Solving Problems by
Searching

CS 486/686: Introduction to Artificial Intelligence
Fall 2013

Outline

Problem solving agents and search

Examples

Properties of search algorithms

Uniformed search

Breadth first
Depth first

lterative deepening

Introduction

e Search was one of the first topics
studied in Al

- Newell and Simon (1961) General Problem
Solver

e Central component to many Al systems

- Automated reasoning, theorem proving,
robot navigation, scheduling, game

playing,...

Defining a Search Problem

e State space S: all possible configs. of the
domain

¢ |nitial state socS: the start state

e Goal states GCS: the set of end states
- Goal test: check if we are in a goal state

e Operators A: actions available

- Often defined in terms of mappings from state to
successor state

Defining a Search Problem

e Path: a sequence of states and
operators

e Path cost ¢: a number associated with
any path

e Solution: a path from so to sgeG

e Optimal solution: a path with minimum
cost

Example: Traveling in Romania

Neamt
&
87
- lasi
Start Arad
92
Sibiu 99 Fagaras
N - LJ Vaslui
80
Timisoara - Rimnicu Vilcea
142
211
Hi - Lugoj Pitesti
o
70
85 i Hirsova
) Mehadia 101 Urzicent
r
3 138 86
End / Bucharest
Dobreta L 120
o . 90
Craiova Eaocts

J Giurgiu

Examples of Search Problems

71 21|l 4 1]l 2 H B B
W
(S5 -8) Yo mw
W
8|l 3 1 61| 7]]8 B
W
Start State Goal State - -
e States: e States:
e |nitial State: e |nitial State:
e Operators: e Operators:
e (Goal test: e (Goal test:

e Path cost: e Path cost:

Examples of Search Problems

YaHOO!, o ol

Watarloo spn% 7

ro.-(

wana | oo

e
AR T

e

11 b

!
Et
i

.E:
|

= l. Park ey,
2t \\"
& Jov

n Centennial Silver
Pak Lake E\b

6% W%t. I

LW

—

o0

?>
o
Westmount ’b\g :
Place (},‘Q‘\ AN e
Shopping @ O D

Centr 2 R N
PN ~°\]
~ ol v.

=) -

~:/ Q@glon "-,-“ <
Ry o
ad 50 > v
o0 Ao
P S L\
- e
;"_,‘Y Rush=
SN -

® 2004 Yahoo! Inc @ 2004 GDT nc

C—— ey

Our Definition Excludes...

Chance

=3 1 .- 4 Observability
e All of the above

Representing Search

e Search graph
- Vertices correspond to states

- Edges correspond to operators

e We search for a solution by building a
search tree and traversing it to find a
goal state

Data Structures: Search Node

e State ' O

e Parent node and
operator applied to
parent to reach current 5 (| 4 Node
node '

o[l 1] 8 e
e Cost of path so far 7l 3 |fl 2 d
e Depth of node |

ACTION = right
DEPTH = 6
PATH- CosT =6

o

Expanding Nodes

e Expanding a node

- Applying all legal operators to the state
contained in the node

- Generating nodes for all corresponding
successor states

Expanding Nodes

| (a) The initial state

(b) After expanding Arad Arad

(c) After expanding Sibiu Arad

Generic Search Algorithm

e |nitialize with initial state of the problem
e Repeat

- If no candidate nodes can be expanded return
failure

- Choose leaf node for expansion, according to
search strategy

- If node contains goal state, return solution

- Otherwise, expand the node. Add resulting nodes to
the tree

Implementation Detalils

e Need to keep track of nodes to be expanded (fringe)

e Implement using a queue:
- Insert node for initial state

- Repeat
- If queue is empty, return failure
- Dequeue a node
- If node contains goal state, return solution

- Expand node

e Search algorithms differ in their queuing function!

Breadth First Search

e All nodes on a given depth are expanded
before any nodes on next level are expanded.

e |mplemented with a FIFO queue

VAN f\@ ()

>®®®@

Key Properties

Completeness: Is the alg. guaranteed to find a solution
iIf the solution exists?

Optimality: Does the alg. find the optimal solution?
Time complexity: How many operations are needed?

Space complexity: How much storage is needed?

Other desirable properties
- Can the alg. return an intermediate solution?

- Can an adequate solution be refined or improved?

Search Performance

e Evaluated in terms of 2 characteristics

- Branching factor of state space: how many operators
can be applied at any time?

- Solution depth: how long is the path to the closest
solution?

b |Branching factor

d | Depth of shallowest goal node

m | Maximum length of any path in the state space

Judging BFS

e (Good news

- Complete (if b is finite)

- Optimal (if all costs are the same)
e Bad news

- Exponential time complexity: O(bd+1)

- A problem with all uninformed search methods

- Exponential space complexity: O(bd+1)

- Horrible!

Making BFS Always Optimal

e Uniform cost search

- Use a priority queue instead of a simple
gqueue

- Insert nodes in increasing order of the cost
of path so far

- (Guaranteed to find optimal solution

Uniform Cost Search

> @ C* is cost of
optimal solution

: € IS minimum
A N 2 5 ® o® action cost

& L_] g g D S I:J G ¥) @
P | Time:
- 2 : , O(b1+floor(C*/e)Y

Figure 3.13 A route-hnding problem. (a) I'he state space, showing the cost for each operator Space

(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node

with ¢ = 10 will be selected O(b1+ﬂoor(C*/£))

Depth Search Search

e Deepest node in current fringe of the search
tree is expanded first

¢ |mplemented with a stack

2

Judging Depth First Search

e Bad news
- Not complete: might get stuck going done a long path

- Not optimal: might return a solution at greater depth
than another solution

- Time complexity: O(b™)

- m might be much larger than d

e (Good news

- Space complexity: O(bm)

Depth Limited Search

e Search depth-first, but terminate path if
- agoal is found, or

- maximum depth, |, is reached.

e How do you set |?

e What happens is =17

Depth Limited Search

e (Good news
- Always terminates
- Space: O(bl)

e Bad news

- Not complete

- Goal depth might be deeper than |

- Time: O(b')

lterative Deepening

e Depth limited search, but increase the limit each

iteration

Limit =0 <

Limit = 1 L -}

Limit = 2 <D

JAN
AP SN

Judging lterative Deepeing

e Bad news
- Time: O(bd)
e (Good news
- Complete (like BFS)
- Optimal
- Space: O(bd)

lterative Deepening

e |sn't IDS very wasteful?
- Expanding the same nodes multiple times
e |nsight

- Most nodes are found in bottom level of the
tree

Revisiting States

e What if we revisit a state that has already been
expanded?

e What is we visit a state that is already in the
gqueue?

O

O—O0—0

O

(b) (©)

O—O0——0—0

Revisiting States

e Maintain a closed list to store every expanded
node

- More efficient on problems with many repeated
states

- Worst-case time and space are O(S)

- S is number of states

e Allowing states to be re-expanded can produce
a better solution

- What should you do?

Summary

e Assumes no knowledge about the problem

- General but expensive since we assume no knowledge about the
problem

e \Variety of uninformed search strategies

- Mainly differ in the order in which they consider states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes
Time O(bd+1) O((b+t#floor(CH/e)) O(b™) O(b") O(bd%)
Space O(bd+1) O((b+t#floor(C™/e)) O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes

Questions?

e Next class: Informed search

