Knowledge Representation

CS 486/686: Introduction to Artificial Intelligence
Fall 2013
Outline

• Knowledge-based agents
• Logics in general
• Propositional Logic
• Reasoning with Propositional Logic
• First Order Logic
Introduction

- So far we have taken the following approach
 - Figure out exactly what the problem is (problem definition)
 - Design an algorithm to solve the problem (search algorithm)
 - Execute the program
Knowledge-Based Agents

- An alternative approach
 - Identify the knowledge needed to solve the problem
 - Write down this knowledge in some language
 - Use logical consequences to solve the problem
Knowledge-Based Agents

• Ideally
 - We tell the agent what it needs to know
 - The agent infers what to do and how to do it

• Agent has two parts
 - **Knowledge base**: Set of facts expressed in a formal standard language
 - **Inference engine**: Rules for deducing new facts
An Example: Wumpus World

• **Goal:**
 – Get gold back to start without falling into a pit or getting eaten by the wumpus

• **Environment**
 – Squares adjacent to wumpus are smelly
 – Squares adjacent to pit are breezy
 – Glitter iff gold is in the same square
 – Shooting kills wumpus if you are facing it
 – Shooting uses up the only arrow
 – Grabbing picks up gold if in same square
 – Releasing drops the gold in same square

• **Sensors:** Stench, Breeze, Glitter, Bump, Scream

• **Actuators:** Left turn, Right turn, Forward, Grab, Release, Shoot
Wumpus World

<table>
<thead>
<tr>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2</th>
<th>2,2</th>
<th>3,2</th>
<th>4,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3</th>
<th>2,3</th>
<th>3,3</th>
<th>4,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>B</td>
<td>P!</td>
<td>4,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2</th>
<th>2,2</th>
<th>3,2</th>
<th>4,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3</th>
<th>2,3</th>
<th>3,3</th>
<th>4,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>W!</td>
<td>W!</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1</th>
<th>2,1</th>
<th>3,1</th>
<th>4,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2</th>
<th>2,2</th>
<th>3,2</th>
<th>4,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>V</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3</th>
<th>2,3</th>
<th>3,3</th>
<th>4,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>W!</td>
<td>W!</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

Legend:
- **Agent**
- **Breeze**
- **Glitter, Gold**
- **Safe square**
- **Pit**
- **Stench**
- **Visited**
- **Wumpus**
What Is A Logic?

• Logic
 - A formal language for representing information so that conclusions can be drawn

• Logics have 2 components
 - Syntax: defines the sentences of the language
 - Semantics: defines the meaning of the sentences
Entailment

- Entailment means that "one thing follows from another"
 - KB |= α

- Knowledge base (KB) entails sentence α if and only if α is true in all possible worlds where KB is true

- Example:
 - KB: I finished the AI assignment. I am happy
 - α: I finished the AI assignment and I am happy.
Models

• A model is a formal “possible world” where a sentence can be evaluated
 - \(m \) is a model of sentence \(\alpha \) if \(\alpha \) is true in \(m \)

• \(M(\alpha) \) is the set of all models of \(\alpha \)

• \(KB \models \alpha \) if and only if \(M(KB) \subseteq M(\alpha) \)

KB: I finished the AI homework and I did not sleep last night
\(\alpha \): I finished the AI homework
Inference

- Given a KB, we want to be able to draw conclusions from it

- **Inference procedure:** KB |-i α
 - Sentence α can be derived from KB by inference algorithm

- Desired properties:
 - **Soundness:** the procedure only infers true statements
 - If KB |-i α then KB |= α
 - **Completeness:** the procedure can generate all true statements
 - IF KB |= α then it is true that KB|-i α
Propositional Logic

- **Atomic Symbols**: P, Q, R,...
 - Each symbol stands for a proposition that can be either True or False

- **Logical Connectives**
 - \(\neg \) (negation)
 - \(\lor \) (or)
 - \(\land \) (and)
 - \(\Rightarrow \) (implies)
 - \(\Leftrightarrow \) (if and only if, equivalence)
Propositional Logic: Syntax

• Grammar rules:
 – Sentence → AtomicSentence | ComplexSentence
 – Atomic Sentence → True | False | Symbol
 – Symbol → P | Q | R | ...
 – ComplexSentence → Sentence I ¬ Sentence
 I (Sentence ∨ Sentence)
 I(Sentence ∧ Sentence)
 I (Sentence ⇒ Sentence)
 I(Sentence ⇔ Sentence)
Propositional Logic: Semantics

• The semantics of propositional logic are defined by a truth table
 - Symbols are mappings to an element in domain \{0,1\}

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P⇔Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Propositional Logic

• Note that $P \Rightarrow Q$ is the same as $\neg P \lor Q$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$\neg P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Exercise: Show that $P \Leftrightarrow Q$ is the same as $(P \Rightarrow Q) \land (Q \Rightarrow P)$
Entailment: Propositional Logic

- Let
 - $KB = (P \lor R) \land (Q \lor \neg R)$
 - $\alpha = P \lor R$

- Does $KB \models \alpha$?
Entailment

- Check all possible models
 - \(\alpha \) must be true whenever \(KB \) is true

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>(P \lor R)</th>
<th>(Q \lor \neg R)</th>
<th>KB</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Inference: Propositional Logic

- Using truth tables is
 - **Sound**: direct definition of entailment
 - **Complete**: works for any KB and α and always terminates

- But...
 - Really inefficient
 - If there are n symbols, then there are 2^n models
More Terminology

• Sentences α and β are logically equivalent if they are true in the same set of models
 - $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

• Deduction Theorem:
 - For any sentences α and β, $\alpha \models \beta$ if and only if $(\alpha \Rightarrow \beta)$ is valid

• Useful Result (Proof by Contradiction):
 - $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable
Logical Equivalences

\[(\alpha \land \beta) \equiv (\beta \land \alpha)\] \text{commutativity of } \land

\[(\alpha \lor \beta) \equiv (\beta \lor \alpha)\] \text{commutativity of } \lor

\[((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))\] \text{associativity of } \land

\[((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))\] \text{associativity of } \lor

\[\lnot(\lnot \alpha) \equiv \alpha\] \text{double-negation elimination}

\[(\alpha \Rightarrow \beta) \equiv (\lnot \beta \Rightarrow \lnot \alpha)\] \text{contraposition}

\[(\alpha \Rightarrow \beta) \equiv (\lnot \alpha \lor \beta)\] \text{implication elimination}

\[(\alpha \iff \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))\] \text{biconditional elimination}

\[\lnot(\alpha \land \beta) \equiv (\lnot \alpha \lor \lnot \beta)\] \text{de Morgan}

\[\lnot(\alpha \lor \beta) \equiv (\lnot \alpha \land \lnot \beta)\] \text{de Morgan}

\[(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))\] \text{distributivity of } \land \text{ over } \lor

\[(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))\] \text{distributivity of } \lor \text{ over } \land
Inference Rules

• Given a KB we want to derive conclusions
 - Proof: sequence of inference rule applications

\[
\begin{align*}
\text{Modus Ponens} & : \\
\alpha, \alpha \Rightarrow \beta & : \\
& \quad \beta
\end{align*}
\]

\[
\begin{align*}
\text{Resolution} & : \\
\alpha \lor \beta, \neg \beta \lor \gamma & : \\
& \quad \alpha \lor \gamma
\end{align*}
\]

\[
\begin{align*}
\text{And Elimination} & : \\
\alpha \land \beta & :\\
& \quad \alpha
\end{align*}
\]

\[
\begin{align*}
\text{Unit Resolution} & : \\
\alpha \lor \beta, \neg \beta & : \\
& \quad \alpha
\end{align*}
\]
Inference

- Modus Ponens and And-Elimination together are sound

Example: \(\text{KB}= \text{“If you are in AI class then you are happy and paying attention”, “You are in AI class”} \)

Modus Ponens: “You are happy and you are paying attention”

And-Elimination: “You are happy”
Resolution

- Resolution is a **sound** and **complete** inference rule

 - Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.
Resolution

- Resolution is a **sound and complete** inference rule
 - Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.

Caveat: Given that α is true, we cannot automatically generate $\alpha \lor \beta$ is true. However, we can find the answer to the question “Is $\alpha \lor \beta$ true?”
Conjunctive Normal Form

- Resolution is applied to clauses of the form $\alpha \lor \beta \lor \ldots \lor \gamma$

- Any clause in propositional logic is logically equivalent to a clause in CNF
 - conjunction of disjunctions
 - eg. $(P \lor \neg Q \lor R) \land (\neg Q \lor A \lor B) \land \ldots$
Converting to CNF

1. Eliminate \iff, replacing $P \iff Q$ with

 $$(P \implies Q) \land (Q \implies P)$$

2. Eliminate \implies, replacing $P \implies Q$ with $\neg P \lor Q$

3. Move "\neg" inwards, using $\neg(\neg P) = P$,
 $\neg(P \land Q) = \neg P \lor \neg Q$ and $\neg(P \lor Q) = \neg P \land \neg Q$

4. Distribute \lor over \land where possible
Resolution Algorithm

• Recall: To show $\text{KBI} = \alpha$, we show that $(\text{KB} \land \lnot \alpha)$ is unsatisfiable

• Resolution Algorithm:
 - Convert $(\text{KB} \land \lnot \alpha)$ to CNF
 - For every pair of clauses that contain complementary literals
 - Apply resolution to produce a new clause
 - Add new clause to set of clauses
 - Continue until
 • No new clauses are being added (KB does not entail α) or
 • Two clauses resolve to produce empty clause (KBI=α)
Complexity of Inference

- Inference for propositional logic is NP-complete
- If all clauses are **Horn clauses**, then inference is linear in size of KB!
 - Horn clause: Disjunction of literals where at most one literal is positive
 - \(\neg P \lor Q \lor \neg R \) is a Horn clause
 - \(P \lor Q \lor R \) is not a Horn clause
 - Every Horn clause establishes exactly one new fact
 - \(\neg P \lor Q \lor \neg R \Leftrightarrow (P \land R) \Rightarrow Q \)
 - We add all new facts in n passes
Forward Chaining

• When a new sentence α is added to the KB
 - Look for all sentences that share literals with α
 - Perform resolution
 - Add new sentence to KB and continue

• Forward chaining is
 - Data-driven
 - Eager: new facts are inferred as soon as possible
Backward Chaining

• When a query q is asked of the KB
 - If q is in the KB, return True
 - Otherwise, use resolution for q with other sentences in the KB and continue from result

• Backward chaining is
 - Goal driven: Centers reasoning around query being asked
 - Lazy: new facts are inferred only when needed
Forward vs Backward

• Which is better? That depends!

• Backward Chaining:
 - Does not grow the KB as much
 - Focused on proof so is generally more efficient
 - Does nothing until a question is asked
 - Typically used in proofs by contradiction
Forward vs Backward

- Forward Chaining
 - Extends the KB and improves understanding of the world
 - Typically used in tasks where the focus is on providing a model of the world
First Order Logic

• New elements
 - Predicates
 - Define objects, properties, relationships
 - Quantifiers
 - ∀ (for all), ∃ (there exists) are used in statements that apply to a class of objects

• Example: ∀x On(x, Table) ⇒ Fruit(x)
Sentences

• Terms
 - Constants, variables, function(term₁,...,termₙ)

• Atomic Sentences
 - Predicate(term₁,term₂), term₁=term₂

• Complex Sentences
 - Combine atomic sentences with connectives
 - Likes(Alice, IceCream) ∧ Likes(Bob, IceCream)
• Sentences are true with respect to their interpretation
 - Model contains objects and relations among them
 - Interpretation specifies referents for
 - Constant symbols (objects)
 - Predicate symbols (relations)
 - Function symbols (functional relations)
• Atomic sentence $\text{Predicate}(\text{term}_1,\ldots,\text{term}_n)$ is true if and only if the relation referred to by Predicate holds for objects $\text{term}_1,\ldots,\text{term}_n$
Semantics
Universal Quantification

• Form: ∀<variables> <sentence>
 - Everyone taking AI is smart
 - ∀x Taking(x, AI) ⇒ Smart(x)

• Equivalent to
 - (Taking(Alice, AI) ⇒ Smart(Alice)) ∧ (Taking(Bob, AI) ⇒ Smart(Bob))...

• Example: ∀x Taking(x, AI) ∧ Smart(x)
 - Why is this unlikely not what you mean?

• Typically ⇒ is the main connector!
Existential Quantification

- Form: $\exists x \langle \text{variables} \rangle \langle \text{sentence} \rangle$
 - Someone is taking AI is smart
 - $\exists x \text{Taking}(x, \text{AI}) \land \text{Smart}(x)$

- Equivalent to
 - $(\text{Taking}(\text{Alice}, \text{AI}) \land \text{Smart}(\text{Alice})) \lor (\text{Taking}(\text{Bob}, \text{AI}) \land \text{Smart}(\text{Bob})) \lor \ldots$

- Example: $\exists x \text{Taking}(x, \text{AI}) \Rightarrow \text{Smart}(x)$
 - Why is this unlikely to be what you want?

- Typically \land is the main connector
Properties of Quantifiers

• Basic Rules
 - \(\forall x \forall y \) is the same as \(\forall y \forall x \)
 - \(\exists x \exists y \) is the same as \(\exists y \exists x \)
 - \(\forall x \exists y \) is not the same as \(\exists y \forall x \)

• Example
 - \(\exists x \forall y \) Loves (x,y)
 - \(\forall y \exists x \) Loves(x,y)
Quantifier Duality

- Each quantifier can be expressed using the other quantifier and negation
 - $\forall x \text{ Likes}(x, \text{Broccoli})$
 - $\neg \exists x \neg \text{Likes}(x, \text{Broccoli})$
 - $\exists x \text{ Likes}(x, \text{Broccoli})$
 - $\neg \exists x \neg \text{Likes}(x, \text{Broccoli})$
Inference and FOL

- We know how to do inference in Propositional Logic: find \(\alpha \) such that \(KB \models \alpha \).
 - Is it possible to use these techniques for FOL?
 - Have to handle quantifiers, predicates, functions, ...
Universal Instantiation

- Given sentence $\forall x \ P(x) \land Q(x) \Rightarrow R(x)$ then we want to infer $P(\text{John}) \land Q(\text{John}) \Rightarrow R(\text{John})$ and $P(\text{Anne}) \land P(\text{Anne}) \Rightarrow R(\text{Anne})$ and ...

Universal Instantiation (UI)

$\forall v \alpha$

α is a sentence

$\forall u \alpha$

α is a sentence

$\text{SUBST} \left(\{v/g\} \alpha \right)$

Substitute g for all occurrences of v in α

v is a variable

g is a ground term*
Universal Instantiation

• A ground term is a term without variables

• \text{SUBST}(\theta, \alpha) is the result of applying substitution \theta to sentence \alpha

• Example

 – \text{SUBST}\{{{x/John}}, \forall x P(x) \land Q(x) \Rightarrow R(x)} = P(John) \land Q(John) \Rightarrow R(John)

 – \text{SUBST}\{{{x/Father(John)}}, \forall x P(x) \land Q(x) \Rightarrow R(x)}
 = P(Father(John)) \land Q(Father(John)) \Rightarrow R(Father(John))
Existential Instantiation

• For any sentence α, variable v and constant symbol K that does not appear anywhere in the KB

\[
\exists v \alpha \\
\text{SUBST}\left(\{x/K\}, \alpha\right)
\]

Example

$\exists x \text{Crown}(x)$ yields

$\text{Crown}(C_1)$ (\(C_1\) is a new constant)
Reduction to Propositional Inference

• Suppose the KB contained the following
 - $\forall x \, \text{Cat}(x) \land \text{Orange}(x) \Rightarrow \text{Cute}(x)$
 - $\text{Orange}(\text{Kitty})$
 - $\text{Cat}(\text{Kitty})$
 - $\text{Sister}(\text{Kitty}, \text{Katy})$

• Instantiating the universal sentence in all possible ways we have a new KB:
 - $\text{Cat}(\text{Kitty}) \land \text{Orange}(\text{Kitty}) \Rightarrow \text{Cute}(\text{Kitty})$
 - $\text{Cat}(\text{Katy}) \land \text{Orange}(\text{Katy}) \Rightarrow \text{Cute}(\text{Katy})$
 - $\text{Cat}(\text{Kitty})$
 - $\text{Sister}(\text{Kitty}, \text{Katy})$

• The new KB is in propositional form. The symbols are
 - $\text{Cat}(\text{Kitty}), \text{Cat}(\text{Katy}), \text{Orange}(\text{Kitty}), \text{Cute}(\text{Katy}), \text{Sister}(\text{Kitty}, \text{Katy}), \ldots$
Example

- KB: Bob is a buffalo. Pat is a pig. Buffalos are faster than pigs.
• Every FOL KB can be propositionalized
 - Transformed into propositional logic
• This preserves entailment
 - A ground sentence is entailed by the new KB if and only if it was entailed in the original KB
• Thus we can apply resolution (sound and complete) and return the result?
Reduction Continued

- Problem: Functions
 - The set of possible ground substitutions can be infinite
 - Example: Assume the KB contains function \(\text{Mother}(x) \)
 - \(\text{SUBST}\{\{x|\text{John}\},\text{Mother}(x)\}=\text{Mother}(\text{John}) \)
 - \(\text{SUBST}\{\{x|\text{Mother}(\text{John})\},\text{Mother}(x)\}=\text{Mother}(\text{Mother}(\text{John})) \)
 - \(\text{SUBST}\{\{x|\text{Mother}(\text{John})\},\text{Mother}(\text{Mother}(x))\}=\text{Mother}(\text{Mother}(\text{Mother}(\text{Mother}(\text{John})))) \)
• **Theorem** (Herbrand 1930): If a sentence is entailed by a FOL KB, then it is entailed by a finite subset of the propositionalized KB.

• **Idea**: for $n=0$ to ∞
 - Create a propositional KB by instantiating with depth n terms
 - Check if α is entailed by this KB. If yes, then stop.
• **Problem**: Works if \(\alpha \) is entailed by the KB but it loops forever if \(\alpha \) is not entailed

• **Theorem**: (Turing 1936, Church 1936) Entailment in FOL is semi-decidable.
 - Algorithms exist that say yes to every entailed sentence
 - No algorithm exists that says no to every unentailed sentence
Problems with Propositionalization

- Problem is with universal instantiation
 - Generates many irrelevant sentences due to substitutions

- **Idea**: Find a substitution that makes different logical statements look identical
 - Unification
Unification

- **Unify algorithm**
 - Takes two sentences and returns a unifier if one exists
 - \(\text{Unify}(p,q) = \theta \) where \(\text{SUBST}(\theta,p) = \text{SUBST}(\theta,q) \)
 - \(\theta \) is the Unifier

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knows(John,x)</td>
<td>Knows(John,Jane)</td>
<td></td>
</tr>
<tr>
<td>Knows(John,x)</td>
<td>Knows(y,Paul)</td>
<td></td>
</tr>
<tr>
<td>Knows(John,x)</td>
<td>Knows(y,Mother(y))</td>
<td></td>
</tr>
<tr>
<td>Knows(John,x)</td>
<td>Knows(x,Paul)</td>
<td></td>
</tr>
</tbody>
</table>
Generalized Modus Ponens

- **Conditions**: Atomic sentences p_i, p_i' and q where there is a substitution θ such that $\text{SUBST}(\theta, p_i) = \text{SUBST}(\theta, p_i')$

\[
p_1', p_2', \ldots, p_n', (p_1 \land p_2 \land \ldots \land p_n) \Rightarrow q
\]

\[\text{SUBST}(\theta, q)\]

Caveats:

GMP used with a KB of definite clauses (exactly one positive literal).

All variables are assumed to be universally quantified.
Inference Algorithms

• You can now use
 - Forward chaining
 - Backward chaining
 - Resolution
Forward Chaining Example
Backward Chaining Example
Resolution Review

- Resolution is a refutation procedure
 - To prove $KB \models \alpha$ show that $KB \land \neg \alpha$ is unsatisfiable
- Resolution used KB, $\neg \alpha$ in CNF
- Resolution inference rule combines two clauses to make a new one

Inference continues until an empty clause is derived (contradiction)
Resolution

Where \(\text{Unify}(l_i, m_i) = \theta \)

The two clauses, \(l_i \) and \(m_i \), are assumed to be standardized apart so that they share no variables

Example

\[
\neg \text{Rich}(x) \lor \text{Unhappy}(x) \\
\text{Rich}(\text{John}) \\
\hline
\text{Unhappy}(\text{John}) \text{ with } \theta = \{x/\text{John}\}
\]
Converting to CNF

- Example $\forall x [\forall y A(y) \Rightarrow L(x,y)] \Rightarrow [\exists y L(y,x)]$
- Eliminate \iff and \Rightarrow
 - $\forall x [\neg \forall y \neg A(y) \lor L(x,y)] \lor [\exists y L(y,x)]$
- Move \neg inwards
 - $\forall x [\exists y A(y) \land \neg L(x,y)] \lor [\exists y L(y,x)]$
- Standardize variables
 - $\forall x [\exists y A(y) \land \neg L(x,y)] \lor [\exists z L(z,x)]$
- Skolemize
 - $\forall x [A(F(x)) \land \neg L(x,F(x))] \lor [L(G(x),x)]$
- Drop universal quantifiers
 - $[A(F(x)) \land \neg L(x,F(x))] \lor [L(G(x),x)]$
- Distribute \lor over \land
 - $[A(F(x)) \lor L(G(x),x)] \land [\neg L(x,F(x)) \lor L(G(x),x)]$
Resolution Example

- Marcus is a person
- Marcus is a Pompeian
- All Pompeians are Roman
- Caesar is a ruler
- All Romans are either loyal to Caesar or hate Caesar
- Everyone is loyal to someone
- People only try to assassinate rulers they are not loyal to
- Marcus tries to assassinate Caesar
- Query: Does Marcus hate Caesar?
Conclusion

• Syntax, semantics, entailment and inference
• Propositional logic and FOL
• Understand how forward-chaining, backward-chaining and resolution work