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Motivation

Provide robust meta search
Examples of meta search engines

Clusty
Dogpile
Metacrawler

Spam
http://searchenginewatch.com/showPage.html?page=3483601

Commercial interests, e.g., sponsored links
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Motivation

User may provide a variety of searching criteria
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Challenges

Unrealistic to rank the entire collection of pages 
on the web

29.7 billion pages on the World Wide Web as of 
February 2007 (http://www.boutell.com/)

Most search engines rank only the top few 
hundred entries
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Preliminaries

Ordered list
Given a universe U, an ordered list τ with respect to U is an
ordering(aka ranking) of a subset S ⊆ U, i.e.

τ=[χ1 ≥ χ2 ≥ …≥ χd ]

Full list
τ contains all the elements in U

Partial list
|τ| < |U|
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Preliminaries

Rank aggregation approach
Goal: minimize the total disagreement between several 
rankings  
Spearman footrule distance

Given two full lists σ and τ, F(σ,τ)=Σi=1|σ(i)-τ(i)|
Kendall tau distance

Given two full lists σ and τ, K(σ,τ)=|{(i,j) | i<j, σ(i)<σ(j) but τ(i)>τ(j) }|
These two measurements can be generalized to several 
lists
Can also be generalized to partial lists
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First result: spam resistance in 
meta-search

Extended Condorcet Criterion (ECC)  
If there is a partition (C, C’) of S such that for any x∈C
and y∈C’ the majority prefers x to y, then x must be 
ranked above y

ECC can be used to fight spam in meta-search
How to achieve ECC efficiently

Local Kemenization method
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First result: spam resistance in 
meta-search

An example to illustrate Local Kemenization …
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Second result: Markov chain 
methods

Markov chain 
A set of states S={1,2,...,n}
An n x n matrix M
Begins with an initial state x
At each step the system moves from state i to state j 
with probability Mij
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Second result: Markov chain 
methods

Under some nice condition, system eventually 
reaches a fixed point irrespective of the initial 
state x
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Second result: Markov chain 
methods
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Second result: Markov chain 
methods

Assume the current state is page P
MC1: The next state is chosen uniformly from the 
multiset of all pages that were ranked higher than 
or equal to P by some search engine that ranked P
Please refer to the paper for the rest …

MC2
MC3

MC4
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Applications

Meta-search
Spam reduction
Multi-criteria search
Search engine comparison
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Experiments

Experiments were conducted by using the 
following search engines: Altavista(AV), 
Alltheweb(AW), Excite(EX), Google(GG), 
Hotbot(HB), Lycos(LY) and Northernlight(NL)
Experiment on meta-search using several 
keywords: “affirmative action”, alcoholism, 
sushi, ...
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Experiments

SFO and MC4 outperform the other 4 algorithms

MC4 performs better than SFO most of the time
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Experiments

Experiment on spam reduction using queries: 
Feng shui, organic vegetable, gardening
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Experiments

Local Kemenization works!
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Conclusion

Proposed several rank aggregation techniques 
using Markov chain
Established the value of Extended Condorcet
Criterion (ECC)  

Spam resistance
Future work

Obtain a qualitative understanding of why Markov chain 
methods perform well
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Questions???
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