Algorithmic Mechanism Design
N. Nisan, A. Ronen

Adam Bains

October 22, 2008
1 Introduction
 - Review: Mechanism Design

2 Application: Task Allocation
 - Problem Definition
 - Upper Bound
 - Lower Bound

3 Mechanisms with Verification
 - Overview
 - Compensation-and-Bonus Mechanism
 - Poly-Time Approximation Algorithms

4 Conclusion
Designers of communication protocols typically assume that agents are trustworthy...
Designers of communication protocols typically assume that agents are trustworthy...

... but what about those that aren’t?

- Faulty or compromised computers
- Malicious agents

Authors of the paper are primarily concerned with examining mechanism design from a CS standpoint
Some elements have already been covered in class:
- Basic mechanism design
- Time-complexity considerations

How is this different from what we’ve previously seen?
- Different mechanism design models
- Incentive-compatibility results for approximation algorithms
A quick review...

- **Recall:** Mechanisms attempt to coordinate multiple rational agents in order to solve a problem
 - Goal represented by a social choice function
 \[f : \Theta_1 \times \ldots \times \Theta_n \rightarrow O \]
 - Mechanism defined as \(M = (S_1, \ldots, S_n, g(s)) \), where
 \[g : S_1 \times \ldots \times S_n \rightarrow O \]
We’re going to be focusing on VCG mechanisms, which means that the mechanisms we consider will have:

- Direct-revelation
 - i.e. $\forall i, S_i = \Theta_i$
- Quasi-linear preferences
 - $u_i = v_i(o, \theta_i) + p_i$, where v_i is agent valuation, p_i is mechanism’s payment function

But how do we apply VCG mechanisms to A&C problems?
Basic Example: Min. Weighted Path

Problem: Given target nodes $x, y \in G$, we need to find the minimum weight path from $x \rightarrow y$, where each edge e is an agent whose edge cost is private.

- Edge cost for e_i is $\theta_i \geq 0$
- $v_i(o, \theta_i)$ is $-\theta_i$ if used (0 otherwise)
If agents lie about their edge weights, we can't find the optimal path; need to create a payment function that promotes truth-telling:

\[p_i = d_{G|i=\infty} - d_{G|i=0} \]

Where \(d_{G|i=\infty}\) is the weight of min. weight path that doesn’t use \(i\), and \(d_{G|i=0}\) is the weight of the path with \(\theta_i = 0\).
Definition: A direct-revelation mechanism is a VCG mechanism if:

1. The outcome function maximizes overall agent valuation
2. The payment function for agent i is a combination of the sum of other agents’ valuations, plus $h_i(\theta_{-i})$, which is an arbitrary function of other agents’ types.
With this in mind, the mechanism that we are discussing is clearly a VCG mechanism:

- \(d_{G|i=\infty} \) is equivalent to \(h_i(\theta_{-i}) \)
- \(d_{G|i=0} \) is the same as \(\sum_{j \neq i} v_j(\theta_j, o(t)) \).
This was a fairly simple example, but it has shown us:

- how to apply VCG mechanisms to standard A&C problems.
- a template for possible future VCG-based solutions, e.g. minimum spanning tree.
Definition: Task Allocation Problem

- **Goal:** Assign \(k \) tasks to \(n \) agents such that the completion time is minimized
 - Set of feasible outputs is the set of all possible task partitions
 - Task partition \(x = x_1, \ldots, x_n \) is an \(n \)-tuple of (possibly empty) sets \(x_i \), where \(x_i \) is the set of tasks allocated to \(i \)
 - Objective function is the completion time of the final task
 \((\max_i \sum_{j \in x_i} \theta^i_j) \)
Agent properties:

- Agent type θ_i determines θ_i^j, the amount of time an agent of type i requires to complete task j
- Agent valuation is the negation of the sum of the time to complete all tasks assigned to it
 - Formally: $v_i(x, \theta_i) = -\sum_{j \in x_i} \theta_i^j$
The naïve approach:

To start, consider a simple approximation of the task allocation problem: the minimum work mechanism

- **Idea**: attempt to minimize the total amount of work done
 - Allocate each task j to the agent with $\min \theta^j$
- Not a close approximation – consider cases where all tasks are allocated to one agent
- Can be used to develop an upper bound on the task allocation problem
The idea behind the mechanism is fairly simple:

- Optimal allocation is simple: just choose the agent with the smallest θ^j for each task.
- Payment is simply the second-best time for each task assigned to that agent.
Given a mechanism satisfying this problem that is also in the family of VCG mechanisms:

- Outcome is at most the sum of the minimum θ^j values for $j = 1 \ldots n$
 - More formally, $g(x(t), t) \leq \sum_{j=1}^{k} \min_i \theta^j_i$
 - Assumes tasks are performed sequentially

- Optimal value is at least $1/n$ times this value
Theorem

There does not exist a mechanism that implements a c-approximation for the task scheduling problem for any $c < 2$.
Proof: Consider scenario with 2 agents, $k \geq 3$ tasks, $|x_1(\theta)| \leq |x_2(\theta)|$, and $0 < \epsilon < 1$.

- Let $x_1(\hat{\theta})$ be $x_1(\theta)$ with $\theta_j^i = \epsilon$ for all $j \in x_1(\theta)$
- Let $x_2(\hat{\theta})$ be $x_2(\theta)$ with $\theta_j^i = 1 + \epsilon$ for all $j \in x_2(\theta)$
- Then $x(\hat{\theta}) = x(\theta)$
As type of agent 2 is unchanged, prices offered remain the same, so $x_1(\hat{\theta})$ is an identical task allocation.

Since we are dealing with a two agent scenario, $x_2(\hat{\theta}) = x_2(\theta)$.

Finally, assuming $|x_2(\theta)|$ is even, the optimal allocation on the adjusted task vectors is at most $\frac{1}{2}|x_2| + k\epsilon$.

The odd case follows a similar proof. \square
Paper also presents additional results for the task scheduling problem:

- Tight upper bound for additive mechanisms
- Tight upper bound for local mechanisms
- Approximation mechanism that circumvents the lower bound for task scheduling
Are there any problems with the existing model?

- Doesn’t make any assumptions about agent strategies – allows agents to report any $\theta \in \Theta$, regardless of actual type
- Models the communication phase – agents communicate, mechanism assigns tasks...
Are there any problems with the existing model?

- Doesn’t make any assumptions about agent strategies – allows agents to report any $\theta \in \Theta$, regardless of actual type
- Models the communication phase – agents communicate, mechanism assigns tasks...
- ... but what about the actual execution of the tasks?
Are there any problems with the existing model?

- Doesn’t make any assumptions about agent strategies – allows agents to report any $\theta \in \Theta$, regardless of actual type
- Models the communication phase – agents communicate, mechanism assigns tasks...
- ... but what about the actual execution of the tasks?
- Authors propose a new model, mechanisms with verification, that takes this into account.
Why take execution into account?

- Allows us to observe difference between reported type and actual type
- Can withhold payment until after execution, basing it on actual performance instead of declared performance
 - Seems to model real-world concerns more closely
Agent strategies now have two components: declaration \((d_i) \) and execution \((e_i() \)
- \(e_i \) depends on both \(\theta_i \) and outcome \(x(d) \)
- Both \(d_i \) and \(e_i(x) \) used to determine payment
- Still representing minimum time to completion for task \(j \) with \(\theta_i^j \); actual time represented by \(\tilde{\theta}^j \)

Output is now \(o(x, e) \) – depends on task allocation and execution times
The payment function is broken into two components, resulting in a *Compensation-and-Bonus* mechanism.

- Payment function is the sum of the compensation function and the bonus function
- *Compensation function* is the sum of all actual execution times (i.e. $\sum_{j \in x_i(\theta)} \tilde{\theta}_j$)
- **Bonus function** is the negation of the maximum completion time in i’s corrected time vector (i.e.
 \[-g(x(\theta), \text{corr}_i(x(\theta), \theta, \tilde{\theta})) \]

- Corrected time vector for i ($\text{corr}_i(x(\theta), \theta, \tilde{\theta})$) is the set of all declared execution times, with i’s declared times (θ_i^j) replaced with actual times ($\tilde{\theta}_i^j$)

- Bonus function depends on i’s execution times and declared times for all other agents
Essentially:

- The payment described above is maximized when the agent executes its assignments in minimal time – increasing execution time would only decrease the bonus value.
Proof of Truthfulness

Essentially:

- The payment described above is maximized when the agent executes its assignments in minimal time – increasing execution time would only decrease the bonus value.

- As we’re working with an optimal allocation algorithm, we already know that the final completion time \(g(x(\theta), \text{corr}_i(x(\theta), \theta, \tilde{\theta})) \) is minimized.
Essentially:

- The payment described above is maximized when the agent executes its assignments in minimal time – increasing execution time would only decrease the bonus value.

- As we’re working with an optimal allocation algorithm, we already know that the final completion time \(g(x(\theta), corr_i(x(\theta), \theta, \tilde{\theta})) \) is minimized.

- Since a minimization of this value is equal to a maximization of the bonus, we know that reporting any other type will only decrease agent \(i \)'s bonus, or at best leave it unchanged.
Proof of Truthfulness

Essentially:

- The payment described above is maximized when the agent executes its assignments in minimal time – increasing execution time would only decrease the bonus value.
- As we’re working with an optimal allocation algorithm, we already know that the final completion time \(g(x(\theta), corr_i(x(\theta), \theta, \tilde{\theta})) \) is minimized.
- Since a minimization of this value is equal to a maximization of the bonus, we know that reporting any other type will only decrease agent \(i \)'s bonus, or at best leave it unchanged.
- Therefore, truth-telling is the only dominant strategy.
Problem: Intractability

- Previous mechanism approaches mentioned rely on *optimal allocation algorithm*, but this isn’t computationally feasible.
- How do we get around this?
Poly-Time Approximation Algorithms

Question: What happens when we replace optimal allocation with a poly-time algorithm?

Theorem

Let $x()$ be a non-optimal approximation algorithm for task scheduling. Let $m = (x, p)$ be the Compensation-and-Bonus mechanism based on $x()$. Then m is not truthful.
Question: What happens when we replace optimal allocation with a poly-time algorithm?

Theorem

Let $x()$ be a non-optimal approximation algorithm for task scheduling. Let $m = (x, p)$ be the Compensation-and-Bonus mechanism based on $x()$. Then m is not truthful.

... but why?
Proof: *By contradiction.* Consider the case for Compensation-and-Bonus mechanisms. Assume that the approximate allocation mechanism is truthful:

- Let $x(\theta)$ represent the non-optimal approximation, and $opt(\theta)$ the optimal.
- Let θ'_1 be a type for agent 1 such that time to completion (θ'^j_1) is the same as θ^j_i if task j was in the optimal task allocation, and an arbitrarily high value otherwise.
- Let $\theta' = \theta'_1, \theta_2, \ldots, \theta_n$
- We already know that \(g(\text{opt}(\theta), \theta) < g(x(\theta), \theta) \), as \(x() \) is a non-optimal approximation.
- From the above definition of \(\theta' \), we know that \(g(x(\theta'), \theta) \geq g(x(\theta), \theta) \), as otherwise agent 1 would lie about its type, declaring \(\theta'_1 \).
- Apply this to all type vectors, and call the resulting set \(s \).
We know that $g(x(s), \theta) \geq g(x(\theta), \theta)$ by the above argument. However, it is also clear that $g(x(s), \theta) = g(\text{opt}(s), \theta)$.

As we already know that $g(x(s), \theta) \geq g(\text{opt}(s), \theta)$, $x(s)$ can’t have the same allocation as $\text{opt}(s)$ – there must be some task j that is allocated to a different agent in $x()$.

This contradicts the algorithm’s approximation, as the completion time for task j will be ∞ for $x()$’s allocation. Thus, we have demonstrated via contradiction that it cannot be truthful.
Proof presented in this paper deals specifically with Compensation-and-Bonus mechanisms.

[NR00] examines the issue in a more general context.
In this paper, the authors presented:

- Upper- and lower-bounds on approximation for the task scheduling mechanism
- An extended mechanism design model (Compensation-and-Bonus) restricting agent actions to reflect their type.
- Proof that Compensation-and-Bonus-based approximation mechanisms are not incentive-compatible
Standard mechanism design is fine in theory, but computationally intractable in practice.

Optimal approximation mechanisms are not always possible.
The paper was very fundamental, so there were plenty of avenues for possible research:

- Different model extensions: examine other equilibrium types, game types, agent strategy types
- Further examine upper- and lower-bounds on examples presented, or examine applications to other problems
- Mechanism construction and implementation
Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms.