	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

Negociating with bounded rational agents in environments with incomplete information using an automated agent

Raz Lin, Sarit Kraus, Jonathan Wilkenfeld, James Barry

Stéphane Bonardi

November 2008

イロト イポト イヨト イヨト 一日

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
• 0 0 00 0	0 0 00 0	000000 00000000000	000 0000000		
Example					

© 2002 Stu All Rights Reserved www.stus.com

Bob said, "Let's negotiate." I said, "Over my dead body."

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

Stu's Views

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
	0 0 00 0	000000 00000000000	000 0000000		
Example					

- 2 agents: Alice and Bob
- 2 activities: Basketball game (B) and Movie (M)
- 2 days: Friday (F) and Saturday (S)
- Preferences:

ヘロア 人間 アメヨア 人間 アー

æ

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 00 0	0 0 00 0	000000 00000000000	000 0000000		
Outline					

- 2 Agent Design
- 3 Experiments
- 4 Conclusion
- 5 Discussion & Future work

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000	000 0000000		
Definition					

Type of negotiation:

- Finite horizon: finite history
- Bilateral: 2 agents involved
- Incomplete information: uncertainty regarding the preferences of the opponent

- Multi-issue
- Time constraint

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 0● 0	0 0 00 0	000000 00000000000	000 0000000		
Definition					

Introduction

Bounded rational agent (Herbert Simon 1957)

The agents behave in a manner that is **nearly** optimal with respect to its goals as its resources will allow.

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

They gain or lose utility over time

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 •	0 0 00 0	000000 00000000000	000 0000000		
Goals & Means					

- Create an automated agent for negotiation
- Goals:
 - Train people
 - Assist in e-commerce
 - Modelling negotiation process
 -
- Means:
 - Learning mechanism: Bayesian learning algorithm
 - Decision making mechanism: bounded rationality assumption

Stéphane Bonardi

Outline

1 Problem description

- Notations
- Example
- Agreements & Actions
- Assumptions

2 Agent Design

- 4 Conclusion
- 5 Discussion & Future work

<ロト <回ト < 注ト < 注ト = 注

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	• 0 00 0	000000 00000000000	000 0000000		
Notations					

Notations:

- I set of issues
- $\forall i \in I$ O_i set of values
- *O* finite set of values $(O_1 \times ... \times O_{|I|})$
- $\overrightarrow{o} \in O$ an offer
- $Time = \{0, ..., dl\}$ set of time period
- Time costs which influence utility as time passes

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0		000000 00000000000	000 00000000		
Example					

- 2 agents: Alice and Bob
- Question: "What to do over the weekend ?"
- **2** issues: Activity and Night: $I = \{A, N\}$
- *O_{Activity}* = {Movie (M), Basketball game (B)}
- $O_{Night} = \{ Friday (F), Saturday (S) \}$
- Offers:

$$\overrightarrow{o_1} = \{M, S\}$$
$$\overrightarrow{o_2} = \{M, F\}$$
$$\overrightarrow{o_2} = \{B, S\}$$
$$\overrightarrow{o_4} = \{B, F\}$$

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
	0 0				
Agreements & A	ctions				

Types of agreement

- Partial: agreement over a subset of issues
- Full: agreement over the set of issues

Types of action

- Accept: end of the negotiation
- Reject
- Opt out: end of the negotiation

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work		
00 0 00 0		000000 00000000000	000 0000000				
Agreements & Actions							

A default value is assigned to each attribute

3 possible ends for a negotiation

- Full agreement
- 2 One of the agent opt out (OPT is the corresponding outcome)

- 3 The deadline *dl* is reached
 - Partial agreement (subset of the issues)
 - No agreement: status quo (outcome SQ)

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000	000 0000000		
Assumptions					

Utility	
$\forall I \in Types,$	$u_l: O \bigcup \{SQ\} \bigcup \{OPT\} \longmapsto \mathfrak{R}$

Reservation price

Minimum value r_l of the utility of an offer under which an agent of type l is unwilling to accept the offer

- Assumptions:
 - The agent knows the finite set of types: $Types = \{1, ..., k\}$
 - The agent doesn't know the exact utility of the opponent
 - The agent has a probabilistic belief of the opponent's type

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Stéphane Bonardi

Outline

1 Problem description

- 2 Agent Design
 - Learning mechanism
 - Bayes formula
 - Luce numbers
 - Example
 - Decision mechanism
 - Generating offers
 - Example
 - Accepting/Rejecting offers
 - Example

4 Conclusion

<ロト <回ト < 注ト < 注ト = 注

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

2 mechanisms:

- Learning mechanism
- 2 Decision making mechanism

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

Stu's Views © 2002 Stu All Rights Reserved www.stus.com

・ロット語 ・ キョ・ キョ・ ヨー ろくの

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

Stu's Views © 2002 Stu All Rights Reserved www.stus.com

Attorneys rarely survive in the wild

"But I came here to negotiate."

Stéphane Bonardi

Introduction 00 00 00	Problem description O O O O	Agent Design	Experiments 000 000000	Conclusion	Discussion & Future work
Learning mechanism					

Bayes formula

Goal: to allow an agent to update its belief regarding the opponent's type

Bayes Formula

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

where:

P(A|B) conditional probability of A given B P(A), P(B) prior probability of A and B respectively

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 0000000000000000000000000000000	000 00000000		

Bayes formula

- k different types for the opponent
- $\forall i \in Types$ $P(type_{t=0}^i) = \frac{1}{k}$

Bayes Formula with agents' types

For each period of time:

$$\forall i \in \textit{Types} \quad \forall \overrightarrow{o_t} \in O \quad \textit{P}(\textit{type}^i | \overrightarrow{o_t}) = \frac{\textit{P}(\overrightarrow{o_t} | \textit{type}_t^i)\textit{P}(\textit{type}_t^i)}{\textit{P}(\overrightarrow{o_t})}$$

where: $P(\overrightarrow{o_t}) = \sum_{i=1}^{i=k} P(\overrightarrow{o_t} | type_t^i) P(type_t^i)$

Problem

How to compute $P(\overrightarrow{o_t}/type_t^i)$?

Stéphane Bonardi

Introduction	Problem description
00	
00	00

Agent Design	Exp
00000	00

Conclusio

Discussion & Future work

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Learning mechanism

Luce numbers

Luce numbers

$$\forall o \in O \quad lu(\overrightarrow{o_t}) = \frac{u(\overrightarrow{o_t})}{\sum_{\overrightarrow{x} \in O} u(\overrightarrow{x})}$$

Theorem

$$\forall \overrightarrow{x}, \overrightarrow{y} \quad u(\overrightarrow{x}) \geq u(\overrightarrow{y}) \Longleftrightarrow lu(\overrightarrow{x}) \geq lu(\overrightarrow{y})$$

Estimation of the acceptance rate of the opponent's offer

Stéphane Bonardi

	Problem descripti
00	
00	00

Agent Design
000000
000000000000000000000000000000000000000

xperiments

Conclusior

Discussion & Future work

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Learning mechanism

Believed type

Believed type

For each $t \in Times$:

$$BT(t) = arg \max_{i \in Types} P(type^i / \overrightarrow{o_t})$$

Given the fact that:

$$P(\overrightarrow{o_t}/type_t^i) \simeq lu(\overrightarrow{o_t}/type_t^i)$$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 000000000000	000 0000000		
Learning mechani	ism				

Example

2 types for Alice (ie 2 types of utility)

- Type 1 (*t*₁): *M* ≻ *B*
- Type 2 (t_2): (M, F) \succ (B, F)

• Initially (t=0):
$$P(t_1) = P(t_2) = \frac{1}{2}$$

Alice's offer (t=1):
$$\overrightarrow{o_t} = \{B, F\}$$

Table 3

Example: Calculating Alice's believed type

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M, F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4=\{B,F\}$
1	$u_a(\vec{o}_i)$, type ¹	10	9	4	6
2	$u_a(\vec{o}_i)$, type ²	10	7	5	9
3	$lu_a(\vec{o}_i)$, type ¹	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
4	$lu_a(\vec{o}_i)$, type ²	10/31 = 0.32	7/31 = 0.23	5/31 = 0.16	9/31 = 0.29
					er ker e

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00	0	000000 0000000000	000 0000000		
00	00				
Learning mechai	nism				

Table 3 Example: Calculating Alice's believed type

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M, F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_a(\vec{o}_i)$, type ¹	10	9	4	6
2	$u_a(\vec{o}_i)$, type ²	10	7	5	9
3	$lu_a(\vec{o}_i)$, type ¹	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
4	$lu_a(\vec{o}_i)$, type ²	10/31 = 0.32	7/31 = 0.23	5/31 = 0.16	9/31 = 0.29

$$P(t_1 | \overrightarrow{o_4}) = \frac{lu_a(\overrightarrow{o_4} | t_1) P(t_1)}{P(\overrightarrow{o})} = \frac{0.21 \times 0.5}{0.21 \times 0.5 + 0.29 \times 0.5} = 0.42$$
$$P(t_2 | \overrightarrow{o_4}) = \frac{lu_a(\overrightarrow{o_4} | t_2) P(t_2)}{P(\overrightarrow{o})} = \frac{0.29 \times 0.5}{0.21 \times 0.5 + 0.29 \times 0.5} = 0.58$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 0000000000000000000000000000000	000 000000		

Decision mechanism

Used for:

- 1 Accepting/rejecting offers
- 2 Generating offers (only 1 offer for a given period)

Use of 2 methods:

- Maximin method
- 2 Ranking of offers
- Take into account:
 - Utility function of the agent
 - Believed type of the opponent

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

▲口▶▲圖▶▲≣▶▲≣▶ ■ のQの

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 0 0 0000000000000000000000000000	000 000000		
Decision mechanisn	ı				

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000 00000000000	000 000000000		
00 0	00 0				

Generating offers

- The generating mechanism is based on:
 - The utility of the offer for the agent
 - The probability the opponent accepts it

Notion of rank for an offer

$$rank(\overrightarrow{o}) = rac{order(\overrightarrow{o}, O)}{|O|}$$

where order is a ranking of the offer using their normalized utility

We use the Luce number to estimate the probability of an agent accepting the offer

<ロ> (四) (四) (三) (三) (三)

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

Generating offers

Notations

Notations:

- $u_{opp}^{BT(t)}$ utility function corresponding to the believed type of the opponent (noted u_{opp})
- rank^{BT(t)}_{opp} rank function corresponding to the believed type of the opponent (noted rank_{opp})
- $lu_{opp}(\overrightarrow{o}|u_{opp}^{BT(t)}) = lu_{opp}(\overrightarrow{o})$ Luce number corresponding to the believed type

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• $lu_{agent}(\vec{o})$ Luce number corresponding to the agent type

Stéphane Bonardi

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Futu
00		000000	000		
		00000000000	0000000		
00	00				

Generating offers

Function Qualitative Offer

Function Qualitative Offer

$$QO(t) = arg \max_{\overrightarrow{o} \in O} min\{lpha, eta\}$$

where:

$$\begin{aligned} \alpha &= \operatorname{rank}(\overrightarrow{o}).\operatorname{lu_{agent}}(\overrightarrow{o}) \\ \beta &= [\operatorname{lu_{opp}}(\overrightarrow{o}) + \operatorname{lu_{agent}}(\overrightarrow{o})]\operatorname{rank_{opp}}(\overrightarrow{o}) \end{aligned}$$

Pessimistic assumption

The offer is accepted based on the agent that favors the offer the least

Equivalence:
$$lu_{opp}(\overrightarrow{o}) + lu_{agent}(\overrightarrow{o}) \sim \text{social welfare}$$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000	000 0000000		

Generating offers

Steps

3 steps:

- **1** Computation of the believed type of the opponent BT(t)
- 2 Computation of the Luce numbers using *u*opp and *u*agent
- 3 Choice of the best offer using the Qualitative Offer QO function

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future wo
00		000000	000		
		00000000000	0000000		
00	00				

Generating offers

Example

The agent plays the role of Bob.

Assumptions:

- Alice has only one possible type
- The utilities are time independent

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000 00000000000000	000		
00	00 0				
Decision mechar	nism				

		$\vec{o}_1 = \{M,S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_{\alpha}(\vec{a}_{i})$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_{\alpha}(\vec{o}_{i}) \cdot rank_{\alpha}(\vec{o}_{i})$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		00000000000	0000000		
00	00				
Decision mechar	nism				

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2=\{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{\alpha} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間 とくぼ とくぼう

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		00000000000	0000000		
00	00				
Decision mechar	nism				

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{o} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間 とくぼ とくぼう

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000000000000000000000000000000000000	000		
00	00 0				
Desision mechan	ie me				

Table 1 Example of calculating QO

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M, F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	D.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{o} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間 とくぼ とくぼう

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		00000000000	0000000		
00	00				
Decision mechar	nism				

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{o} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間 とくぼ とくぼう

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		00000000000	0000000		
00	00				
Decision mechar	nism				

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{o} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間 とくぼ とくぼう

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
00	00	000000000000000000000000000000000000000	000000000		

Table 1 Example of calculating QO

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Function QO

$$QO(t) = \arg\max_{\overrightarrow{o} \in O} \min\{\alpha, \beta\}$$

ヘロン 人間と 人間と 人間と

2

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000	000		

"I never accept a first offer."

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future
00		000000	000		
		0000000000	0000000		
00	00				

Accepting/Rejecting offers

Notations:

- **a**, $b \sim$ agent a, $b \sim$ type a, b
- a automated agent
- b opponent
- $\overrightarrow{o_i}$ offer received from agent *i*
- t current time
- T threshold

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Introduction	Problem description	Agent Design	Experiments	Conclusion	Discussion & Fu
00		000000	000		
		0000000000	0000000		
00	00				

Accepting/Rejecting offers

Rules

Rule 1

If $u_a(\overrightarrow{o_b}) \ge u_a(QO(t+1))$ then $\overrightarrow{o_b}$ is accepted

where QO(t+1) is the best offer the agent will be able to do for the next period

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future wo
00		000000	000		
		0000000000	000000		
00	00				

Accepting/Rejecting offers

Otherwise:

$$u_a(\overrightarrow{o_b}) < u_a(QO(t+1))$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Take into account the probability that its counter offer will be accepted by the opponent:

Rule 2

If
$$|u_b(QO(t+1)) - u_b(\overrightarrow{o_b})| \leq T$$
 then $\overrightarrow{o_b}$ is rejected

The two offers are quasi equivalent for the opponent

BUT: QO(t+1) is more valuable for the agent

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion &
00		000000	000		
		0000000000	0000000		
00	00				

Accepting/Rejecting offers

Otherwise:

$$u_a(\overrightarrow{o_b}) < u_a(QO(t+1))$$

 $|u_b(QO(t+1)) - u_b(\overrightarrow{o_b})| > T$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Take into account its reservation price:

Rule 3

If $u_a(\overrightarrow{o_b}) \ge r_a$ then $\overrightarrow{o_b}$ is rejected with the probability $rank(\overrightarrow{o_b})$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000000000000000000000000	000 000000		

Table 1

- Alice suggests to Bob: $\overrightarrow{o_2} = (M, F)$
- We suppose that $r_{bob} = 5$ and T = 0.05

Exai	nple of calculating QO				
		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M, F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - のへで

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0		000000 00000000000000000000000000000000	000 000000		
Besteller mereken					

		$\vec{o}_1 = \{M,S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

▲□▶▲圖▶▲≣▶▲≣▶ = の�?

Bob checks his own utility

Bob knows that $\overrightarrow{o_4}$ is the best offer he can do

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
00	00	000000000000000000000000000000000000000	00000000		
Decision mechan	niem				

Table 1

Example of calculating QO

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	<	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ショルの

Rule 1

If
$$u_a(\overrightarrow{o_b}) \ge u_a(QO(t+1))$$
 then $\overrightarrow{o_b}$ is accepted

Rule 1 is violated:
$$u_b(\overrightarrow{o_2}) < u_b(\overrightarrow{o_4})$$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
Decision mechani	iom				

Table 1

Example of calculating QO

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	-4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	>> = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Rule 2

I

If
$$|u_b(QO(t+1)) - u_b(\overrightarrow{o_b})| \leq T$$
 then $\overrightarrow{o_b}$ is rejected

■ Rule 2 is violated:
$$|u_a(\overrightarrow{o_4}) - u_a(\overrightarrow{o_2})| > 0.05$$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
		0000000000	000000		
00	00				
Decision mechan	viem				

Table 1

Example of calculating QO

		$\vec{o}_1 = \{M, S\}$	$\vec{o}_2 = \{M, F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Rule 3

If $u_a(\overrightarrow{o_b}) \ge r_a$ then $\overrightarrow{o_b}$ is rejected with the probability $rank(\overrightarrow{o_b})$

▲□▶▲圖▶▲≣▶▲≣▶ = の�?

Rule 3 is enforced:
$$u_b(\overrightarrow{o_2}) \ge 5$$

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
		0000000000	000000		
00	00				
Desision mesha	-1				

Table 1 Example of calculating QO

		$\vec{o}_1 = \{M,S\}$	$\vec{o}_2 = \{M,F\}$	$\vec{o}_3 = \{B, S\}$	$\vec{o}_4 = \{B, F\}$
1	$u_b(\vec{o}_i)$	4	6	10	8
2	$u_a(\vec{o}_i)$	10	9	4	6
3	$lu_b(\vec{o}_i)$	4/28 = 0.14	6/28 = 0.21	10/28 = 0.36	8/28 = 0.29
4	$lu_a(\vec{o}_i)$	10/29 = 0.34	9/29 = 0.31	4/29 = 0.14	6/29 = 0.21
5	$rank_b(\vec{o}_i)$	1/4 = 0.25	2/4 = 0.50	4/4 = 1.00	3/4 = 0.75
6	$rank_a(\vec{o}_i)$	4/4 = 1.00	3/4 = 0.75	1/4 = 0.25	2/4 = 0.50
7	$lu_b(\vec{o}_i) \cdot rank_b(\vec{o}_i)$	0.04	0.11	0.36	0.21
8	$lu_a(\vec{o}_i) \cdot rank_a(\vec{o}_i)$	0.34	0.23	0.03	0.10
9	$[lu_b(\vec{o}_i) + lu_a(\vec{o}_i)] \cdot rank_a(\vec{o}_i)$	0.49	0.39	0.12	0.25
10	$[lu_a(\vec{o}_i) + lu_b(\vec{o}_i)] \cdot rank_b(\vec{o}_i)$	0.12	0.26	0.49	0.37

Bob accepts Alice's offer with probability $1 - rank_b(\vec{o_2}) = 0.5$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Stéphane Bonardi

Outline

1 Problem description

2 Agent Design

3 Experiments

- Protocol
- Results
 - Automated agent vs human

 Automated agent vs automated agent

4 Conclusion

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 0000000000	• 00 000 00000		
Protocol					

- Scenario 2: a job candidate and an employer
- 5 issues:
 - Salary
 - 2 Job description
 - 3 Social benefits
 - 4 Promotion possibilities
 - 5 Working hours
- Number of possible agreements: 1296
- Time constraint: < 28 minutes

Negociating with bounded rational agents in environments with incomplete information using an automated agent

Introduction O O OO O	Problem description O O O O O	Agent Design 000000 0000000000	Experiments 0●0 0000000	Conclusion	Discussion & Future work
Protocol					

Domain 2:

- Both agents lose as time advances
- Status quo SQ is similar for both agents
- Three possible types
- Assigned utility for each negotiator
- Precise opponent type unknown
- The different possible types are public
- At most 14 time periods of 2 minutes

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 000000000000000	00 0 00000		
Protocol					

Protocol:

	Utility range (min-max)	Status Quo outcome
Employer	170-620	240
Job candidate	60-635	-160

Fixed loss per time period:

- -6 units for the employer
- -8 units for the job candidate

44 simulations

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
00	00		00000000		
Results					

In a nutshell:

- Automated Agent (AA) achieves better agreement
- The social welfare increases if an AA is involved

Statistical tests:

- t-test: to compare utility value
- Wilcoxon signed-rank test: to compare discrete samples
- Fisher's exact test: correlation between the type of agreement and the type of negotiator

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
õo	õo		00000000		
Results					

Automated agent vs human

- Utility value for the AA: Higher
- Sum of the utility: Higher
- Full agreement: 86% instead of 72% (Human vs Human)
- Probability of reaching a full agreement: Higher

But: the results are significantly higher for only one of the two roles (in this case for the job candidate)

イロト イポト イヨト イヨト 二日

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000	000 000 00 00		
Results					

Automated agent vs automated agent

Opponents:

- The same automated agent
- A Bayesian Equilibrium Agent (BEA)

AA vs AA:

- Average and sum of utility: Higher
- Kind of agreement: Better

AA vs BEA:

- QO higher than when humans are involved
- Ended early

Stéphane Bonardi

Negociating with bounded rational agents in environments with incomplete information using an automated agent

Introduction 00 00 00	Problem description O O O O	Agent Design 000000 00000000000000000000000000000	Experiments	Conclusion	Discussion & Future work
Results					

Reasons

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000000000000000000000000	000 0 0000 0		
Results					

Reasons

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00 0 00 0	0 0 00 0	000000 00000000000	000 000 0000		
Results					

How to explain these results ?

AA is rational: it considers the offers that are good for it AND reasonable for the opponent

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

AA pays more attention to the gain/lose as time advances

Stéphane Bonardi

Outline

2 Agent Design

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00	00				

- Flexibility of the automated agent
- Effective outcomes
- No constraints on the model induced by the domain

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Stéphane Bonardi

Outline

2 Agent Design

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - の�?

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
00	00				

Future work

- Improve the offer generating mechanism: most of the reached agreements are based on human made offers
- Make more than one offer per turn:
 - More interaction with the opponent
 - Use the pressure of time
- Experiments with real negotiators
- Take into account more than one future step
- Introduce the notion of power for the agent
- Use other learning techniques (more flexible): neural networks, genetic algorithms,...

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		

Pros and Cons

Pros:

- Interesting examples
- Agent design

Cons:

- Theoretical justifications
- Related work
- Use of only utility as a measurement of quality
- No clear justification for their experimental choices

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ●

Stéphane Bonardi

	Problem description	Agent Design	Experiments	Conclusion	Discussion & Future work
00		000000	000		
		0000000000	0000000		
00	00				

Questions

Thank you very much for your attention

Stéphane Bonardi