in proofs by contradiction
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Forward vs Backward

• Forward Chaining

- Extends the KB and improves 
understanding of the world

- Typically used in tasks where the focus is on 
providing a model of the world
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First Order Logic

• New elements

- Predicates
- Define objects, properties, relationships

- Quantifiers
- ∀ (for all), ∃ (there exists) are used in statements that apply to a 

class of objects

• Example: ∀x On(x, Table)⇒Fruit(x)
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Sentences
• Terms

- Constants, variables, function(term1,...,termn)

• Atomic Sentences

- Predicate(term1,term2), term1=term2

• Complex Sentences

- Combine atomic sentences with connectives

- Likes(Alice, IceCream)∧Likes(Bob, IceCream)
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Semantics
• Sentences are true with respect to their 

interpretation

- Model contains objects and relations among 
them

- Interpretation specifies referents for
- Constant symbols (objects)

- Predicate symbols (relations)

- Function symbols (functional relations)
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Semantics

• Atomic sentence Predicate(term1,...,termn) 
is true if and only if the relation referred to 
by Predicate holds for objects 
term1,...termn
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Semantics
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Universal Quantification

• Form: ∀<variables> <sentence>

- Everyone taking AI is smart

- ∀x Taking(x,AI)⇒Smart(x)

• Equivalent to

- (Taking(Alice, AI)⇒Smart(Alice))∧(Taking(Bob, AI)⇒Smart(Bob))...

• Example: ∀x Taking(x,AI) ∧Smart(x)

- Why is this unlikely not what you mean?

• Typically ⇒ is the main connector!
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Existential Quantification

• Form: ∃x<variables><sentence>

- Someone is taking AI is smart

- ∃x Taking(x,AI)∧Smart(x)

• Equivalent to

- (Taking(Alice, 
AI)∧Smart(Alice))∨(Taking(Bob,AI)∧Smart(Bob))∨...

• Example: ∃x Taking(x,AI)⇒Smart(x)

- Why is this unlikely to be what you want?

• Typically ∧ is the main connector

39



Properties of Quantifiers

• Basic Rules

- ∀x∀y is the same as ∀y∀x

- ∃x∃y is the same as ∃y∃x

- ∀x∃y is not the same as ∃y∀x

• Example

- ∃x∀y Loves (x,y)

- ∀y∃x Loves(x,y)
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Quantifier Duality
• Each quantifier can be expressed using 

the other quantifier and negation

- ∀x Likes(x,Broccoli)

- ¬∃x¬Likes(x,Broccoli)

- ∃x Likes(x,Broccoli)

- ¬∀x¬Likes(x,Broccoli)
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Inference and FOL

• We know how to do inference in 
Propositional Logic: find α such that KB|
=α

- Is it possible to use these techniques for 
FOL?

- Have to handle quantifiers, predicates, 
functions, ...
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Universal Instantiation

• Given sentence ∀x P(x)∧Q(x)⇒R(x) then 
we want to infer P(John)∧Q(John)⇒R(John) 
and P(Anne)∧P(Anne)⇒R(Anne) and ...
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Universal Instantiation (UI)

Substitute g for all occurrences 
of v in α

α is a sentence

v is a variable

g is a ground term*



Universal Instantiation

• A ground term is a term without 
variables

• SUBST(θ,α) is the result of applying 
substitution θ to sentence α

• Example
– SUBST({x/John},∀ x P(x)∧Q(x)⇒ R(x)) = P(John)∧ Q(John)⇒R(John)

– SUBST({x/Father(John)},∀ x P(x)∧Q(x)⇒ R(x)) 
=P(Father(John))∧Q(Father(John))⇒R(Father(John))
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Existential Instantiation

• For any sentence α, variable v and 
constant symbol K that does not 
appear anywhere in the KB
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Skolum Constant

Example

∃ x Crown(x) yields 

Crown(C1)   (C1 is a new constant)



Reduction to Propositional 
Inference

• Suppose the KB contained the following
–  ∀x Cat(x)∧ Orange(x)⇒Cute(x)
– Orange(Kitty)
– Cat(Kitty)
– Sister(Kitty, Katy)

• Instantiating the universal sentence in all possible ways 
we have a new KB:
– Cat(Kitty)∧Orange(Kitty)⇒Cute(Kitty)
– Cat(Katy)∧Orange(Katy)⇒Cute(Katy)
– Cat(Kitty)
– Sister(Kitty, Katy)

• The new KB is in propositional form. The symbols are
– Cat(Kitty), Cat(Katy), Orange(Kitty), Cute(Katy), Sister(Kitty,Katy), …
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Example

• KB: Bob is a buffalo. Pat is a pig. 
Buffalos are faster than pigs.
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Reduction Continued

• Every FOL KB can be propositionalized

- Transformed into propositional logic

• This preserves entailment

- A ground sentence is entailed by the new KB 
if and only if it was entailed in the original KB

• Thus we can apply resolution (sound 
and complete) and return the result?
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Reduction Continued
• Problem: Functions

- The set of possible ground substitutions can 
be infinite

- Example: Assume the KB contains function 
Mother(x)
- SUBST({x|John},Mother(x))=Mother(John)

- SUBST({x|Mother(John)},Mother(x))=Mother(Mother(John))

- SUBST({x|
Mother(John)},Mother(Mother(x))=Mother(Mother(Mother(John)))
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Reduction Continued

• Theorem (Herbrand 1930): If a sentence is 
entailed by a FOL KB, then it is entailed by 
a finite subset of the propositionalized KB.

• Idea: for n=0 to ∞

- Create a propositional KB by instantiating with 
depth n terms

- Check if α is entailed by this KB. If yes, then 
stop.
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Reduction Continued

• Problem: Works if α is entailed by the 
KB but it loops forever if α is not entailed

• Theorem: (Turing 1936, Church 1936) 
Entailment in FOL is semi-decidable.

- Algorithms exist that say yes to every 
entailed sentence

- No algorithm exists that says no to every 
unentailed sentence
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Problems with 
Propositionalization

• Problem is with universal instantiation

- Generates many irrelevant sentences due to 
substitutions

• Idea: Find a substitution that makes 
different logical statements look 
identical

- Unification
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Unification
• Unify algorithm

- Takes two sentences and returns a unifier if one exists

- Unify(p,q)=θ where SUBST(θ,p)=SUBST(θ,q)
- θ is the Unifier
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Knows(John,x)

Knows(John,x)

Knows(John,x)

Knows(John,x)

Knows(John,Jane)

Knows(y,Paul)

Knows(y,Mother(y))

Knows(x,Paul)

p q θ



Generalized Modus Ponens

• Conditions: Atomic sentences pi, piʼ and q 
where there is a substitution θ such that 
SUBST(θ,pi)=SUBST(θ,piʼ)

54

Caveats:  

 GMP used with a KB of definite clauses 
 (exactly one positive literal).

 All variables are assumed to be universally 
 quantified



Inference Algorithms

• You can now use

- Forward chaining

- Backward chaining

- Resolution
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Forward Chaining Example
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Backward Chaining Example
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Resolution Review
• Resolution is a refutation procedure

- To prove KB |=α show that KB∧¬α is unsatisfiable

• Resolution used KB, ¬α  in CNF

• Resolution inference rule combines two clauses to make a 
new one
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C1

C3

C2

Inference 
continues until an 
empty clause is 
derived 
(contradiction)



Resolution
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Where Unify(li,: mi)=θ

The two clauses, li and  mi, are assumed to be 
standardized apart so that they share no variables

¬Rich(x)∨Unhappy(x)

     Rich(John)

Unhappy(John)  with θ = {x/John}

Example



Converting to CNF
• Example ∀x[∀y A(y)⇒L(x,y)]⇒[∃y L(y,x)]

• Eliminate ⇔ and ⇒

- ∀x[¬∀y¬A(y)∨L(x,y)]∨[∃y L(y,x)]

• Move ¬ inwards

- ∀x[∃yA(y)∧¬L(x,y)]∨[∃y L(y,x)]

• Standardize variables

- ∀x[∃yA(y)∧¬L(x,y)]∨[∃z L(z,x)]

• Skolemize

- ∀x[A(F(x))∧¬L(x,F(x))]∨[ L(G(x),x)]

• Drop universal quantifiers

- [A(F(x))∧¬L(x,F(x))]∨[ L(G(x),x)]

• Distribute ∨ over ∧

- [A(F(x)) ∨L(G(x),x)] ∧ [¬L(x,F(x))∨L(G(x),x)]
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Resolution Example
• Marcus is a person

• Marcus is a Pompeian

• All Pompeians are Roman

• Caesar is a ruler

• All Romans are either loyal to Caesar or hate Caesar

• Everyone is loyal to someone

• People only try to assassinate rulers they are not loyal to

• Marcus tries to assassinate Caesar

• Query: Does Marcus hate Caesar?
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Conclusion

• Syntax, semantics, entailment and 
inference

• Propositional logic and FOL

• Understand how forward-chaining, 
backward-chaining and resolution work
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