
Informed Search

CS 486/686: Introduction to Artificial Intelligence
Fall 2013

1

Outline
• Using knowledge

- Heuristics

• Best-first search

- Greedy best-first search

- A* search

- Variations of A*

• Back to heuristics

2

Last lecture
• Uninformed search uses no knowledge about the problem

- Expands nodes based on “distance” from start node (never
looks ahead to goal)

• Pros

- Very general

• Cons

- Very expensive

• Non-judgemental

- Some are complete, some are not

3

Informed Search
• We often have additional knowledge about

the problem

- Knowledge is often merit of a node (value of a
node)
- Example: Romania travel problem?

• Different notions of merit

- Cost of solution

- Minimizing computation

4

Informed Search

• Uninformed search expands nodes
based on distance from start node,
d(nstart, n)

• Why not expand on distance to goal,
d(n,ngoal)?

• What if we do not know d(n,ngoal) exactly?

- Heuristic function, h(n)

5

Example: Path Planning

• Romania example

- What is a reasonable heuristic?

- Is it always right?

6

Heuristics

• If h(n1)<h(n2)

- We guess it is cheaper to reach the goal
from n1 than n2

• We require h(ngoal)=0

• For now, just assume we have some heuristic h(n)

7

(Greedy) Best-First Search

• Expand the most promising node
according to the heuristic

• Best-first is similar to DFS (how similar
depends on the heuristics

• If h(n)=0 for all n, best-first search is the
same as BFS

8

Example: Best First search

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

heuristic
function

path
cost

9

Example: Best First Search

C

G
2

S BA
2 1

h=4 h=2 h=2.5

h=1

h=0

1
1

10

Judging Best First Search

• Good news

- Informed search method

• Bad news

- Not optimal

- Not complete: but OK if we check repeated states

- Exponential space: might need to keep all nodes in
memory

- Exponential time (O(bm))
- but if we choose a good heuristic then we can do much better! (See Good news)

11

A* Search
• Best-first search is too greedy

• Solution?

- Let g be the cost of the path so far

- Let h be a heuristic function

- Let f(n)=g(n)+h(n)
- estimate of cost of current path

• A* search

- Expand node in fringe with lowest f-value

12

A* Search

• Algorithm

- At every step, expand node n from front of
the queue

- Enqueue the successor nʼ with priorities
f(nʼ)=g(nʼ)+h(nʼ)

- Terminate when goal state is popped from
the queue

13

Example: A* search

S CBA G
2 1 1 2

4

h=4 h=3 h=2 h=1 h=0

heuristic
function

path
cost

14

When Should A* Terminate?

• Only when G has been popped from the
queue

S

C

BA

DG h=2

h=3

h=1

h=7

1

7

1

1

17

15

A* and Revisiting States
• What if we revisit a state that was

already expanded?

S

C

BA

G
h=2

h=3h=7

1

1

1

2

7

16

Is A* Optimal?

S

A

G

1 1 1

3

h=6

17

Admissible Heuristics

• Let h*(n) be the shortest path from n to
any goal state

• A heuristic is admissible if h(n)≤h*(n)
for all n

• Admissible heuristics are optimistic

• Always have h(ngoal)=0 for any
admissible heuristic

18

Optimality of A*
• If the heuristic is admissible then A* with tree-

search is optimal
Proof by contradiction
Let goal G2 be in the queue. Let n be an unexpanded node on the
shortest path to optimal goal G.
Assume that A* chose G2 to expand. Thus, it must be that f(n)>f(G2)

But
f(G2)=g(G2) since h(G2)=0
 >= g(G) since G2 is suboptimal
 >= f(n) since h is admissible

Contradiction. Therefore, A* will never select G2 for expansion.

19

Optimality of A*

• For graphs we require consistency

- h(n)≤cost(n,nʼ)+h(nʼ)

- Almost any admissible heuristic function will
also be consistent

• A* search on graphs with a consistent
heuristic is optimal

20

Judging A*
• Good news

- Complete

- Optimal (if heuristic is admissible)

- Time complexity: Exponential in worst case but a
good heuristic helps a lot

• Bad news

- A* keeps all generated nodes in memory

- On many problems A* runs out of memory

21

Memory-Bounded Heuristic
Search

• Iterative Deepening A* (IDA*)

- Basically depth-first search but using the f-value
to decide which order to consider nodes

- Use f-limit instead of depth limit
- New f-limit is the smallest f-value of any node that exceeded cutoff on

previous iteration

- Additionally keep track of next limit to consider

- IDA* has same properties as A* but uses less
memory

22

Memory-Bounded Heuristic
Search

• Simplified Memory-Bounded A* (SMA*)

- Uses all available memory

- Proceeds like A* but when it runs out of memory
it drops the worst leaf node (one with highest f-
value)

- If all leaf nodes have same f-value, drop oldest
and expand newest

- Optimal and complete if depth of shallowest goal
node is less than memory size

23

Heuristic Functions

• A good heuristic function can make all
the difference!

• How do we get heuristics?

24

8 Puzzle

• Relax the game
1. Can move from A to B is A is next to B

2. Can move from A to B if B is blank

3. Can move from A to B

25

8 Puzzle

• 3 leads to misplaced tile heuristic

- Number of moves = number of misplaced
tiles

- Admissible

• 1 leads to Manhatten distance heuristic

- Admissible

26

8 Puzzle

• h1=misplaced tiles, h2=Manhatten
distance

• Note: h2 dominates h1

- h2(n)≥h1(n) for all n

- Even though both h1 and h2 are admissible
heuristics, h2 is a better heuristic

27

8 Puzzle and Heuristics

Depth IDS A*(h1) A*(h2)

2 10 6 6

4 112 13 12

8 6384 39 25

12 3644035 227 73

24 - 39135 1641

28

Designing Heuristics

• Relax the problem

• Precompute solution costs of
subproblems and storing them in a
pattern database

• Learning from experience with the
problem class

• ...

29

Summary

• What you should know

- Thoroughly understand A*

- Be able to trace simple examples of A*
execution

- Understand admissibility of heuristics

- Completeness, optimality

30

