Local Search

CS 486/686: Introduction to Artificial Intelligence
Fall 2013
Overview

• Uninformed Search
 - Very general: assumes no knowledge about the problem
 - BFS, DFS, IDS

• Informed Search
 - Heuristics
 - A* search and variations

• Search and Optimization
 - What are the problem features?
 - Iterative improvement: hill climbing, simulated annealing
 - Genetic algorithms
Introduction

• Both uninformed and informed search systematically explore the search space
 - Keep 1 or more paths in memory
 - Solution is a path to the goal

• For many problems, the path is unimportant
Examples

AV ~B V C
~A V C V D
B V D V ~E
~C V ~D V ~E
...

Agents = dispatch centers
Informal Characterization

- Combinatorial structure being optimized
- Constraints have to be satisfied
- There is a cost function
 - We want to find a **good** solution
- Search all possible states is infeasible
 - Often easy to find **some solution** to the problem
 - Often provably **hard** (NP-complete) to find the **best** solution
Typical Example: TSP

- Goal is to minimize the length of the route
- **Constructive method**: Start from scratch and build up a solution
- **Iterative improvement method**: Start with solution (may be suboptimal or broken) and improve it
Constructive Methods

- For the optimal solution we can use A*
- But...
- We do not need to know how we got the solution
 - We just want the solution
Iterative Improvement Methods

- Idea: Imagine all possible solutions laid out on a landscape
- Goal: find the highest (or lowest) point
Iterative Improvement Methods

- Start at some random point
- Generate all possible points to move to
- If the set is not empty, choose a point and move to it
- If you are stuck (set is empty), then restart
Iterative Improvement Methods

• What does it mean to “generate points to move to”
 - Generating the **moveset**

• Depends on the application

```
TSP

2-swap
```
Hill Climbing (Gradient Descent)

• Main idea
 - Always take a step in the direction that improves the current solution value the most

• Variation of best-first search

• Very popular for learning algorithms

“...like trying to find the top of Mt Everest in a thick fog while suffering from amnesia”, Russell and Norvig
Hill Climbing

1. Start with some initial configuration S

2. Let V be the value of S

3. Let S_i, $i=1,\ldots,n$ be neighbouring configs, V_i are corresponding values

4. Let $V_{\text{max}}=\max_i V_i$ be value of best config and S_{max} is the corresponding config

 • If $V_{\text{max}}<V$ return S (local optimum)

 • Let $S\leftarrow S_{\text{max}}$ and $V\leftarrow V_{\text{max}}$. Go to 3
Judging Hill Climbing

• Good news
 - Easy to program
 - Requires no memory of where we have been
 - Important to have a “good” set of moves
 - Not too many, not too few
Judging Hill Climbing

- Bad news
 - It can get stuck
 - Local maxima/minima
 - Plateaus
Improving Hill Climbing

• Plateaus
 - Allow for sideways moves
 - But be careful since might move sideways forever

• Local Maxima
 - Random restarts: *If at first you do not succeed, try, try again!*
Randomized Hill Climbing

- Like hill climbing except
 - You choose a random state from the move set
 - Move to it if it is better than current state
 - Continue until you are bored
More Randomization

- Hill climbing is incomplete
 - can get stuck at local optima
- A random walk is complete
 - but very inefficient
- **New Idea:**
 - Allow the algorithm to make some “bad” moves in order to escape local optima
Example: GSAT

Configuration $A=1$, $B=0$, $C=1$, $D=0$, $E=1$

Goal is to maximize the number of satisfied clauses: $\text{Eval(config)} = \# \text{satisfied clauses}$

GSAT Move_SET: Flip any 1 variable

WALKSAT (Randomized GSAT)

Pick a random unsatisfied clause;

Consider flipping each variable in the clause

If any improve Eval, then accept the best

If none improve Eval, then with prob p pick the move that is least bad; prob $(1-p)$ pick a random one
Simulated Annealing

1. S is initial config and V=Eval(S)
2. Let i be a random move from the moveset and let S_i be the next config, $V_i=Eval(S_i)$
3. If $V<V_i$, then $S=S_i$ and $V=V_i$
4. Else with probability p, $S=S_i$ and $V=V_i$
5. Go to 2 until you are bored
What About p?

- How should we choose the probability of making a “bad” move?
 - \(p=0.1 \) (or some fixed value)?
 - Decrease \(p \) with time?
 - Decrease \(p \) with time and as \(V-V_i \) increases?
 - …
Selecting Moves in Simulated Annealing

- If new value V_i is better than old value V then definitely move to new solution
- If new value V_i is worse than old value V then move to new solution with probability

$$e^{-(V - V_i)/T}$$

Boltzmann Distribution: $T>0$ is a parameter called temperature. It starts high and decreases over time towards 0. If T is close to 0 then the prob. of making a bad move is almost 0.
Properties to Simulated Annealing

- When T is high:
 - **Exploratory phase**: even bad news have a chance of being picked (random walk)

- When T is low:
 - **Exploitation phase**: “bad” moves have low probability of being chosen (randomized hill climbing)

- If T is decreased slowly enough then simulated annealing is guaranteed to reach optimal solution
Genetic Algorithms

- Populations are encoded into a representation which allows certain operations to occur
 - Usually a bitstring
 - Representation is key - needs to be thought out carefully
- An encoded candidate solution is an **individual**
- Each individual has a **fitness**
 - Numerical value associated with its quality of solution
- A **population** is a set of individuals
- Populations change over **generations** by applying strategies to them
 - Operation: selection, mutation, crossover
Typical Genetic Algorithm

- Initialize: Population $P \leftarrow N$ random individuals
- Evaluate: For each x in P, compute fitness(x)
- Loop
 - For $i=1$ to N
 - Select 2 parents each with probability proportional to fitness scores
 - Crossover the 2 parents to produce a new bitstring (child)
 - With some small probability mutate child
 - Add child to population
 - Until some child is fit enough or you get bored
- Return best child in the population according to fitness function
Selection

- **Fitness proportionate selection:**
 - Can lead to overcrowding

- **Tournament selection**
 - Pick i, j at random with uniform probability
 - With probability p select fitter one

- **Rank selection**
 - Sort all by fitness
 - Probability of selection is proportional to rank

- **Softmax (Boltzmann) selection:**
 \[P(i) = \frac{e^{fitness(i)/T}}{\sum_j e^{fitness(j)/T}} \]
Crossover

• Combine parts of individuals to create new ones
• For each pair, choose a random crossover point
 - Cut the individuals there and swap the pieces

\[
\begin{align*}
101 | 0101 & \quad 011 | 1110 \\
\text{Cross over} \\
011 | 0101 & \quad 101 | 1110
\end{align*}
\]

Implementation: use a crossover mask \(m \)

Given two parents \(a \) and \(b \) the offspring are

\[(a \wedge m) \lor (b \wedge \neg m) \text{ and } (a \wedge \neg m) \lor (b \wedge m)\]
Mutation

- Mutation generates new features that are not present in original population
- Typically means flipping a bit in the string

100111 mutates to 100101

- Can allow mutation in all individuals or just in new offspring
Example
Summary

• Useful for optimization problems
• Often the second-best way to solve a problem
 - If you can, use A* or linear programming or ...
• Need to think about how to escape from local optima
 - Random restarts
 - Allowing for bad moves
 - ...