CS 886 Advanced Topics in Artificial Intelligence: Multiagent Systems

Rank Aggregation Methods for the Web

Cynthia Dwork Ravi Kumar Moni Naor D. Sivakumar

Presented by: Wanying Luo

Outline

What is rank aggregation problem

- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

What is rank aggregation problem

Based on different ranking techniques and criteria, we may get different results

What is rank aggregation problem

Need to obtain a "consensus" ranking of all the individual rankings

Outline

What is rank aggregation problem

- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Provide robust meta search

- Examples of meta search engines
 - Clusty
 - Dogpile
 - Metacrawler
- Spam

http://searchenginewatch.com/showPage.html?page=3483601

Commercial interests, e.g., sponsored links

Clusty introduces Clustering 2.0

<u>about privacy toolbars site search</u> <u>technology</u> <u>contact us</u> © 2004-2008 **∛Vivísimo**

dögpile® All the best search engines piled into one.

Web	Images	Audio	Video	News	Yellow Pages	White Pages
			4			Go Fetch!
Google	YAHOOI 👏	ive Search			Advanced Sea	irch Preferences

Favorite Fetches aig bailout school house rock unconstitutional pants dow jones pimp my dorm constitution day

Quick Starts

Download Desktop Arfie Add Dogpile To Your Site Download Toolbar Laugh Out Loud Pets SearchSpy Horoscope

metacrawler®

Including Google, Yahoo!, MSN Search and Ask. Learn More

Web Images Audio Video News Yellow Pages	White Pages
	SEARCH
Advanced Search Preferences	

Popular Searches		
oprah boycott breaking news	Get MetaCrawler — To Go!	Preferred Search Provider
t <u>ina fey</u> <u>costume ideas</u> learn spanish jack black	The Toolbar includes: Personalized content ticket	MetaCrawler
Contraction of the second	Popup blocker And more! Download it today!	Close Don't show again

Provide robust meta search

- Examples of meta search engines
 - Clusty
 - Dogpile
 - Metacrawler
- Spam

http://searchenginewatch.com/showPage.html?page=3483601

Commercial interests, e.g., sponsored links

Provide robust meta search

- Examples of meta search engines
 - Clusty
 - Dogpile
 - Metacrawler
- Spam

http://searchenginewatch.com/showPage.html?page=3483601

Commercial interests, e.g., sponsored links

• User may provide a variety of searching criteria

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Challenges

- Unrealistic to rank the entire collection of pages on the web
 - 29.7 billion pages on the World Wide Web as of February 2007 (http://www.boutell.com/)
- Most search engines rank only the top few hundred entries

Challenges

- Unrealistic to rank the entire collection of pages on the web
 - 29.7 billion pages on the World Wide Web as of February 2007 (http://www.boutell.com/)
- Most search engines rank only the top few hundred entries

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

• Ordered list

Given a universe U, an ordered list τ with respect to U is an ordering(aka ranking) of a subset S \subseteq U, i.e.

$$\tau = [\chi_1 \geq \chi_2 \geq \ldots \geq \chi_d]$$

• Full list

 $\boldsymbol{\tau}$ contains all the elements in U

Partial list

 $|\boldsymbol{\tau}| < |\boldsymbol{U}|$

• Ordered list

Given a universe U, an ordered list τ with respect to U is an ordering(aka ranking) of a subset S \subseteq U, i.e.

$$\tau = [\chi_1 \geq \chi_2 \geq \ldots \geq \chi_d]$$

Full list

 $\boldsymbol{\tau}$ contains all the elements in U

Partial list

 $|\boldsymbol{\tau}| < |\boldsymbol{U}|$

• Ordered list

Given a universe U, an ordered list τ with respect to U is an ordering(aka ranking) of a subset S \subseteq U, i.e.

$$\tau = [\chi_1 \geq \chi_2 \geq \ldots \geq \chi_d]$$

Full list

 $\boldsymbol{\tau}$ contains all the elements in U

Partial list

 $|\tau|\,<|U|$

Rank aggregation approach

- Goal: minimize the total disagreement between several rankings
- Spearman footrule distance
 - Given two full lists σ and τ , $F(\sigma,\tau)=\sum_{i=1}|\sigma(i)-\tau(i)|$
- Kendall tau distance
 - Given two full lists σ and τ , $K(\sigma,\tau)=|\{(i,j) \mid i < j, \sigma(i) < \sigma(j) \text{ but } \tau(i) > \tau(j) \}|$
- These two measurements can be generalized to several lists
- Can also be generalized to partial lists

Rank aggregation approach

- Goal: minimize the total disagreement between several rankings
- Spearman footrule distance
 - Given two full lists σ and τ , $F(\sigma,\tau)=\sum_{i=1}|\sigma(i)-\tau(i)|$
- Kendall tau distance

• Given two full lists σ and τ , $K(\sigma,\tau)=|\{(i,j) \mid i < j, \sigma(i) < \sigma(j) \text{ but } \tau(i) > \tau(j) \}|$

- These two measurements can be generalized to several lists
- Can also be generalized to partial lists

Rank aggregation approach

 Goal: minimize the total disagreement between several rankings

Spearman footrule distance

• Given two full lists σ and τ , $F(\sigma,\tau)=\sum_{i=1}|\sigma(i)-\tau(i)|$

Kendall tau distance

• Given two full lists σ and τ , $K(\sigma,\tau)=|\{(i,j) \mid i < j, \sigma(i) < \sigma(j) \text{ but } \tau(i) > \tau(j) \}|$

- These two measurements can be generalized to several lists
- Can also be generalized to partial lists

Rank aggregation approach

 Goal: minimize the total disagreement between several rankings

Spearman footrule distance

• Given two full lists σ and τ , $F(\sigma,\tau)=\sum_{i=1}|\sigma(i)-\tau(i)|$

- Kendall tau distance
 - Given two full lists σ and τ , $K(\sigma,\tau)=|\{(i,j) \mid i < j, \sigma(i) < \sigma(j) \text{ but } \tau(i) > \tau(j) \}|$
- These two measurements can be generalized to several lists
- Can also be generalized to partial lists

Rank aggregation approach

 Goal: minimize the total disagreement between several rankings

Spearman footrule distance

• Given two full lists σ and τ , $F(\sigma,\tau)=\sum_{i=1}|\sigma(i)-\tau(i)|$

- Kendall tau distance
 - Given two full lists σ and τ , K(σ , τ)=|{(i,j) | i<j, σ (i)< σ (j) but τ (i)> τ (j) }|
- These two measurements can be generalized to several lists
- Can also be generalized to partial lists

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Extended Condorcet Criterion (ECC)

- If there is a partition (C, C') of S such that for any x∈C and y∈C' the majority prefers x to y, then x must be ranked above y
- ECC can be used to fight spam in meta-search
- How to achieve ECC efficiently
 - Local Kemenization method

Extended Condorcet Criterion (ECC)

If there is a partition (C, C') of S such that for any x∈C and y∈C' the majority prefers x to y, then x must be ranked above y

ECC can be used to fight spam in meta-search

- How to achieve ECC efficiently
 - Local Kemenization method

Extended Condorcet Criterion (ECC)

If there is a partition (C, C') of S such that for any x∈C and y∈C' the majority prefers x to y, then x must be ranked above y

ECC can be used to fight spam in meta-search

- How to achieve ECC efficiently
 - Local Kemenization method

• An example to illustrate Local Kemenization ...

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Markov chain

- A set of states S={1,2,...,n}
- An n x n matrix M
- Begins with an initial state x
- At each step the system moves from state i to state j with probability M_{ii}

 Under some nice condition, system eventually reaches a fixed point irrespective of the initial state x

Original rankings

Original rankings

Original rankings

Aggregated ranking

- Assume the current state is page P
- MC₁: The next state is chosen uniformly from the multiset of all pages that were ranked higher than or equal to P by some search engine that ranked P
- Please refer to the paper for the rest ...
 - MC₂
 - MC₃
 - MC₄

- Assume the current state is page P
- MC₁: The next state is chosen uniformly from the multiset of all pages that were ranked higher than or equal to P by some search engine that ranked P
- Please refer to the paper for the rest ...
 - MC₂
 - MC₃
 - **MC**₄

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Meta-search

- Spam reduction
- Multi-criteria search
- Search engine comparison

Meta-search

- Spam reduction
- Multi-criteria search
- Search engine comparison

- Meta-search
- Spam reduction
- Multi-criteria search
- Search engine comparison

- Meta-search
- Spam reduction
- Multi-criteria search
- Search engine comparison

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

- Experiments were conducted by using the following search engines: Altavista(AV), Alltheweb(AW), Excite(EX), Google(GG), Hotbot(HB), Lycos(LY) and Northernlight(NL)
- Experiment on meta-search using several keywords: "affirmative action", alcoholism, sushi, ...

- Experiments were conducted by using the following search engines: Altavista(AV), Alltheweb(AW), Excite(EX), Google(GG), Hotbot(HB), Lycos(LY) and Northernlight(NL)
- Experiment on meta-search using several keywords: "affirmative action", alcoholism, sushi, ...

	ŀ	ζ	I	F	S	F
	- LK	+ LK	-LK	+ LK	- LK	+ LK
Borda	0.221	0.214	0.353	0.345	0.440	0.438
SFO	0.112	0.111	0.168	0.167	0.137	0.137
MC_1	0.133	0.130	0.216	0.213	0.292	0.291
MC_2	0.131	0.128	0.213	0.210	0.287	0.286
MC_3	0.116	0.114	0.186	0.183	0.239	0.239
MC_4	0.105	0.104	0.151	0.149	0.181	0.181

Table 2: Performance of various rank aggregation methods for meta-search. "K" is Kendall distance, "IF" is induced footrule distance, and "SF" is scaled footrule distance. "- LK" and "+ LK", respectively, denote without and with Local Kemenization.

	K		I	F	SF		
	- LK	+ LK	-LK	+ LK	- LK	+ LK	
Borda	0.221	0.214	0.353	0.345	0.440	0.438	
SFO	0.112	0.111	0.168	0.167	0.137	0.137	
MC ₁	0.133	0.130	0.216	0.213	0.292	0.291	
MC_2	0.131	0.128	0.213	0.210	0.287	0.286	
MC_3	0.116	0.114	0.186	0.183	0.239	0.239	
MC_4	0.105	0.104	0.151	0.149	0.181	0.181	

SFO and MC_4 outperform the other 4 algorithms MC_4 performs better than SFO most of the time

 Experiment on spam reduction using queries: Feng shui, organic vegetable, gardening

url	AV	AW	GG	HB	LY	NL	SFO	MC_4
www.lucky-bamboo.com	4	43			41		144	63
www.cambriumcrystals.com		9	51		5		31	59
www.luckycat.com	11	14	26		13		49	36
www.davesorganics.com	84	19	1		17		77	93
www.frozen.ch		9		63	11		49	121
www.eonseed.com	Ċ.	18		6	16		23	66
www.augusthome.com	26	16		27	12	16	57	54
www.taunton.com	0.0-0.0000.00	25			21		78	67
www.egroups.com		34			29		108	101

url	AV	AW	GG	HB	LY	NL	SFO	MC_4
www.lucky-bamboo.com <	4	43			41		144	63
www.cambriumcrystals.com		9	51		5		31	59
www.luckycat.com	11	14	26		13		49	36
www.davesorganics.com	84	19	1		17		77	93
www.frozen.ch		9		63	11		49	121
www.eonseed.com	¢.	18		6	16		23	66
www.augusthome.com	26	16		27	12	16	57	54
www.taunton.com	C GALERINA A	25			21		78	67
www.egroups.com		34			29		108	101

url	AV	AW	GG	HB	LY	NL	SFO	MC_4
www.lucky-bamboo.com	4	43			41		144	63
www.cambriumcrystals.com<		9	51		5		31	59
www.luckycat.com	11	14	26		13		49	36
www.davesorganics.com	84	19	1		17		77	93
www.frozen.ch		9		63	11		49	121
www.eonseed.com	¢.	18		6	16		23	66
www.augusthome.com	26	16		27	12	16	57	54
www.taunton.com	0.000	25			21		78	67
www.egroups.com		34			29		108	101

url	AV	AW	GG	HB	LY	NL	SFO	MC_4
www.lucky-bamboo.com	4	43			41		144	63
www.cambriumcrystals.com		9	51		5		31	59
www.luckycat.com <	11	14	26		13		49	36
www.davesorganics.com	84	19	1		17		77	93
www.frozen.ch		9		63	11		49	121
www.eonseed.com	Ċ.	18		6	16		23	66
www.augusthome.com	26	16		27	12	16	57	54
www.taunton.com	0.000	25			21		78	67
www.egroups.com		34			29		108	101

url	AV	AW	GG	HB	LY	NL	SFO	MC_4
www.lucky-bamboo.com	4	43			41		144	63
www.cambriumcrystals.com		9	51		5		31	59
www.luckycat.com	11	14	26		13		49	36
www.davesorganics.com	84	19	1		17		77	93
www.frozen.ch		9		63	11		49	121
www.eonseed.com	Ċ	18		6	16		23	66
www.augusthome.com	26	16		27	12	16	57	54
www.taunton.com	0.000 C (100.000	25			21		78	67
www.egroups.com		34			29		108	101

Local Kemenization works!

Outline

- What is rank aggregation problem
- Motivation
- Challenges
- Preliminaries
- First result: spam resistance in meta-search
- Second result: Markov chain methods
- Applications
- Experiments
- Conclusion

Conclusion

- Proposed several rank aggregation techniques using Markov chain
- Established the value of Extended Condorcet Criterion (ECC)
 - Spam resistance
- Future work
 - Obtain a qualitative understanding of why Markov chain methods perform well

Conclusion

- Proposed several rank aggregation techniques using Markov chain
- Established the value of Extended Condorcet Criterion (ECC)
 - Spam resistance

• Future work

Obtain a qualitative understanding of why Markov chain methods perform well

Conclusion

- Proposed several rank aggregation techniques using Markov chain
- Established the value of Extended Condorcet Criterion (ECC)
 - Spam resistance
- Future work
 - Obtain a qualitative understanding of why Markov chain methods perform well

Questions???

