Algorithmic Mechanism Design
N. Nisan, A. Ronen

Adam Bains

October 22, 2008

Adam Bains Algorithmic Mechanism Design

Outline

@ Introduction
@ Review: Mechanism Design

© Application: Task Allocation
@ Problem Definition
@ Upper Bound
@ Lower Bound

© Mechanisms with Verification
@ Overview
@ Compensation-and-Bonus Mechanism
@ Poly-Time Approximation Algorithms

@ Conclusion

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

@ Designers of communication protocols typically assume that
agents are trustworthy...

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

@ Designers of communication protocols typically assume that
agents are trustworthy...
@ ... but what about those that aren’t?
e Faulty or compromised computers
e Malicious agents
@ Authors of the paper are primarily concerned with examining
mechanism design from a CS standpoint

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

@ Some elements have already been covered in class:
e Basic mechanism design
e Time-complexity considerations
@ How is this different from what we've previously seen?

o Different mechanism design models
e Incentive-compatibility results for approximation algorithms

Adam Bains Algorithmic Mechanism Design

Introduction
Review: Mechanism Design

A quick review...

@ Recall: Mechanisms attempt to coordinate multiple rational
agents in order to solve a problem

o Goal represented by a social choice function
f:©1%x...x0,— 0

o Mechanism defined as M = (S51,..., S,, g(s)), where
g:5x...x5, —0

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

We're going to be focusing on VCG mechanisms, which means
that the mechanisms we consider will have:
@ Direct-revelation
e ie Vi, S =0;
@ Quasi-linear preferences
o u; = vi(0,6;) + pi, where v; is agent valuation, p; is
mechanism’s payment function

But how do we apply VCG mechanisms to A&C problems?

Adam Bains Algorithmic Mechanism Design

Introduction
Review: Mechanism Design

Basic Example: Min. Weighted Path

Problem: Given target nodes x,y € G, we need to find the
minimum weight path from x — y, where each edge e is an agent
whose edge cost is private.

@ Edge cost for ¢ is ; > 0

e vi(o,0;) is —0; if used (0 otherwise)

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

If agents lie about their edge weights, we can't find the optimal
path; need to create a payment function that promotes
truth-telling:

pi = dgli=cc — dg|i=0
Where dg|i—o is the weight of min. weight path that doesn't use
i, and dg|j—g is the weight of the path with 6; = 0.

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

Definition: A direct-revelation mechanism is a VCG mechanism if:

© The outcome function maximizes overall agent valuation

@ The payment function for agent / is a combination of the sum
of other agents’ valuations, plus h;(6_;), which is an arbitrary
function of other agents’ types.

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

With this in mind, the mechanism that we are discussing is clearly
a VCG mechanism:

® dg|i—c is equivalent to h;(6_;)
® dg|i=o is the same as ., v;(0;, o(t)).

Adam Bains Algorithmic Mechanism Design

Introduction

Review: Mechanism Design

This was a fairly simple example, but it has shown us:
@ how to apply VCG mechanisms to standard A&C problems.

@ a template for possible future VCG-based solutions, e.g.

minimum spanning tree.

Algorithmic Mechanism Design

Adam Bains

Problem Definition
Application: Task Allocation Upper Bound
Lower Bound

Definition: Task Allocation Problem

@ Goal: Assign k tasks to n agents such that the completion
time is minimized
e Set of feasible outputs is the set of all possible task partitions
o Task partition x = x,..., X, is an n-tuple of (possibly empty)
sets x;, where Xx; is the set of tasks allocated to i
o Objective function is the completion time of the final task

(max,- Zjex,- 9{)

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

Agent properties:
o Agent type 6; determines 6‘{ the amount of time an agent of
type i requires to complete task j
@ Agent valuation is the negation of the sum of the time to
complete all tasks assigned to it
o Formally: vi(x,60;) = —->_

JEX; 6{

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound
Lower Bound

The naive approach:

To start, consider a simple approximation of the task allocation
problem: the minimum work mechanism
o ldea: attempt to minimize the total amount of work done
o Allocate each task j to the agent with min &/
@ Not a close approximation — consider cases where all tasks are
allocated to one agent
@ Can be used to develop an upper bound on the task allocation
problem

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

The idea behind the mechanism is fairly simple:

@ Optimal allocation is simple: just choose the agent with the
smallest ¢/ for each task.

@ Payment is simply the second-best time for each task assigned
to that agent.

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

Given a mechanism satisfying this problem that is also in the
family of VCG mechanisms:
e Outcome is at most the sum of the minimum & values for
j=1...n
o More formally, g(x(t),t) < Z};l min,ﬂ{:
o Assumes tasks are performed sequentially

e Optimal value is at least 1/n times this value

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

Lower Bound: Task Scheduling Problem

There does not exist a mechanism that implements a
c-approximation for the task scheduling problem for any ¢ < 2.

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

Proof: Consider scenario with 2 agents, k > 3 tasks,
[x1(0)] < |x2(0)], and 0 < e < 1.

o Let x1(A) be x1(6) with 9’ = ¢ for all j € x1(0)
o Let xp(A) be x2(0) with ¢/ =1+ ¢ for all j € xx(0)
o Then x(0) = x(6)

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

@ As type of agent 2 is unchanged, prices offered remain the
same, so x1(0) is an identical task allocation.

A

@ Since we are dealing with a two agent scenario, x»(0) = x2(9).

e Finally, assuming |x2(0)| is even, the optimal allocation on the
adjusted task vectors is at most %]x2| + ke.

@ The odd case follows a similar proof. [J

Adam Bains Algorithmic Mechanism Design

Problem Definition
Application: Task Allocation Upper Bound

Lower Bound

Paper also presents additional results for the task scheduling
problem:

@ Tight upper bound for additive mechanisms
@ Tight upper bound for local mechanisms

@ Approximation mechanism that circumvents the lower bound
for task scheduling

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

Are there any problems with the existing model?

@ Doesn’'t make any assumptions about agent strategies —
allows agents to report any 6 € ©, regardless of actual type

@ Models the communication phase — agents communicate,
mechanism assigns tasks...

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

Are there any problems with the existing model?

@ Doesn’'t make any assumptions about agent strategies —
allows agents to report any 6 € ©, regardless of actual type

@ Models the communication phase — agents communicate,
mechanism assigns tasks...

@ ... but what about the actual execution of the tasks?

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

Are there any problems with the existing model?

@ Doesn’'t make any assumptions about agent strategies —
allows agents to report any 6 € ©, regardless of actual type

@ Models the communication phase — agents communicate,
mechanism assigns tasks...

@ ... but what about the actual execution of the tasks?

@ Authors propose a new model, mechanisms with verification,
that takes this into account.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Why take execution into account?

@ Allows us to observe difference between reported type and
actual type

@ Can withhold payment until after execution, basing it on
actual performance instead of declared performance

e Seems to model real-world concerns more closely

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

Definitions

@ Agent strategies now have two components: declaration (d};)
and execution (e&())
o ¢; depends on both 6; and outcome x(d)
e Both d; and e;(x) used to determine payment

o Still representing minimum time to completion for task j with
¢; actual time represented by ¢

e Output is now o(x, e) — depends on task allocation and
execution times

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

The payment function

The payment function is broken into two components, resulting in
a Compensation-and-Bonus mechanism.
@ Payment function is the sum of the compensation function
and the bonus function
o Compensation function is the sum of all actual execution

times (i.e. >ic.(p))

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

@ Bonus function is the negation of the maximum completion
time in i's corrected time vector (i.e.
—g(x(0), corri(x(0),0,0))

o Corrected time vector for i (corr(x(6),6,6)) is the set of all
declared execution times, with i's declared times (9{) replaced
with actual times (%)

e Bonus function depends on i's execution times and declared
times for all other agents

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

@ The payment described above is maximized when the agent
executes its assignments in minimal time — increasing
execution time would only decrease the bonus value.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

@ The payment described above is maximized when the agent
executes its assignments in minimal time — increasing
execution time would only decrease the bonus value.

@ As we're working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(80), corri(x(0),0,0)) is minimized.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

@ The payment described above is maximized when the agent
executes its assignments in minimal time — increasing
execution time would only decrease the bonus value.

@ As we're working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(8), corri(x(6),0,0)) is minimized.

@ Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i's bonus, or at best leave it unchanged.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

@ The payment described above is maximized when the agent
executes its assignments in minimal time — increasing
execution time would only decrease the bonus value.

@ As we're working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(8), corri(x(6),0,0)) is minimized.

@ Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i's bonus, or at best leave it unchanged.

@ Therefore, truth-telling is the only dominant strategy.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Problem: Intractability

@ Previous mechanism approaches mentioned rely on optimal
allocation algorithm, but this isn't computationally feasible

@ How do we get around this?

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Poly-Time Approximation Algorithms

@ Question: What happens when we replace optimal allocation
with a poly-time algorithm?

Let x() be a non-optimal approximation algorithm for task
scheduling. Let m = (x, p) be the Compensation-and-Bonus
mechanism based on x(). Then m is not truthful.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism
Mechanisms with Verification Poly-Time Approximation Algorithms

Poly-Time Approximation Algorithms

@ Question: What happens when we replace optimal allocation
with a poly-time algorithm?

Let x() be a non-optimal approximation algorithm for task
scheduling. Let m = (x, p) be the Compensation-and-Bonus
mechanism based on x(). Then m is not truthful.

o ... but why?

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

Proof: By contradiction. Consider the case for
Compensation-and-Bonus mechanisms. Assume that the
approximate allocation mechanism is truthful:
@ Let x(0) represent the non-optimal approximation, and opt(6)
the optimal
o Let 0] be a type for agent 1 such that time to completion
(67) is the same as ¢ if task j was in the optimal task
allocation, and an arbitrarily high value otherwise.

o Let 0 =0, 0s,....0,

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

e We already know that g(opt(0),0) < g(x(6),0), as x() is a
non-optimal approximation

o From the above definition of 6/, we know that
g(x(0"),0) > g(x(6),0), as otherwise agent 1 would lie about
its type, declaring 0}

@ Apply this to all type vectors, and call the resulting set s

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

e We know that g(x(s),0) > g(x(6),0) by the above argument.

@ However, it is also clear that g(x(s),8) = g(opt(s),0).

@ As we already know that g(x(s),0) > g(opt(s),0), x(s) can't
have the same allocation as opt(s) — there must be some task
J that is allocated to a different agent in x().

@ This contradicts the algorithm’s approximation, as the
completion time for task j will be oo for x()'s allocation.

Thus, we have demonstrated via contradiction that it cannot
be truthful.

Adam Bains Algorithmic Mechanism Design

Overview
Compensation-and-Bonus Mechanism

Mechanisms with Verification Poly-Time Approximation Algorithms

@ Proof presented in this paper deals specifically with
Compensation-and-Bonus mechanisms

@ [NROO] examines the issue in a more general context

Adam Bains Algorithmic Mechanism Design

Conclusion

In this paper, the authors presented:
@ Upper- and lower-bounds on approximation for the task
scheduling mechanism

@ An extended mechanism design model
(Compensation-and-Bonus) restricting agent actions to reflect
their type.

@ Proof that Compensation-and-Bonus-based approximation
mechanisms are not incentive- compatible

Adam Bains Algorithmic Mechanism Design

Conclusion

Takeaway Messages

@ Standard mechanism design is fine in theory, but
computationally intractable in practice

@ Optimal approximation mechanisms are not always possible

Adam Bains Algorithmic Mechanism Design

Conclusion

Future Work

The paper was very fundamental, so there were plenty of avenues
for possible research:

@ Different model extensions: examine other equilibrium types,
game types, agent strategy types

@ Further examine upper- and lower-bounds on examples
presented, or examine applications to other problems

@ Mechanism construction and implementation

Adam Bains Algorithmic Mechanism Design

Conclusion

[} Noam Nisan and Amir Ronen.
Computationally feasible vcg mechanisms.
In EC '00: Proceedings of the 2nd ACM conference on
Electronic commerce, pages 242-252, New York, NY, USA,
2000. ACM.

Adam Bains Algorithmic Mechanism Design

	Outline
	Introduction
	Review: Mechanism Design

	Application: Task Allocation
	Problem Definition
	Upper Bound
	Lower Bound

	Mechanisms with Verification
	Overview
	Compensation-and-Bonus Mechanism
	Poly-Time Approximation Algorithms

	Conclusion

