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Introduction

e Search was one of the first topics
studied in Al

- Newell and Simon (1961) General Problem
Solver

e Central component to many Al systems

- Automated reasoning, theorem proving,
robot navigation, scheduling, game

playing,...



Defining a Search Problem

e State space S: all possible configs. of the
domain

¢ |nitial state socS: the start state

e Goal states GCS: the set of end states
- Goal test: check if we are in a goal state

e Operators A: actions available

- Often defined in terms of mappings from state to
successor state



Defining a Search Problem

e Path: a sequence of states and
operators

e Path cost ¢: a number associated with
any path

e Solution: a path from so to sgeG

e Optimal solution: a path with minimum
cost



Example: Traveling in Romania
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Examples of Search Problems
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Examples of Search Problems
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Our Definition Excludes...

Chance

=3 1 .- 4 Observability
e All of the above



Representing Search

e Search graph
- Vertices correspond to states

- Edges correspond to operators

e We search for a solution by building a
search tree and traversing it to find a
goal state



Data Structures: Search Node

e State ' O

e Parent node and
operator applied to
parent to reach current 5 (| 4 Node
node '

o[l 1] 8 e
e Cost of path so far 7l 3 |fl 2 d
e Depth of node |

ACTION = right
DEPTH = 6
PATH- CosT =6
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Expanding Nodes

e Expanding a node

- Applying all legal operators to the state
contained in the node

- Generating nodes for all corresponding
successor states



Expanding Nodes

| (a) The initial state

(b) After expanding Arad Arad

(c) After expanding Sibiu Arad



Generic Search Algorithm

e |nitialize with initial state of the problem
e Repeat

- If no candidate nodes can be expanded return
failure

- Choose leaf node for expansion, according to
search strategy

- If node contains goal state, return solution

- Otherwise, expand the node. Add resulting nodes to
the tree



Implementation Detalils

e Need to keep track of nodes to be expanded (fringe)

e Implement using a queue:
- Insert node for initial state

- Repeat
- If queue is empty, return failure
- Dequeue a node
- If node contains goal state, return solution

- Expand node

e Search algorithms differ in their queuing function!



Breadth First Search

e All nodes on a given depth are expanded
before any nodes on next level are expanded.

e |mplemented with a FIFO queue
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Key Properties

Completeness: Is the alg. guaranteed to find a solution
iIf the solution exists?

Optimality: Does the alg. find the optimal solution?
Time complexity: How many operations are needed?

Space complexity: How much storage is needed?

Other desirable properties
- Can the alg. return an intermediate solution?

- Can an adequate solution be refined or improved?



Search Performance

e Evaluated in terms of 2 characteristics

- Branching factor of state space: how many operators
can be applied at any time?

- Solution depth: how long is the path to the closest
solution?

b |Branching factor

d | Depth of shallowest goal node

m | Maximum length of any path in the state space




Judging BFS

e (Good news

- Complete (if b is finite)

- Optimal (if all costs are the same)
e Bad news

- Exponential time complexity: O(bd+1)

- A problem with all uninformed search methods

- Exponential space complexity: O(bd+1)

- Horrible!



Making BFS Always Optimal

e Uniform cost search

- Use a priority queue instead of a simple
gqueue

- Insert nodes in increasing order of the cost
of path so far

- (Guaranteed to find optimal solution



Uniform Cost Search
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Figure 3.13 A route-hnding problem. (a) I'he state space, showing the cost for each operator Space
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Depth Search Search

e Deepest node in current fringe of the search
tree is expanded first

¢ |mplemented with a stack
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Judging Depth First Search

e Bad news
- Not complete: might get stuck going done a long path

- Not optimal: might return a solution at greater depth
than another solution

- Time complexity: O(b™)

-  m might be much larger than d

e (Good news

- Space complexity: O(bm)



Depth Limited Search

e Search depth-first, but terminate path if
- agoal is found, or

- maximum depth, |, is reached.

e How do you set |?

e What happens is =17



Depth Limited Search

e (Good news
- Always terminates
- Space: O(bl)

e Bad news

- Not complete

- Goal depth might be deeper than |

- Time: O(b')



lterative Deepening

e Depth limited search, but increase the limit each

iteration
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Judging lterative Deepeing

e Bad news
- Time: O(bd)
e (Good news
- Complete (like BFS)
- Optimal
- Space: O(bd)



lterative Deepening

e |sn't IDS very wasteful?
- Expanding the same nodes multiple times
e |nsight

- Most nodes are found in bottom level of the
tree



Revisiting States

e What if we revisit a state that has already been
expanded?

e What is we visit a state that is already in the
gqueue?
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Revisiting States

e Maintain a closed list to store every expanded
node

- More efficient on problems with many repeated
states

- Worst-case time and space are O(S)

- S is number of states

e Allowing states to be re-expanded can produce
a better solution

- What should you do?



Summary

e Assumes no knowledge about the problem

- General but expensive since we assume no knowledge about the
problem

e \Variety of uninformed search strategies

- Mainly differ in the order in which they consider states

Criteria BFS Uniform DFS DLS IDS

Complete Yes Yes No No Yes
Time O(bd+1) O((b+t#floor(CH/e)) O(b™) O(b") O(bd%)
Space O(bd+1) O((b+t#floor(C™/e)) O(bm) O(bl) O(bd)

Optimal Yes Yes No No Yes




Questions?

e Next class: Informed search



