Competitive Auction

Andrew V.Goldberg, Jason D.Hartline, Anna R.Karlin, Michael Saks, Andrew Wright

Presented by Derek Wang

Outline

- Introduction
- Preliminaries and notation
- Competitive analysis
- Deterministic auctions are not competitive
- •A lower bound on the competitive ratio
- Competitive auctions via random sampling
- •Limited supply
- •Better than F?
- Conclusions and future work

Introduction

- We study a class of single-round, sealed-bid auctions for an item in unlimited supply.
- Set optimal single price profit as a benchmark
- The approach is motivated by competitive analysis of on-line algorithms.

Preliminaries and notation

- Single-round sealed-bid auction, A
 - b the vector of all submitted bids(maximum amount)
 The *i*th component of b is b_i, the bid submitted by bidder *i*
 - *allocation*, $x = (x_1, ..., x_n)$ *price*, $p = (p_1, ..., p_n)$
 - *profit* of the auction A(b)= $\sum_{i} p_{i}$

We make the following assumptions about the bidders:

- Each bidder has a private *valuation*,
- Each bidder bids so as to maximize their *utility*,
- Bidders bid with full knowledge of the auctioneer's mechanism.
- Bidders do not collude.
- The bidders in the auction are indistinguishable from the perspective of the auctioneer.

Bid-independent Auction, $A_f(b)$

- $t_i \leftarrow f(b_{-i})$
- If $t_i \le b_i$, set $x_i \leftarrow 1$ and $p_i \leftarrow t_i$
- Otherwise, set $x_i = p_i = 0$

A *deterministic auction* is *truthful* if and only if it is equivalent to a *deterministic bid-independent auction*.

*Same applied to randomized auction

Optimal omniscient auctions

• Optimal single price omniscient auction, F

 $F(b) = \max_{1 \le i \le n} i z_i$

• Optimal Multiple price omniscient auction, T

$$T(b) = \sum_{1 \le i \le n} b_i$$

Competitive analysis

• Let **b** be a vector of bids. Denote by opt(**b**) the sale price for b that gives the optimal profit

opt(b)= $\underset{z_i}{argmax iz_i}$

• The *Deterministic Optimal Price* (DOP) auction is defined by the bid independent function *f*

 $f(b_{-i}) = opt(b_{-i})$

Competitive analysis

• DOP is a profit maximizing auction for a large class of distributions over bid vectors.

• Easy to exhibit classes of bid vectors where DOP's profit is very far from optimal

Competitive auction framework

• There exist bid vectors **b** for which $\mathcal{F}(\mathbf{b}) = \Theta(\mathcal{T}(\mathbf{b})/\ln n).$

Moreover, for all bid vectors \mathbf{b} $\mathcal{F}(\mathbf{b}) \ge T(\mathbf{b}) / \ln n$.

• For any truthful auction \mathcal{A}_f and any $\beta \ge 1$, there is a bid vector b such that the expected profit of \mathcal{A}_f on b is less than $\mathcal{F}(\mathbf{b})/\beta$.

• Optimal single price omniscient auction that sells at least two units, $\mathcal{F}^{(2)}$

$$\mathcal{F}^{(2)}(\mathbf{b}) = \max_{2 \leq k \leq n} k z_k.$$

• *m*-optimal single price omniscient auction, $\mathcal{F}^{(m)}$

$$\mathcal{F}^{(m)}(\mathbf{b}) = \max_{m \leqslant k \leqslant n} k z_k.$$

We say that auction A is β-competitive against F^(m) if for all bid vectors b, the expected profit of A on b satisfies

$$\mathbf{E}\big[\mathcal{A}(\mathbf{b})\big] \geqslant \frac{\mathcal{F}^{(m)}(\mathbf{b})}{\beta}.$$

- β as the competitive ratio of A.
- $\mathcal{F}^{(2)}$ is the strongest omniscient auction that we will be able to feasibly compete with.

Deterministic auctions are not competitive

Let \mathcal{A}_f be any symmetric deterministic auction defined by bid-independent function f. Then \mathcal{A}_f is not competitive: for any $1 \leq m \leq n$ there exists a bid vector b of length n such that the profit on b is at $most \quad \mathcal{F}^{(m)}(\mathbf{b}) = \frac{m}{n}$.

A lower bound on the competitive ratio

We show that for any randomized truthful auction \mathcal{A} , there exists an input bid vector b on which

$$\mathbf{E}\big[\mathcal{A}(\mathbf{b})\big] \leqslant \frac{\mathcal{F}^{(2)}(\mathbf{b})}{2.42}.$$

Competitive auctions via random sampling

• The Random Sampling Optimal Price auction(RSOP) is:

(1)Partition bids b uniformly at random into two sets: b', b"
(2)Let p'=opt(b') and p"=opt(b")
(3)Use p' as a take-it-or-leave-it offer for all bids in b"

(4)Use p" as a take-it-or-leave-it offer for all bids in b'

- The RSOP auction is truthful.
- RSOP is constant competitive against $\mathcal{F}^{(2)}$.
- Let b be any bounded-range bid vector, i.e., any bid vector of n bids with $b_i \in [1, h]$ for all i. Then

$$\lim_{n \to \infty} \max_{\mathbf{b}} \frac{\mathcal{F}(\mathbf{b})}{\text{RSOP}(\mathbf{b})} = 1.$$

- Random Sampling Profit Extraction auction (RSPE) is:
 - (1)Partition bids b uniformly at random into two sets: b' and b".
 - (2)Compute F'=F(b') and F''=F(b'').
 - (3)Compute the auction results by running $ProfitExtract_{F}$ '' on b' and $ProfitExtract_{F}$ 'on b"
 - * ProfitExtract_R, given target profit R, is defined:
 (1)Find the largest k such that highest k bidders' bids are at least R/k

(2)Charge these k bidders R/k and reject all others.

- RSPE is truthful.
- RSPE is 4-competitive

Limited supply

- The limited supply version of RSOP is constant competitive against $\mathcal{F}^{(2,k)}$.
- The limited supply version of RSPE is 4-competitive against $\mathcal{F}^{(2,k)}$.

Better than F?

 An auction is monotone if for any pair of bidders i and j with b_i ≤ b_j, we have:

 $\forall x \leq b_i$, **Pr**[bidder *i* wins at price $\leq x$] \leq **Pr**[bidder *j* wins at price $\leq x$].

- Let \mathcal{A} be any monotone(truthful) randomized auction. For all bid vectors b, the revenue $R = \mathcal{A}(\mathbf{b})$ of \mathcal{A} on input b satisfies $\mathbf{E}[R] \leq \mathcal{F}(\mathbf{b})$.
- No monotone auction can achieve an expected profit higher than F on any input.

Conclusions and future works

- Lower bound 13/6-competitive three bidder auction.
- Best possible bound on RSOP's competitive ratio?

- Some of my thoughts about this paper:
 - All the proofs are beautiful
 - Are RSOP and RSPE good examples?

Discussion

Questions and Comments