Knowledge Representation

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- Knowledge-based agents
- Logics in general
- Propositional Logic
- Reasoning with Propositional Logic
- First Order Logic

Introduction

- So far we have taken the following approach
 - Figure out exactly what the problem is (problem definition)
 - Design an algorithm to solve the problem (search algorithm)
 - Execute the program

Knowledge-Based Agents

- An alternative approach
 - Identify the knowledge needed to solve the problem
 - Write down this knowledge in some language
 - Use logical consequences to solve the problem

Knowledge-Based Agents

- Ideally
 - We tell the agent what it needs to know
 - The agent infers what to do and how to do it
- Agent has two parts
 - Knowledge base: Set of facts expressed in a formal standard language
 - Inference engine: Rules for deducing new facts

An Example: Wumpus World

• Goal:

 Get gold back to start without falling into a pit or getting eaten by the wumpus

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus World

1,4	2,4	3,4	4,4	A= AgentB= BreezeG= Glitter, GoldOK= Safe square	1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$	1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2		1,2 ОК	2,2 P?	3,2	4,2
1,1 А ок	2,1 OK	3,1	4,1		1,1 V OK	2,1 A B OK	^{3,1} P?	4,1
	(a) (b)							

1,4	2,4	3,4	4,4	$ \begin{array}{c} \mathbf{A} &= Agent \\ \mathbf{B} &= Breeze \\ \mathbf{G} &= Glitter, Gold \\ \mathbf{OK} &= Safe square \\ \end{array} $	1,4	2,4 P?	3,4	4,4
^{1,3} w!	2,3	3,3	4,3	P = Pit $S = Stench$ $V = Visited$ $W = Wumpus$	^{1,3} _{W!}	2,3 A S G B	3,3 _{P?}	4,3
1,2 A S OK	2,2 OK	3,2	4,2		^{1,2} s V OK	2,2 V OK	3,2	4,2
1,1 V	2,1 B V	3,1 P!	4,1		1,1 V	2,1 B V	3,1 P!	4,1
ок	ОК				ОК	ОК		
	(a) (b)							

What Is A Logic?

- Logic
 - A formal language for representing information so that conclusions can be drawn
- Logics have 2 components
 - Syntax: defines the sentences of the language
 - Semantics: defines the meaning of the sentences

Entailment

- Entailment means that "one thing follows from another"
 - KB l= α
- Knowledge base (KB) entails sentence α if and only if α is true in all possible worlds where KB is true
- Example:
 - KB: I finished the AI assignment. I am happy
 - α: I finished the AI assignment and I am happy.

Models

- A model is a formal "possible world" where a sentence can be evaluated
 - m is a model of sentence α if α is true in m
- M(α) is the set of all models of α
- KB I= α if and only of M(KB) \subseteq M(α)

KB: I finished the AI homework and I did not sleep last night

 $\alpha: \mbox{I}$ finished the AI homework

Inference

- Given a KB, we want to be able to draw conclusions from it
- Inference procedure: KB I- $_i \alpha$
 - Sentence α can be derived from KB by inference algorithm
- Desired properties:
 - **Soundness:** the procedure only infers true statements
 - If KB I-i α then KB I= α
 - Completeness: the procedure can generate all true statements
 - IF KB I= α then it is true that KBI- $_i \alpha$

Propositional Logic

- Atomic Symbols: P, Q, R,...
 - Each symbol stands for a proposition that can be either True or False

Logical Connectives

- ¬ (negation)
- v (or)
- ^ (and)
- \Rightarrow (implies)
- \Leftrightarrow (if and only if, equivalence)

Propositional Logic: Syntax

• Grammar rules:

- –Sentence →AtomicSentence I ComplexSentence
- –Atomic Sentence → True I False I Symbol
- $-Symbol \rightarrow P | Q | R | \dots$
- $-ComplexSentence \rightarrow Sentence I Sentence$
 - I (Sentence v Sentence)
 - I(Sentence ^ Sentence)
 - I (Sentence \Rightarrow Sentence)

I(Sentence ⇔ Sentence)

Propositional Logic: Semantics

- The semantics of propositional logic are defined by a truth table
 - Symbols are mappings to an element in domain {0,1}

Р	Q	¬P	P∧ Q	Pv Q	P⇒ Q	P⇔Q
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Example: Propositional Logic

• Note that $P \Rightarrow Q$ is the same as $\neg P \lor Q$

Р	Q	¬ P	¬P∨ Q	$P \Rightarrow Q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Exercise: Show that $P \Leftrightarrow Q$ is the same as $(P \Rightarrow Q) \land (Q \Rightarrow P)$

Entailment: Propositional Logic

- Let
 - KB=(P \vee R) \wedge (Q \vee ¬R)
 - $\alpha = P \lor R$

Does KB I=α?

Entailment

- Check all possible models
 - a must be true when ever KB is true

Р	Q	R	P∨R	Q∨¬ R	KB	α
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Inference: Propositional Logic

- Using truth tables is
 - Sound: direct definition of entailment
 - Complete: works for any KB and α and always terminates

- But...
 - Really inefficient
 - If there are n symbols, then there are 2ⁿ models

More Terminology

- Sentences α and β are logically equivalent if they are true in the same set of models
 - $\alpha \Leftrightarrow \beta$ if and only if $\alpha I = \beta$ and $\beta I = \alpha$
- Deduction Theorem:
 - For any sentences α and β , $\alpha I=\beta$ if and only $(\alpha \Rightarrow \beta)$ is valid
- Useful Result (**Proof by Contradiction**):
 - $\alpha I = \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable

Logical Equivalences

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Inference Rules

- Given a KB we want to derive conclusions
 - Proof: sequence of inference rule applications

 α

Inference

Modus Ponens and And-Elimination together are sound

Example: KB= "If you are in AI class then you are happy and paying attention", "You are in AI class"

Modus Ponens: "You are happy and you are paying attention" And-Elimination: "You are happy"

Resolution

- Resolution is a sound and complete inference rule
 - Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.

Resolution

- Resolution is a sound and complete inference rule
 - Any complete search algorithm, applying only the resolution rule, can derive any conclusion entailed by any knowledge base in propositional logic.

Caveat: Given that α is true, we can not automatically generate $\alpha \lor \beta$ is true. However, we can find the answer to the question "Is $\alpha \lor \beta$ true".

Conjunctive Normal Form

- Resolution is applied to clauses of the form $\alpha \lor \beta \lor ... \lor \gamma$
- Any clause in propositional logic is logically equivalent to a clause in CNF
 - conjunction of disjunctions
 - eg. $(P \lor \neg Q \lor R) \land (\neg Q \lor A \lor B) \land ...$

Converting to CNF

- 1. Eliminate \Leftrightarrow , replacing P \Leftrightarrow Q with $(P\Rightarrow Q)\land(Q\Rightarrow P)$
- 2. Eliminate \Rightarrow , replacing P \Rightarrow Q with \neg P \lor Q
- 3. Move "¬" inwards, using ¬(¬P)=P, $\neg(P \land Q)=\neg P \land \neg Q$ and $\neg(P \lor Q)=\neg P \land \neg Q$
- 4. Distribute v over \land where possible

Resolution Algorithm

- Recall: To show KBI=α, we show that (KB∧¬α) is unsatisfiable
- Resolution Algorithm:
 - Convert (KB $\land \neg \alpha$) to CNF
 - For every pair of clauses that contain complementary literals
 - Apply resolution to produce a new clause
 - Add new clause to set of clauses
 - Continue until
 - No new clauses are being added (KB does not entail α) or
 - Two clauses resolve to produce empty clause (KBI=α)

Complexity of Inference

- Inference for propositional logic is NP-complete
- If all clauses are Horn clauses, then inference is linear in size of KB!
 - Horn clause: Disjunction of literals where at most one literal is positive
 - $\neg P \lor Q \lor \neg R$ is a Horn clause
 - PvQvR is not a Horn clause
 - Every Horn clauses establishes exactly one new fact
 - $\neg P \lor Q \lor \neg R \Leftrightarrow (P \land R) \Rightarrow Q$
 - We add all new facts in n passes

Forward Chaining

- When a new sentence α is added to the KB
 - Look for all sentences that share literals with α
 - Perform resolution
 - Add new sentence to KB and continue
- Forward chaining is
 - Data-driven
 - Eager: new facts are inferred as soon as possible

Backward Chaining

- When a query q is asked of the KB
 - If q is in the KB, return True
 - Otherwise, use resolution for q with other sentences in the KB and continue from result
- Backward chaining is
 - Goal driven: Centers reasoning around query being asked
 - Lazy: new facts are inferred only when needed

Forward vs Backward

- Which is better? That depends!
- Backward Chaining:
 - Does not grow the KB as much
 - Focused on proof so is generally more efficient
 - Does nothing until a question is asked
 - Typically used in proofs by contradiction

Forward vs Backward

- Forward Chaining
 - Extends the KB and improves understanding of the world
 - Typically used in tasks where the focus is on providing a model of the world

First Order Logic

- New elements
 - Predicates
 - Define objects, properties, relationships
 - Quantifiers
 - ✓ (for all), ∃ (there exists) are used in statements that apply to a class of objects
- Example: $\forall x \ On(x, Table) \Rightarrow Fruit(x)$

Sentences

- Terms
 - Constants, variables, function(term₁,...,term_n)
- Atomic Sentences
 - Predicate(term₁,term₂), term₁=term₂
- Complex Sentences
 - Combine atomic sentences with connectives
 - Likes(Alice, IceCream) \Likes(Bob, IceCream)

Semantics

- Sentences are true with respect to their interpretation
 - Model contains objects and relations among them
 - Interpretation specifies referents for
 - Constant symbols (objects)
 - Predicate symbols (relations)
 - Function symbols (functional relations)

Semantics

 Atomic sentence Predicate(term₁,...,term_n) is true if and only if the relation referred to by Predicate holds for objects term₁,...term_n

Semantics

Universal Quantification

- Form: ∀<variables> <sentence>
 - Everyone taking AI is smart
 - $\forall x Taking(x,AI) \Rightarrow Smart(x)$
- Equivalent to
 - (Taking(Alice, AI) \Rightarrow Smart(Alice)) \land (Taking(Bob, AI) \Rightarrow Smart(Bob))...
- Example: ∀x Taking(x,AI) ∧Smart(x)
 - Why is this unlikely not what you mean?
- Typically ⇒ is the main connector!

Existential Quantification

- Form: 3x<variables><sentence>
 - Someone is taking AI is smart
 - Ix Taking(x,AI)∧Smart(x)
- Equivalent to
 - (Taking(Alice, Al)∧Smart(Alice))∨(Taking(Bob,Al)∧Smart(Bob))∨...
- Example: $\exists x Taking(x,AI) \Rightarrow Smart(x)$
 - Why is this unlikely to be what you want?
- Typically \land is the main connector

Properties of Quantifiers

- Basic Rules
 - $\forall x \forall y$ is the same as $\forall y \forall x$
 - ∃x∃y is the same as ∃y∃x
 - $\forall x \exists y \text{ is not the same as } \exists y \forall x$
- Example
 - ∃x∀y Loves (x,y)
 - ∀y∃x Loves(x,y)

Quantifier Duality

- Each quantifier can be expressed using the other quantifier and negation
 - ∀x Likes(x,Broccoli)
 - ¬∃x¬Likes(x,Broccoli)

- ∃x Likes(x,Broccoli)
- ¬∀x¬Likes(x,Broccoli)

Inference and FOL

- We know how to do inference in Propositional Logic: find α such that KBI =α
 - Is it possible to use these techniques for FOL?
 - Have to handle quantifiers, predicates, functions, ...

Universal Instantiation

Given sentence ∀x P(x)∧Q(x)⇒R(x) then
 we want to infer P(John)∧Q(John)⇒R(John)
 and P(Anne)∧P(Anne)⇒R(Anne) and ...

Universal Instantiation

- A ground term is a term without variables
- SUBST(θ,α) is the result of applying substitution θ to sentence α

• Example

- $SUBST({x/John}, \forall x P(x) \land Q(x) \Rightarrow R(x)) = P(John) \land Q(John) \Rightarrow R(John)$
- SUBST({x/Father(John)}, $\forall x P(x) \land Q(x) \Rightarrow R(x)$)

=P(Father(John))∧Q(Father(John))⇒R(Father(John))

Existential Instantiation

 For any sentence α, variable v and constant symbol K that does not appear anywhere in the KB

$$\exists v \alpha$$

Stolum Constant
SUBST($\{x/K\}, \alpha$)

Example

 $\exists x Crown(x) yields$

 $Crown(C_1)$ (C_1 is a new constant)

Reduction to Propositional Inference

Suppose the KB contained the following

- $\forall x Cat(x) \land Orange(x) ⇒ Cute(x)$
- Orange(Kitty)
- Cat(Kitty)
- Sister(Kitty, Katy)
- Instantiating the universal sentence in all possible ways we have a new KB:
 - Cat(Kitty) \land Orange(Kitty) \Rightarrow Cute(Kitty)
 - $Cat(Katy) \land Orange(Katy) \Rightarrow Cute(Katy)$
 - Cat(Kitty)
 - Sister(Kitty, Katy)
- The new KB is in propositional form. The symbols are Cat(Kitty), Cat(Katy), Orange(Kitty), Cute(Katy), Sister(Kitty,Katy), ...

Example

• KB: Bob is a buffalo. Pat is a pig. Buffalos are faster than pigs.

- Every FOL KB can be propositionalized
 - Transformed into propositional logic
- This preserves entailment
 - A ground sentence is entailed by the new KB if and only if it was entailed in the original KB
- Thus we can apply resolution (sound and complete) and return the result?

- Problem: Functions
 - The set of possible ground substitutions can be infinite
 - Example: Assume the KB contains function Mother(x)
 - SUBST({xIJohn},Mother(x))=Mother(John)
 - SUBST({xIMother(John)},Mother(x))=Mother(Mother(John))
 - SUBST({xl
 Mother(John)},Mother(Mother(x))=Mother(Mother(Mother(John)))

- **Theorem** (Herbrand 1930): If a sentence is entailed by a FOL KB, then it is entailed by a finite subset of the propositionalized KB.
- **Idea**: for n=0 to ∞
 - Create a propositional KB by instantiating with depth n terms
 - Check if α is entailed by this KB. If yes, then stop.

- Problem: Works if α is entailed by the KB but it loops forever if α is not entailed
- **Theorem**: (Turing 1936, Church 1936) Entailment in FOL is semi-decidable.
 - Algorithms exist that say yes to every entailed sentence
 - No algorithm exists that says no to every unentailed sentence

Problems with Propositionalization

- Problem is with universal instantiation
 - Generates many irrelevant sentences due to substitutions
- Idea: Find a substitution that makes different logical statements look identical
 - Unification

Unification

- Unify algorithm
 - Takes two sentences and returns a unifier if one exists
 - Unify(p,q)= θ where SUBST(θ ,p)=SUBST(θ ,q)
 - θ is the Unifier

р	q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,Paul)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,Paul)	

Generalized Modus Ponens

 Conditions: Atomic sentences p_i, p_i' and q where there is a substitution θ such that SUBST(θ,p_i)=SUBST(θ,p_i')

$$\frac{p'_1, p'_2, \dots, p'_n, (p_1 \land p_2 \land \dots \land p_n) \Rightarrow q}{\mathsf{SUBST}(\theta, q)}$$

Caveats:

GMP used with a KB of definite clauses (exactly one positive literal).

All variables are assumed to be universally quantified

Inference Algorithms

- You can now use
 - Forward chaining
 - Backward chaining
 - Resolution

Forward Chaining Example

Backward Chaining Example

Resolution Review

- Resolution is a refutation procedure
 - To prove KB I= α show that KB $\wedge\neg\alpha$ is unsatisfiable
- Resolution used KB, $\neg \alpha$ in CNF
- Resolution inference rule combines two clauses to make a new one

Inference continues until an empty clause is derived (contradiction)

Resolution

 $l_1 \lor \cdots \lor l_k, m_1 \lor \cdots m_n$

 $(l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{i-1} \vee m_{i+1} \vee \cdots \vee m_n)\theta$

Where $Unify(I_i, : m_i) = \theta$

The two clauses, l_i and $\ m_i,$ are assumed to be standardized apart so that they share no variables

Example \neg Rich(x) \lor Unhappy(x)Rich(John)Unhappy(John) with $\theta = \{x/John\}$

Converting to CNF

- Example $\forall x [\forall y A(y) \Rightarrow L(x,y)] \Rightarrow [\exists y L(y,x)]$
- Eliminate \Leftrightarrow and \Rightarrow
 - $\forall x[\neg \forall y \neg A(y) \lor L(x,y)] \lor [\exists y \ L(y,x)]$
- Move ¬ inwards
 - $\forall x[\exists yA(y) \land \neg L(x,y)] \lor [\exists y \ L(y,x)]$
- Standardize variables
 - $\forall x[\exists yA(y) \land \neg L(x,y)] \lor [\exists z \ L(z,x)]$
- Skolemize
 - $\forall x[A(F(x)) \land \neg L(x,F(x))] \lor [L(G(x),x)]$
- Drop universal quantifiers
 - [A(F(x))∧¬L(x,F(x))]∨[L(G(x),x)]
- Distribute v over A
 - $\qquad [A(F(x)) \lor L(G(x),x)] \land [\neg L(x,F(x)) \lor L(G(x),x)] \\$

Resolution Example

- Marcus is a person
- Marcus is a Pompeian
- All Pompeians are Roman
- Caesar is a ruler
- All Romans are either loyal to Caesar or hate Caesar
- Everyone is loyal to someone
- People only try to assassinate rulers they are not loyal to
- Marcus tries to assassinate Caesar
- Query: Does Marcus hate Caesar?

Conclusion

- Syntax, semantics, entailment and inference
- Propositional logic and FOL
- Understand how forward-chaining, backward-chaining and resolution work