
Solving Problems by 
Searching

CS 486/686: Introduction to Artificial Intelligence
Fall 2013



Outline
• Problem solving agents and search

• Examples

• Properties of search algorithms

• Uniformed search

- Breadth first

- Depth first

- Iterative deepening



Introduction
• Search was one of the first topics 

studied in AI

- Newell and Simon (1961) General Problem 
Solver

• Central component to many AI systems

- Automated reasoning, theorem proving, 
robot navigation, scheduling, game 
playing,...



Defining a Search Problem

• State space S: all possible configs. of the 
domain

• Initial state s0∈S: the start state

• Goal states G⊆S: the set of end states

- Goal test: check if we are in a goal state

• Operators A: actions available

- Often defined in terms of mappings from state to 
successor state



Defining a Search Problem

• Path: a sequence of states and 
operators

• Path cost c: a number associated with 
any path

• Solution: a path from s0 to sG∈G

• Optimal solution: a path with minimum 
cost



Example: Traveling in Romania

Start

End



Examples of Search Problems

• States:

• Initial State:

• Operators:

• Goal test:

• Path cost:

• States:

• Initial State:

• Operators:

• Goal test:

• Path cost:



Examples of Search Problems



Our Definition Excludes...

Chance

Continuous states

All of the above

Chance

Partial 
Observability

Adversarial



Representing Search

• Search graph

- Vertices correspond to states

- Edges correspond to operators

• We search for a solution by building a 
search tree and traversing it to find a 
goal state



Data Structures: Search Node

• State

• Parent node and 
operator applied to 
parent to reach current 
node

• Cost of path so far

• Depth of node



Expanding Nodes

• Expanding a node

- Applying all legal operators to the state 
contained in the node

- Generating nodes for all corresponding 
successor states



Expanding Nodes



Generic Search Algorithm

• Initialize with initial state of the problem

• Repeat

- If no candidate nodes can be expanded return 
failure

- Choose leaf node for expansion, according to 
search strategy

- If node contains goal state, return solution

- Otherwise, expand the node. Add resulting nodes to 
the tree



Implementation Details

• Need to keep track of nodes to be expanded (fringe)

• Implement using a queue:

- Insert node for initial state

- Repeat
- If queue is empty, return failure

- Dequeue a node

- If node contains goal state, return solution

- Expand node 

• Search algorithms differ in their queuing function!



Breadth First Search
• All nodes on a given depth are expanded 

before any nodes on next level are expanded.

• Implemented with a FIFO queue



Key Properties
• Completeness: Is the alg. guaranteed to find a solution 

if the solution exists?

• Optimality: Does the alg. find the optimal solution?

• Time complexity: How many operations are needed?

• Space complexity: How much storage is needed?

• Other desirable properties

- Can the alg. return an intermediate solution?

- Can an adequate solution be refined or improved?



Search Performance
• Evaluated in terms of 2 characteristics

- Branching factor of state space: how many operators 
can be applied at any time?

- Solution depth: how long is the path to the closest 
solution?

b Branching factor

d Depth of shallowest goal node

m Maximum length of any path in the state space



Judging BFS
• Good news

- Complete (if b is finite)

- Optimal (if all costs are the same)

• Bad news

- Exponential time complexity: O(bd+1)
- A problem with all uninformed search methods

- Exponential space complexity: O(bd+1)
- Horrible!



Making BFS Always Optimal

• Uniform cost search

- Use a priority queue instead of a simple 
queue

- Insert nodes in increasing order of the cost 
of path so far

- Guaranteed to find optimal solution



Uniform Cost Search

C* is cost of 
optimal solution

ε is minimum 
action cost

 Time: 

O(b1+floor(C*/ε ))

Space: 

O(b1+floor(C*/ε ))



Depth Search Search
• Deepest node in current fringe of the search 

tree is expanded first

• Implemented with a stack



Judging Depth First Search

• Bad news

- Not complete: might get stuck going done a long path

- Not optimal: might return a solution at greater depth 
than another solution

- Time complexity: O(bm)
- m might be much larger than d

• Good news

- Space complexity: O(bm)



Depth Limited Search

• Search depth-first, but terminate path if

- a goal is found, or

- maximum depth, l, is reached.

• How do you set l?

• What happens is l=1?



Depth Limited Search
• Good news

- Always terminates

- Space: O(bl)

• Bad news

- Not complete
- Goal depth might be deeper than l

- Time: O(bl)



Iterative Deepening
• Depth limited search, but increase the limit each 

iteration



Judging Iterative Deepeing

• Bad news

- Time: O(bd)

• Good news

- Complete (like BFS)

- Optimal

- Space: O(bd)



Iterative Deepening

• Isnʼt IDS very wasteful?

- Expanding the same nodes multiple times

• Insight

- Most nodes are found in bottom level of the 
tree



Revisiting States
• What if we revisit a state that has already been 

expanded?

• What is we visit a state that is already in the 
queue?



Revisiting States
• Maintain a closed list to store every expanded 

node

- More efficient on problems with many repeated 
states

- Worst-case time and space are O(S)
- S is number of states

• Allowing states to be re-expanded can produce 
a better solution

- What should you do?



Summary
• Assumes no knowledge about the problem

- General but expensive since we assume no knowledge about the 
problem

• Variety of uninformed search strategies

- Mainly differ in the order in which they consider states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes

Time O(bd+1) O(b+1+floor(C*/ε)) O(bm) O(bl) O(bd)

Space O(bd+1) O(b+1+floor(C*/ε)) O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes



Questions?

• Next class: Informed search


