Lossless Abstraction of Imperfect Informations Games
 Andrew Gilpin
 Tuomas Sandholm

OR

How to Play Poker Perfectly

That means money.

Potentially, even a lot of money.

Due to time constraints,
Details about making profits will be left as an exercice.

Lossless Abstraction of Imperfect Informations Games
 Andrew Gilpin
 Tuomas Sandholm

Lossless Abstraction of
 Imperfect Informations Games
 Andrew Gilpin
 Tuomas Sandholm FLASHBACK

Imperfect Information Games

- Sometimes agents have not observed everything, or else can not remember what they have observed

Imperfect information games: Choice nodes H are partitioned into information sets.

- If two choice nodes are in the same information set, then the agent can not distinguish between them.
- Actions available to an agent must be the same for all nodes in the same information set

Imperfect Information Games

- Sometimes agents have not observed everything, or else can not remember what they have observed

Imperfect information games: Choice nodes H are partitioned into information sets.

- If two choice nodes are in the same information set, then the agent can not distinguish between them.
- Actions available to an agent must be the same for all nodes in the same information set

This is not my work

The Problem : Finding Nash

Sequential imperfect information game can be expressed in normal matrix form.

The Problem : Finding Nash

Sequential imperfect information game can be expressed in normal matrix form.

Exponential cost

The Problem : Finding Nash

Sequential imperfect information game can be expressed in normal matrix form.

Exponential cost

Better: use the sequence form.

The Problem : Finding Nash

Sequential imperfect information game can be expressed in normal matrix form.

Exponential cost

Better: use the sequence form.

Linear cost

Goal of the Article

Create an smaller game equivalent to the initial one.

Goal of the Article

Create an smaller game equivalent to the initial one.

\longrightarrow Automatically

Using abstractions.

Goal of the Article

Create an smaller game equivalent to the initial one.

\longrightarrow Automatically

Using abstractions

Lossless Abstraction of Imperfect Informations Games
 Andrew Gilpin
 Tuomas Sandholm

Plan

Introduction (just done) 1. Rhode Island Hold'em

2. Games with ordered signals
3. Filtered Signal Tree 4. Main Theorem

Discussion \& Conclusion

1. Rhode Island Hold'em

Opponent : Ante : +5\$

$$
\text { Pot }=10 \$
$$

Before 1st round

Me : Ante : +5\$

Pot $=10 \$$

1st round

Pot $=20 \$$

1st round

1. Me : Bet : +10\$

2. Opponent : Call : +10\$

$$
\text { Pot }=30 \$
$$

1st round

1. Me : Bet : +10\$

Pot $=30 \$$

End of 1st round

9
 8
 Pot $=30 \$$

2nd round

2nd round

1. Me : Bet : +20\$

2. Opponent : Raise : +40\$

2nd round

1. Me : Bet : +20\$

9
 8
 Pot $=110 \$$

2nd round

3. Me : Call : +20\$

9
 8
 Pot $=110 \$$

End of 2nd round

9
 88
 Pot $=110 \$$

3rd round

5
 8 Pot $=130$ s

3rd round

1. Me : Bet : +20\$

2. Opponent : Call : +20\$

3rd round

1. Me : Bet : +20\$

9

$$
8
$$

Showdown : I won 150\$
2. Games with ordered signals
$\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)$

$\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)$

Players

Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players

Player's

turns
Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players

Player's Set of turns cards

Tree describing how the game proceeds

Players

Player's Set of turns cards

Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players
Number of
private cards
for each turn

Player's Set of turns cards

Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players
Number of private cards for each turn

Number of public cards
for each turn

Player's Set of turns cards
 Probability to draw cards

Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players
Number of private cards for each turn

Number of
public cards
for each turn

Player's Set of turns cards draw cards

Probability to

Tree describing how the game proceeds

$$
\Gamma=(I, G, L, \Theta, \kappa, \gamma, p, \succeq, \omega, u)
$$

Players
Number of private cards for each turn

Number of
public cards
for each turn

Player's Set of turns cards
 Probability to draw cards

Tree describing how the game proceeds

$$
\mathrm{F}=\left(I, G, L,,, A_{i}\right.
$$

Number of private cards for each turn

Number of nodes public cards
for each turn

Ordering of hands
"Game over"
Players

Player's Set of turns cards
 Probability to draw cards

Ordering of hands how the game proceeds

Players
Number of private cards for each turn
Tree describing

Player's Set of turns cards draw cards

Probability to

Ordering of hands how the game proceeds
Tree describing

Players
Number of private cards for each turn
"Game over" nodes public cards
for each turn

"A filtered ordered game is an extensive form game satisfying perfect recall."
from the article

It means that we can use behavior strategies

Two limitations
 in generality, though.

First, structure of player actions and chance action

Second, the rank of hands is the same for everyone.

3. Filtered Signal Tree

J1 J2


```
J1 J2
```


J1 J2


```
J1 J2
```


J1 J2

$\{1, \mathrm{~J} 2, \mathrm{~K} 1, \mathrm{~K} 2\}$

$\{ป 1, \mathrm{~J} 2\}, \mathrm{K} 1, \mathrm{~K} 2\}$

113 nodes

r rounds, b nonterminal leaves

size of signal tree is at most $\frac{1}{b^{r}}$ size of game tree

in our case, $\frac{1}{b^{r}}=0,003$

Algorithm in $O\left(n^{2}\right)$

4. Main Theorem

GameShrink does not modify Nash equilibria.

GameShrink : algorithm for ordered game isomorphic abstraction transformation

Conclusion \& Discussion

Main Points (x3)

23

1. Create a smaller, equivalent game.

1. Create a smaller, equivalent game.

3.1 billion to 6 millions

2. Apply on games with ordered signals

3. Calculated Nash equilibrium for Rhode Island Hold'em

Weaknesses

1. Approximations to crack larger games.

2. Not all abstractions are used

3. Limits of generality

One last thing

31

3. Calculated Nash equilibrium for Rhode Island Hold'em

www.cs.cmu.edu/~gilpin/gsi.html

