A Multiagent Approach to Autonomous Intersection Management By Kurt Dresner and Peter Stone

Lachlan Dufton

University of Waterloo

November 19, 2008

Outline

- Introduction
- 2 The Problem
- The Solution
- 4 Results
- 5 Summary & Conclusions
- 6 References

Outline

- Introduction
 - Background
 - Automated Drivers
 - Intersection Management
- 2 The Problem
- 3 The Solution
- 4 Results
- 5 Summary & Conclusions
- 6 References

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in AI
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Autonomous Robots A popular goal in Al
- Already exist for complex tasks
 - Soccer Robots
 - Navigating the Desert
- 2007 DARPA Urban Challange (DARPA, 2007)
 - Do not need to sense traffic signals or signs
 - Work in sparse traffic
 - Suburban rather than dense, urban setting

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Traffic and Automobile collisions are a significant cost to society
 - Loss of life
 - Damaged property
 - Loss of time and productivity
- Some statistics¹ from USA
 - 46 hours annual time spent waiting in traffic per capita (2004)
 - 21.2 billion litres fuel used per year by engines idling
 - US\$63 billion annual financial cost of traffic congestion (2002)
 - US\$230 billion annual societal cost of traffic collisions (2002)

¹(Texas Transport Institute, 2004), (National Highway Traffic Safety Administration, 2002)

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

Automed Drivers have

- much faster (near-instantaneous) reaction times
- constant and attentive monitoring of all surrounding conditions
- better judgement of distances/velocities
- no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

- Automed Drivers have
 - much faster (near-instantaneous) reaction times
 - constant and attentive monitoring of all surrounding conditions
 - better judgement of distances/velocities
 - no fatigue, impatience, anger or drunkenness
- Alcohol, speeding, running redlights are
 - the top three causes of fatal collisions
 - not present in correctly functioning automated drivers

Requirements of an Automated Driver

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

Features already developed and deployed to production vehicles

Requirements of an Automated Driver

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

Features already developed and deployed to production vehicles

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

- Obey speed limit and other road rules
- Detect and track pedestrians
- Stay in the appropriate lane
- Navigate to the destination
- Park (parallel, perpendicular, angle, etc.)

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficien
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficient
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficie
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficient
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficient
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

- On the open road, autonomous drivers have less of a challenge
 - Simple, reactive behaviour keep the vehicle in the lane, maintain safe distances, avoid obstacles
- If most drivers on the road are automated, current intersection management systems are horribly inefficient
- A new system can leverege the new or improved abilities of automated drivers
- Intersection Management focus of this paper

Outline

- Introduction
- 2 The Problem
 - Intersections
 - Existing Systems
 - New Systems
 - Desiderata
- 3 The Solution
- Results
- 5 Summary & Conclusions

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

- Many vehiclies coming from different directions
- Vehicle paths frequently cross
 - Collisions between vehicles moving in different directions often lead to greater damage or injury
- Between 25% and 45% of collisions happen at intersections
 - Intersections make up a very small portion of roadways

Introduction
The Problem
The Solution
Results
Summary & Conclusions
References

Intersections Existing Systems New Systems Desiderata

Uncontrolled Intersections

Image from http://www.mto.gov.on.ca/english/dandv/driver/handbook/section2.4.0.shtml

Stop/Yield Signs

Image from http://flickr.com/photos/nep/307553468/

Traffic Lights

Image from http://flickr.com/photos/photopia/1500098646/

Roundabouts

Image from http://www.ellemosh.com/wp-content/uploads/2008/02/magic_roundabout.jpg

Interchanges

 $Image \ from \ http://commons.wikimedia.org/wiki/Image: \verb|Viaduct_in_Puxi,_Shanghai.jpg| \\$

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

Coordinated by several factors

- Laws
- Signs & signalling systems
- Small variations between provinces/states
- Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

- Coordinated by several factors
 - Laws
 - Signs & signalling systems
 - Small variations between provinces/states
 - Larger variations between countries
- Safety buffers compensate for human limitations
 - Street signs are large, simple, brightly coloured (easy to see and understand)
 - Periods where all traffic lights are red (slow rection time, impatient drivers)
 - Following distances to allow for slow reaction times
 - Speed limits to ensure drivers have time to react
- Fundamentally designed for human drivers if all drivers are automatic, mechanism is inefficient. It is working with agents for which it wasn't designed.

New Systems

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

New Systems

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Use automated drivers' increased precision of control and sensing
- New options for communication between vehicles enterings and traversing an intersection
 - Drivers can call ahead to let the intersection know which direction they will go
 - If only a single vehicle wishes to use the intersection, it should not have to wait
 - If no vehicles cross paths, none should have to wait
- Sophisticated, two-way communication is not feasible with human drivers
 - Too much communication under tight time constraints
 - Humans are likely to make mistakes

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

• Single-agent solution is not viable

- Single point of failure, with drastic consequences for failure
- Enormous computational and communication requirements
- Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Single-agent solution is not viable
 - Single point of failure, with drastic consequences for failure
 - Enormous computational and communication requirements
 - Drivers sometimes have conflicting objectives
- Each car/driver is an agent
 - Self-interested wants to minimise travel time, travel distance and fuel consumption
- Extensions
 - Heterogeneous Mix of human and automated drivers.
 - Necessary for first-generation systems used during a cross-over period
 - Give priority to emergency vehicles

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

- Autonomy
- Low Communications Complexity
- Sensor Model Realism
- Protocol Standardisation
- Deadlock / Starvation Avoidance
- Incremental Deployability
- Safety
- Efficiency

Outline

- Introduction
- 2 The Problem
- The Solution
 - The Simulator
 - Intersection Policies
 - System Failures
- 4 Results
- 5 Summary & Conclusions
- 6 References

- Central idea of the solution in this paper
- Much like reserving a hotel room
 - Visitor makes a request for a room with conditions
 - If exact conditions can not be met, hotel may supply a counter offer
 - Otherwise, room is reserved

- Central idea of the solution in this paper
- Much like reserving a hotel room
 - Visitor makes a request for a room with conditions
 - If exact conditions can not be met, hotel may supply a counter offer
 - Otherwise, room is reserved

- Central idea of the solution in this paper
- Much like reserving a hotel room
 - Visitor makes a request for a room with conditions
 - If exact conditions can not be met, hotel may supply a counter offer
 - Otherwise, room is reserved

- Central idea of the solution in this paper
- Much like reserving a hotel room
 - Visitor makes a request for a room with conditions
 - If exact conditions can not be met, hotel may supply a counter offer
 - Otherwise, room is reserved

(Dresner and Stone, 2008)

- Drivers make reservations with the intersection
 - Drivers call ahead to the intersection manager
 - Intersection decides if driver's request can be met, according to intersection policy
 - Intersection confirms the driver's request, or rejects it (possibly with counter offer)

Reservation System

(Dresner and Stone, 2008)

Drivers make reservations with the intersection

- Drivers call ahead to the intersection manager
- Intersection decides if driver's request can be met, according to intersection policy
- Intersection confirms the driver's request, or rejects it (possibly with counter offer)

Reservation System

(Dresner and Stone, 2008)

- Drivers make reservations with the intersection
 - Drivers call ahead to the intersection manager
 - Intersection decides if driver's request can be met, according to intersection policy
 - Intersection confirms the driver's request, or rejects it (possibly with counter offer)

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Simulator used for cost and safety reasons
- Four-way, multi-lane intersection (right-hand traffic simulated, but not required)
- Spawns vehicles according to defined probability distributions
- Provides sensor inputs to vehicles
- Retrieves actions from driver agents
- Updates vehicle positions according to physical model
- Removes vehicles that have left the simulated area
- Records statistics

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

Drivers have access to vehicle information

- Length, width, axle positions
- Maximum velocity, acceleration, braking, steering angle
- Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers have access to vehicle information
 - Length, width, axle positions
 - Maximum velocity, acceleration, braking, steering angle
 - Maximum vehicle-detection sensor range
- Drivers can read sensors
 - Position, velocity, heading, acceleration, steering angle
 - Vehicles within sensor range (laser range finder)
 - Simulator can add noise to sensors

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

Drivers can control

- Rate of change of steering angle (within bounds)
- Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- Drivers can control
 - Rate of change of steering angle (within bounds)
 - Acceleration/braking level
- Can communicate with the intersection manager
- Obey instructions of the intersection manager
- Stay in lane and maintain safe distance
- Maintain speed limit unless unsafe due to turning or other vehicles
- Change lanes if required for the intersection

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

- All information between agents and the intersection goes through a single, monitorable channel
- Limited number of message types
 - Drivers have REQUEST, CHANGE-REQUEST, CANCEL, DONE
 - Intersection has CONFIRM, REJECT, ACKNOWLEDGE, EMERGENCY-STOP
- Communication method is identical for different intersections from the perspective of the drivers
 - Intersection appears as a "black box"
 - Meets "protocol standardisation" requirement agents don't need to know inner workings

Intersection Policies

• The "brains" of the system

(Dresner and Stone, 2008)

The First Come First Served Policy

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection is divided into a grid of reservable tiles
- Driver approaching intersection issues request
- Intersection manager runs internal simulation of driver in intersection
 - If car will occupy a reserved tile, then reject policy
 - Otherwise reserve appropriate tiles at appropriate times and accept reservation.
- Simple
- Early trials led to modifications to improve safety, efficiency and reliability.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Intersection determines the outbound lane
- Put limits on acceleration in the intersection
 - Either maximum acceleration or no acceleration
- No vehicle gets a reservation unless vehicle in front has one
 - Estimate position using vehicle's reported velocity and ETA.
 - Maintain estimate of front-most vehicle in each lane with a rejected request
 - Reject request if vehicle is behind this estimate
 - Otherwise, process normally. If rejected, update cut-off distance, otherwise reset distance to infinity.

- Timeouts after rejected requests
- Static & dynamic buffers around vehicles
- Edge Tiles Safety buffer for cars leaving intersection

- Timeouts after rejected requests
- Static & dynamic buffers around vehicles
- Edge Tiles Safety buffer for cars leaving intersection

- Timeouts after rejected requests
- Static & dynamic buffers around vehicles
- Edge Tiles Safety buffer for cars leaving intersection

- Timeouts after rejected requests
- Static & dynamic buffers around vehicles
- Edge Tiles Safety buffer for cars leaving intersection

- Timeouts after rejected requests
- Static & dynamic buffers around vehicles
- Edge Tiles Safety buffer for cars leaving intersection

Existing Policies

- Stop-Sign policy
 - Only accept reservations from vehicles that have stopped.
- Traffic-Light policy
 - Accept reservations but for the time the lane will next have a green light

Existing Policies

- Stop-Sign policy
 - Only accept reservations from vehicles that have stopped.
- Traffic-Light policy
 - Accept reservations but for the time the lane will next have a green light

Existing Policies

- Stop-Sign policy
 - Only accept reservations from vehicles that have stopped.
- Traffic-Light policy
 - Accept reservations but for the time the lane will next have a green light

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

- Extend existing infrastructure traffic lights
- Assume there is a human driver everywhere one could be
 - No tile reservations by automated drivers in lanes opened for humans.
 - Automated drivers are automatically accepted into lanes that are green.
- All-Lanes or One-Lane traffic light model
 - Incremental Deployment

(Dresner and Stone, 2008)

- If an emergency vehicle is approaching the intersection, only accept requests from vehicles in that lane.
- Can't deny all requests as vehicles will stop in front of the emergency vehicle
- Simulation adds "Emergency Vehicle" flag
 - Prevent abuse of this feature through authentication

- If an emergency vehicle is approaching the intersection, only accept requests from vehicles in that lane.
- Can't deny all requests as vehicles will stop in front of the emergency vehicle
- Simulation adds "Emergency Vehicle" flag
 - Prevent abuse of this feature through authentication

- If an emergency vehicle is approaching the intersection, only accept requests from vehicles in that lane.
- Can't deny all requests as vehicles will stop in front of the emergency vehicle
- Simulation adds "Emergency Vehicle" flag
 - Prevent abuse of this feature through authentication

- If an emergency vehicle is approaching the intersection, only accept requests from vehicles in that lane.
- Can't deny all requests as vehicles will stop in front of the emergency vehicle
- Simulation adds "Emergency Vehicle" flag
 - Prevent abuse of this feature through authentication

- Causes of accidents?
- Safety buffers and incident mitigation added to system
- Impact on performance
- Details in paper

- Causes of accidents?
- Safety buffers and incident mitigation added to system
- Impact on performance
- Details in paper

- Causes of accidents?
- Safety buffers and incident mitigation added to system
- Impact on performance
- Details in paper

- Causes of accidents?
- Safety buffers and incident mitigation added to system
- Impact on performance
- Details in paper

Risks & Mitigation

- Causes of accidents?
- Safety buffers and incident mitigation added to system
- Impact on performance
- Details in paper

Outline

- Introduction
- 2 The Problem
- 3 The Solution
- 4 Results
 - Comparison to existing systems
 - Incremental Deployment
 - Emergency Vehicles
- 5 Summary & Conclusions
- 6 References

Comparison to existing systems

Reduce delay by up to two orders of magnitude against traffic lights

Figure: FCFS policy (100% autonomous drivers)

- At each point there is always incentive to upgrade
 - Intersections have lower delay for all drivers
 - Automated drivers have lower delay than human drivers
- When population of automated drivers increases, there is incentive to upgrade policy from ALL-LANES to SINGLE-LANE

- At each point there is always incentive to upgrade
 - Intersections have lower delay for all drivers
 - Automated drivers have lower delay than human drivers
- When population of automated drivers increases, there is incentive to upgrade policy from ALL-LANES to SINGLE-LANE

- At each point there is always incentive to upgrade
 - Intersections have lower delay for all drivers
 - Automated drivers have lower delay than human drivers
- When population of automated drivers increases, there is incentive to upgrade policy from ALL-LANES to SINGLE-LANE

Figure: ALL-LANES light model (\geq 10% Human), SINGLE-LANE (< 10% Human)

Figure: ALL-LANES light model. TRAFFIC-LIGHT is equivalent to 100% human drivers

Figure: ALL-LANES light model. 50% human drivers

Figure: SINGLE-LANE light model. 5% human drivers

Emergency Vehicles

Emergency vehicles benefit most when traffic is heavy

Outline

- 1 Introduction
- 2 The Problem
- The Solution
- 4 Results
- 5 Summary & Conclusions
 - Summary
 - Pros and Cons
 - Future Work

Summary

- Provided an intersection management system that meets the desiderata
- Always provides incentive to upgrade & incrementally deployable
- Benefits increase as number of automated vehicles increase
- Emergency vehicles have lower delay
- Can reduce the number and severity of collisions

Pros and Cons

Pros

- Simulations well designed and detailed
- Solution is simple and effective
- Always an incentive to see implementation through to completion
- No reliance on un-invented sensor/communication technology.

Cons

- Traffic spawned randomly, not according to any patterns
- "ALL-LANES" Traffic light system doesn't match real traffic lights

Pros and Cons

Pros

- Simulations well designed and detailed
- Solution is simple and effective
- Always an incentive to see implementation through to completion
- No reliance on un-invented sensor/communication technology.

Cons

- Traffic spawned randomly, not according to any patterns
- "ALL-LANES" Traffic light system doesn't match real traffic lights

Future Work

- Real world tests
- More sophisticated simulator physics
 - Non-level, non-square intersections
 - Potholes, debris, oil
 - Weather conditions (rain, snow, ice)
- Detailed safety studies
- More sophisticated intersection policies
- Sensors to detect human-driven vehicles (induction loops already used at traffic lights)
- Malicious agents

Outline

- Introduction
- 2 The Problem
- The Solution
- Results
- 5 Summary & Conclusions
- 6 References

References

- DARPA (2007). The DARPA Urban Challenge. http://www.darpa.mil/grandchallenge.
- K. Dresner and P. Stone (2008). A Multiagent Approach to Autonomous Intersection Management. In *Journal of Artificial Intelligence Research*, Vol 31, pp. 591-656.
- National Highway Traffic Safety Administration (2002).
 Economic Impact of U.S. Motor Vehicle Crashes Reaches
 \$230.6 Billion, New NHTSA Study Shows. NHTSA Press
 Release 38-02 http://www.nhtsa.dot.gov/.
- Texas Transport Institute (2004). 2004 Urban Mobility Report. http://mobility.tamu.edu/ums.

Any Questions?

