Constraint Satisfaction

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Outline

- What are Constraint Satisfaction Problems (CSPs)?
- Standard Search and CSPs
- Improvements
 - Backtracking
 - Backtracking + heuristics
 - Forward Checking

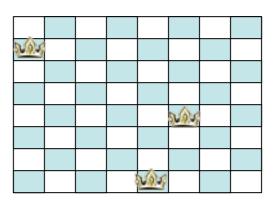
Introduction

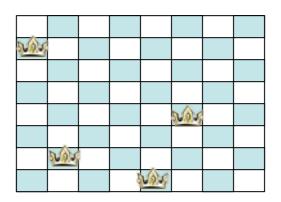
- We have been solving problems by searching in a space of states
 - Treating states as black boxes
- Today, we study problems where state structure is important

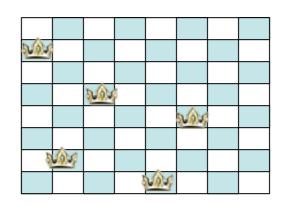
Queens Problem

- **States**: All arrangements of 0,1,..., or 8 queens
- Initial state: 0 queens on the board
- Successor function: Add a queen to the board
- Goal Test: 8 queens on the board with no two attacking each other

64×63×...53~3×10¹⁴ states



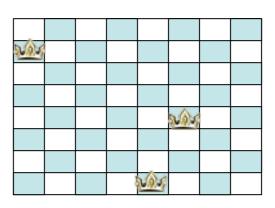


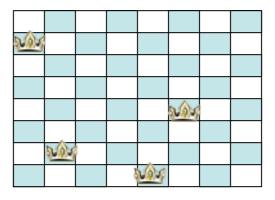


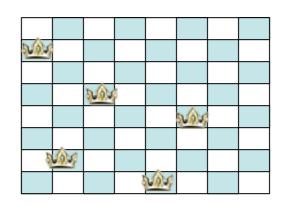
Queens Problem

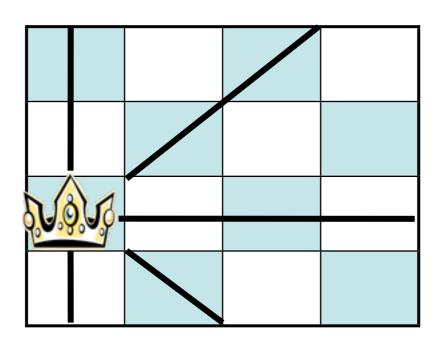
- States: All arrangements of k queens (0≤k≤8), one per column in the leftmost k columns, with no queen attacking another
- Initial state: 0 queens on the board
- Successor function: Add queen leftmost empty column such that it is not attacked
- Goal Test: 8 queens on the board

2057 states

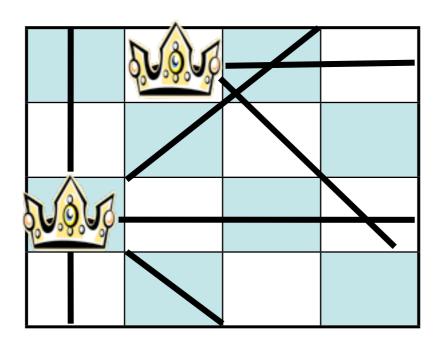




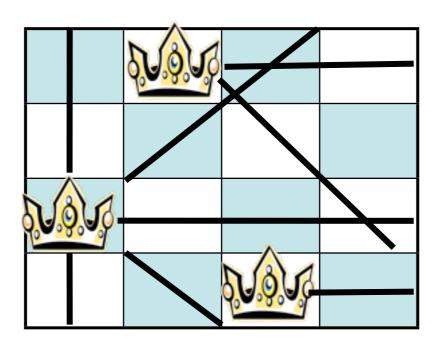




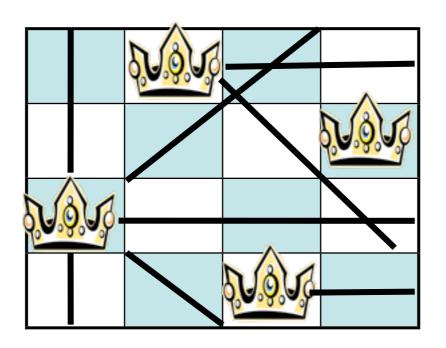
Place a queen in a square



Place a queen in a square



Place a queen in a square



Place a queen in a square

CSP Definition

- A constraint satisfaction problem (CSP) is defined by {V, D,C} where
 - $V=\{V_1,V_2,...,V_n\}$ is the set of variables
 - $D=\{D_1,D_2,...,D_n\}$ is the set of **domains**
 - C={C₁,C₂,...,C_m} is the set of **constraints**

CSP Definition

- A state is an assignment of values to some (or all) variables
 - $\{V_i=x_i, V_j=x_j,...\}$
- Consistent assignments
 - No violated constraints
- A solution is a complete, consistent assignment

Example: 8 Queens

- 64 variables V_{ij}, i=1..8, j=1..8
- Domain $D_{ij}=\{0,1\}$
- Constraints
 - V_{ij} =1⇒ V_{ik} =0 for $j\neq k$
 - V_{ij} =1⇒ V_{kj} =0 for i≠k
 - Similar constraints for diagonals
 - $-\sum_{ij}V_{ij}=8$

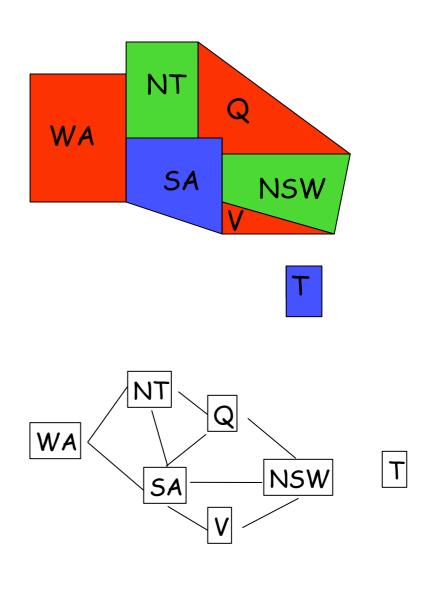
Binary Constraints: Relate two variables

Example: 8 Queens

- 8 variables, V_i i=1..8
- Domains $D_i = \{1, 2, ..., 8\}$
- Constraints
 - V_i=k⇒V_j≠k for all j≠i
 - Similar constraints for diagonals

Example: Map Colouring

- 7 variables {WA, NT,
 SA, Q, NSW, V, T}
- Each variable has same domain {red, blue, green}
- No two adjacent variables have the same value



Constraint graph

Example: 3 Sat

- n Boolean variables V₁,...,V_n
- K constraints of the form $V_i^* \vee V_j^* \vee V_k^*$ where V_i^* is either V_i or $\sim V_i$
- NP-Complete

Variable Types of CSPs

- Discrete and finite
- Discrete variables with infinite domains
 - Constraint languages
- Continuous domains
 - Linear programming etc

Types of Constraints

- Unary
 - restricts a variable to a single value
- Binary
 - Constraint graph
- Higher order constraints involve three or more variables
 - Constraint hypergraphs

CSPs and Search

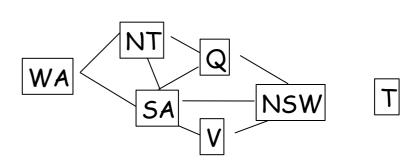
- n variables V₁,...,V_n
- Valid assignment: {V₁=x₁,...,Vk=xk} for 0≤k≤n such that values satisfy constraints
- States: valid assignments
- Initial state: empty assignment
- Successor: $\{V_1=x_1,...,V_k=x_k\} \rightarrow \{V_1=x_1,...,V_k=x_k,V_{k+1}=x_{k+1}\}$
- Goal test: complete assignment
 - If all domains have size d then there are O(dⁿ) complete assignments

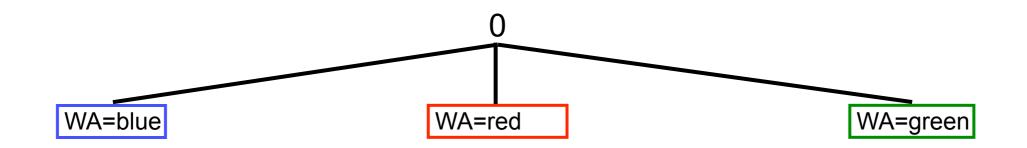
Communtativity

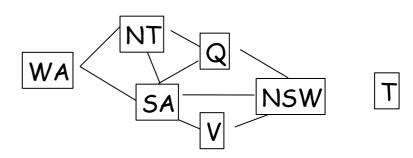
- CSPs are commutative
- Order of actions taken does not effect outcome
 - Can assign values to variables in any order
- CSP algorithms take advantage of this
 - Consider possible assignments for a single variable at each node in search tree

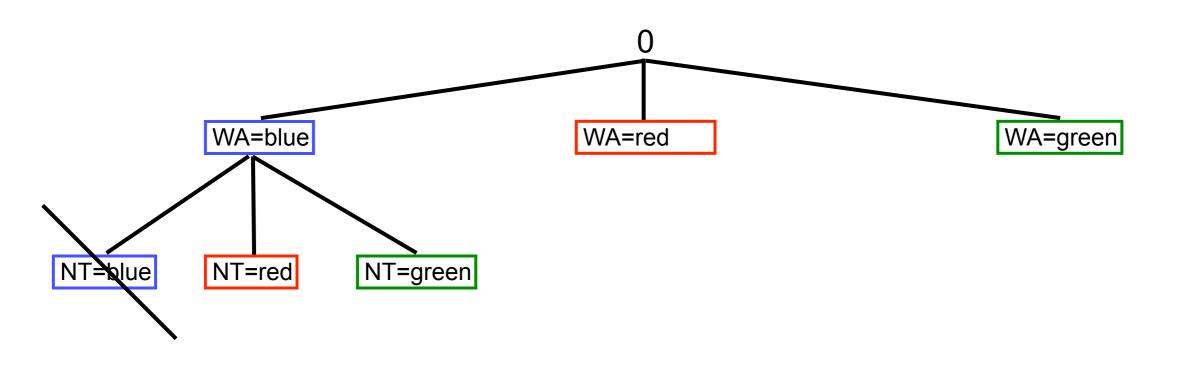
Backtracking Search

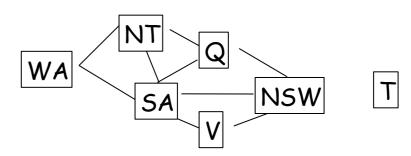
- Select unassigned variable X
- For each value {x₁,...,x_n} in domain of X
 - If value satisfies constraints, assign X=xi and exit loop
- If an assignment is found
 - Move to next variable
- If no assignment found
 - Back up to preceding variable and try a different assignment for it

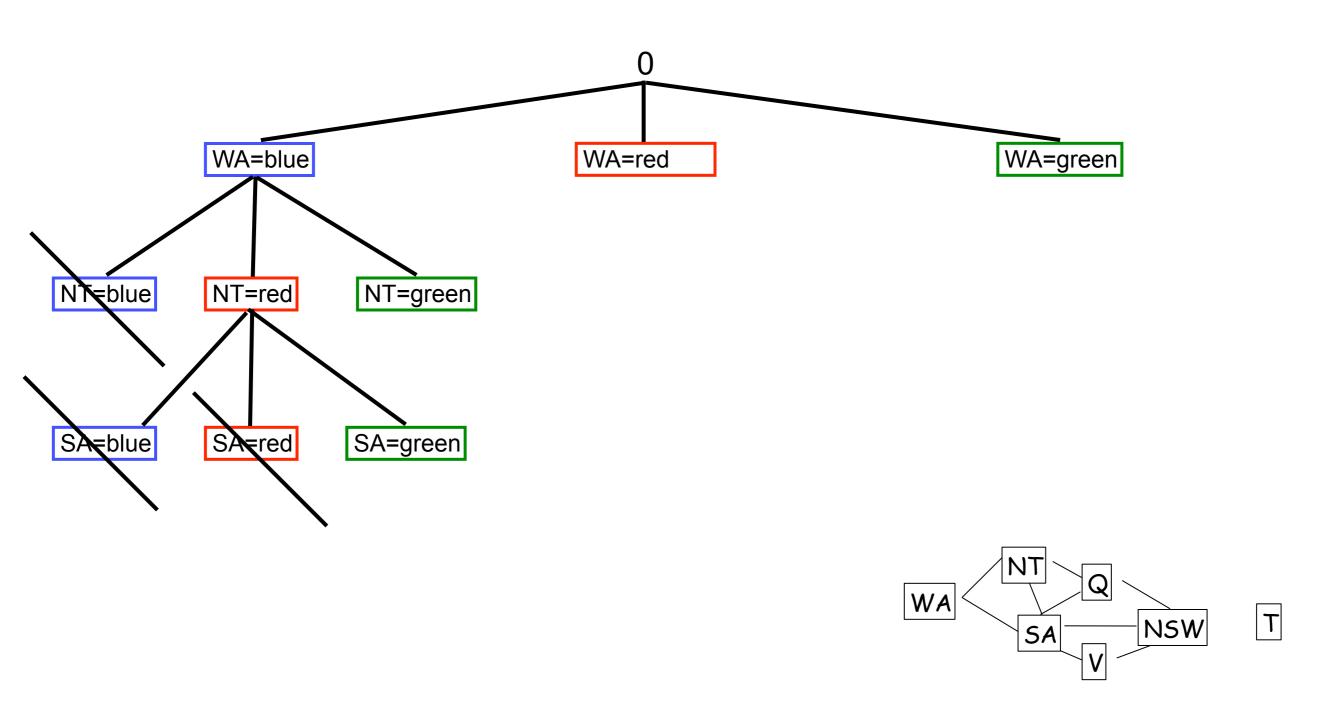










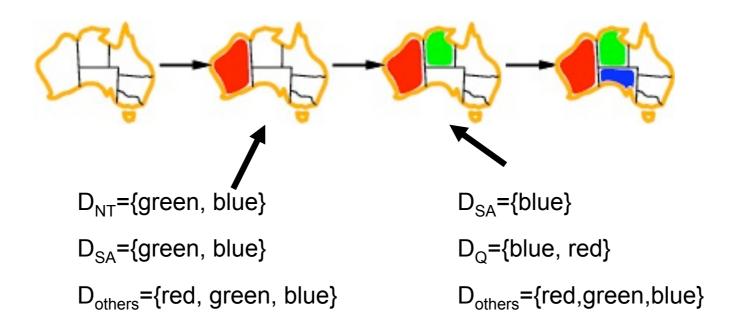


Backtracking and Efficiency

- Backtracking search = uninformed search method
 - Not very efficient
- Can we do better? Heuristics!
 - Which variable should be assigned next?
 - In which order should its values be tried?
 - Can we detect inevitable failure early?

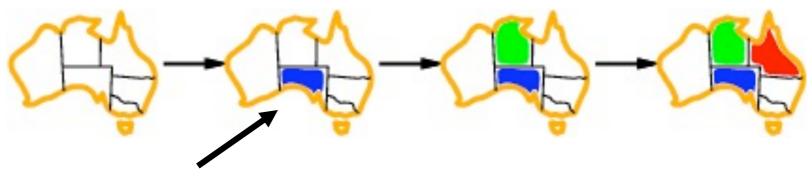
Most Constrained Variable

- Choose the variable which has the fewest "legal" moves
 - AKA minimum remaining values (MRV)



Most Constraining Variable

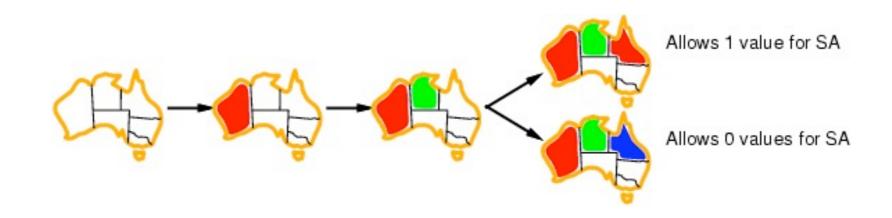
- Most constraining variable:
 - Choose variable with most constraints on remaining variables
- Tie-breaker among most constrained variables



SA is involved in 5 constraints

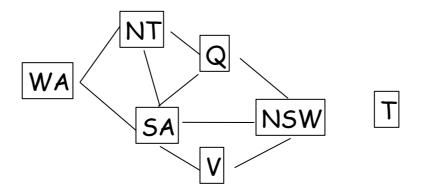
Least-Constraining Value

- Given a variable, choose the least constraining value:
 - The one that rules out the fewest values in the remaining variables

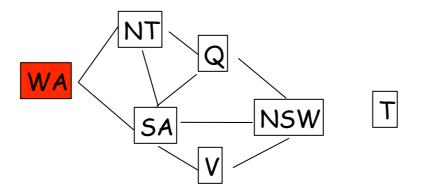


Forward Checking

- Is there a way to detect failure early?
- Forward checking:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

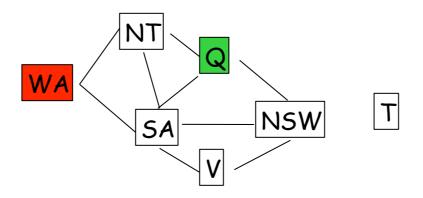


WA	NT	Q	NSW	V	SA	Т
RGB						

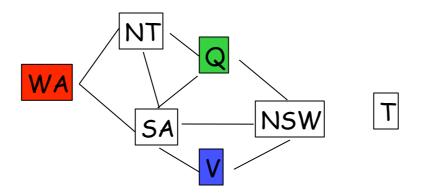


WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	K GB	RGB	RGB	RGB	KGB	RGB

Forward checking removes the value Red of NT and of SA



WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	B	G	RAB	RGB	B	RGB



WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB
R	В	G	RB	В	Z	RGB

Empty set: the current assignment $\{(WA \in R), (Q \in G), (V \in B)\}$ does not lead to a solution

WA	NT	Q	NSW	V	SA	Т
RGB						
R	GB	RGB	RGB	RGB	GB	RGB
R	В	G	RB	RGB	В	RGB
R	В	G	RB	В	Z	RGB

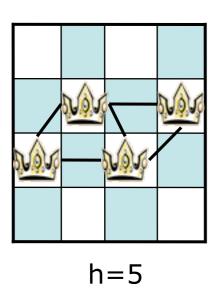
Arc Consistency

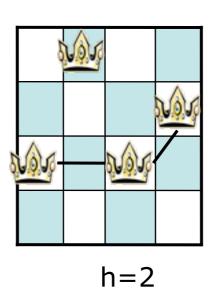
- Arc Consistency
 - Fast method of constraint propagation
 - Stronger than forward checking

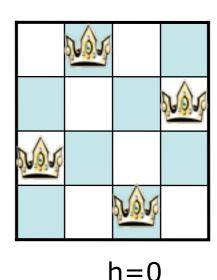
Iterative Improvement Algorithms

- Start with a broken but complete assignment of values to variables
 - Allow states to have variable assignments that do not satisfy constraints
- Randomly select conflicted variables
- Operators reassign values
 - Min-conflict heuristic: choose value that violates fewest constraints

Example: 4 Queens







Given random initial state, can solve n-queens problem in almost constant time for arbitrary n with high probability (e.g. $n=10^7$)

Appears to be true for any randomly-generated CSP except in narrow range of ratio:

R=(number constraints)/(number variables)

Summary

- How to formalize problems as CSPs
- Backtracking search
- Heuristics
 - variable ordering
 - value ordering
 - forward checking
 - arc consistency
- Iterative Improvement approaches