Local Search

CS 486/686: Introduction to Artificial Intelligence Fall 2013

Overview

- Uninformed Search
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS
- Informed Search
 - Heuristics
 - A* search and variations

• Search and Optimization

- What are the problem features?
- Iterative improvement: hill climbing, simulated annealing
- Genetic algorithms

Introduction

- Both uninformed and informed search systematically explore the search space
 - Keep 1 or more paths in memory
 - Solution is a path to the goal
- For many problems, the path is unimportant

Examples

AV ~B V C ~A V C V D B V D V ~E ~C V ~D V ~E

Informal Characterization

- Combinatorial structure being optimized
- Constraints have to be satisfied
- There is a cost function
 - We want to find a **good** solution
- Search all possible states is infeasible
 - Often easy to find **some solution** to the problem
 - Often provably hard (NP-complete) to find the best solution

Typical Example: TSP

- Goal is to minimize the length of the route
- Constructive method: Start from scratch and build up a solution
- Iterative improvement method: Start with solution (may be suboptimal or broken) and improve it

Constructive Methods

- For the optimal solution we can use A*
- But...
- We do not need to know how we got the solution
 - We just want the solution

Iterative Improvement Methods

- Idea: Imagine all possible solutions laid out on a landscape
 - Goal: find the highest (or lowest) point

Iterative Improvement Methods

- Start at some random point
- Generate all possible points to move to
- If the set is not empty, choose a point and move to it
- If you are stuck (set is empty), then restart

Iterative Improvement Methods

- What does it mean to "generate points to move to"
 - Generating the moveset
- Depends on the application

Hill Climbing (Gradient Descent)

- Main idea
 - Always take a step in the direction that improves the current solution value the most
- Variation of best-first search
- Very popular for learning algorithms

"...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia", Russell and Norvig

Hill Climbing

- 1. Start with some initial configuration S
- 2. Let V be the value of S
- 3. Let S_i , i=1,...,n be neighbouring configs, V_i are corresponding values
- 4. Let $V_{max}=max_iV_i$ be value of best config and S_{max} is the corresponding config
- If V_{max}<V return S (local optimium)
- Let $S \leftarrow S_{max}$ and $V \leftarrow V_{max}$. Go to 3

Judging Hill Climbing

- Good news
 - Easy to program
 - Requires no memory of where we have been
 - Important to have a "good" set of moves
 - Not too many, not too few

Judging Hill Climbing

- Bad news
 - It can get stuck
 - Local maxima/minima
 - Plateaus

Improving Hill Climbing

- Plateaus
 - Allow for sideways moves
 - But be careful since might move sideways forever
- Local Maxima
 - Random restarts: If at first you do not succeed, try, try again!

Randomized Hill Climbing

- Like hill climbing except
 - You choose a random state from the move set
 - Move to it if it is better than current state
 - Continue until you are bored

More Randomization

- Hill climbing is incomplete
 - can get stuck at local optima
- A random walk is complete
 - but very inefficient
- New Idea:
 - Allow the algorithm to make some "bad" moves in order to escape local optima

Example: GSAT

AV~BVC 1	Configuration A=1, B=0, C=1, D=0, E=1	
~AVCVD 1	Configuration A=1, D=0, C=1, D=0, L=1	
BVDV~E 0	Goal is to maximize the number of satisfied	
~CV~DV~E 1	clauses: Eval(config)=# satisfied clauses	
~AV~CVE 1	GSAT Move_Set: Flip any 1 variable	

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then with prob p pick the move that is least bad; prob (1-p) pick a random one

Simulated Annealing

- 1. S is initial config and V=Eval(S)
- 2. Let i be a **random** move from the moveset and let S_i be the next config, $V_i=Eval(S_i)$
- 3. If V<V_i, then S=S_i and V=V_i
- 4. Else with probability p, $S=S_i$ and $V=V_i$
- 5. Go to 2 until you are bored

What About p?

- How should we choose the probability of making a "bad" move?
 - p=0.1 (or some fixed value)?
 - Decrease p with time?
 - Decrease p with time and as V-V_i increases?
 - **-** ...

Selecting Moves in Simulated Annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with probability

$$e^{-(V-V_i)/T}$$

Boltzmann Distribution: T>0 is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is almost 0.

Properties to Simulated Annealing

- When T is high:
 - Exploratory phase: even bad news have a chance of being picked (random walk)
- When T is low:
 - Exploitation phase: "bad" moves have low probability of being chosen (randomized hill climbing)
- If T is decreased slowly enough then simulated annealing is guaranteed to reach optimal solution

Genetic Algorithms

- Populations are encoded into a representation which allows certain operations to occur
 - Usually a bitstring
 - Representation is key needs to be thought out carefully
- An encoded candidate solution is an **individual**
- Each individual has a **fitness**
 - Numerical value associated with its quality of solution
- A **population** is a set of individuals
- Populations change over generations by applying strategies to them
 - Operation: selection, mutation, crossover

Typical Genetic Algorithm

- Initialize: Population P←N random individuals
- Evaluate: For each x in P, compute fitness(x)
- Loop
 - For i=1 to N
 - Select 2 parents each with probability proportional to fitness scores
 - **Crossove**r the 2 parents to prodice a new bitstring (child)
 - With some small probability mutate child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function

Selection

- Fitness proportionate selection:
 - Can lead to overcrowding
- Tournament selection
 - Pick i, j at random with uniform probability
 - With probability p select fitter one
- Rank selection
 - Sort all by fitness
 - Probability of selection is proportional to rank
- Softmax (Boltzmann) selection: $P(i) = \frac{e^{-1} \sum_{j=1}^{N} e^{\text{fitness}(j)/T}}{\sum_{j=1}^{N} e^{\text{fitness}(j)/T}}$

$$P(i) = \frac{\text{fitness}(i)}{\sum_{j} \text{fitness}(j)}$$

$$\rho$$
fitness $(i)/T$

Crossover

- Combine parts of individuals to create new ones
- For each pair, choose a random crossover point
 - Cut the individuals there and swap the pieces

10	010101	011 1110	
	Cross over		
03	11 0101	101 1110	
Implementation: use a crossover mask m			
Given two parents a and b the offspring are			
(a^m)V(b^~m) and (a^~m)V (b^m)			

Mutation

- Mutation generates new features that are not present in original population
- Typically means flipping a bit in the string

100111 mutates to 100101

 Can allow mutation in all individuals or just in new offspring

Example

Summary

- Useful for optimization problems
- Often the second-best way to solve a problem
 - If you can, use A* or linear programming or ...
- Need to think about how to escape from local optima
 - Random restarts
 - Allowing for bad moves
 - ..