
Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Algorithmic Mechanism Design
N. Nisan, A. Ronen

Adam Bains

October 22, 2008

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

1 Introduction
Review: Mechanism Design

2 Application: Task Allocation
Problem Definition
Upper Bound
Lower Bound

3 Mechanisms with Verification
Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

4 Conclusion

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

Designers of communication protocols typically assume that
agents are trustworthy...

... but what about those that aren’t?

Faulty or compromised computers
Malicious agents

Authors of the paper are primarily concerned with examining
mechanism design from a CS standpoint

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

Designers of communication protocols typically assume that
agents are trustworthy...

... but what about those that aren’t?

Faulty or compromised computers
Malicious agents

Authors of the paper are primarily concerned with examining
mechanism design from a CS standpoint

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

Some elements have already been covered in class:

Basic mechanism design
Time-complexity considerations

How is this different from what we’ve previously seen?

Different mechanism design models
Incentive-compatibility results for approximation algorithms

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

A quick review...

Recall: Mechanisms attempt to coordinate multiple rational
agents in order to solve a problem

Goal represented by a social choice function
f : Θ1 × . . .×Θn → O
Mechanism defined as M = (S1, . . . ,Sn, g(s)), where
g : S1 × . . .× Sn → O

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

We’re going to be focusing on VCG mechanisms, which means
that the mechanisms we consider will have:

Direct-revelation

i.e. ∀i , Si = Θi

Quasi-linear preferences

ui = vi (o, θi) + pi , where vi is agent valuation, pi is
mechanism’s payment function

But how do we apply VCG mechanisms to A&C problems?

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

Basic Example: Min. Weighted Path

Problem: Given target nodes x , y ∈ G , we need to find the
minimum weight path from x → y , where each edge e is an agent
whose edge cost is private.

Edge cost for ei is θi ≥ 0

vi (o, θi) is −θi if used (0 otherwise)

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

If agents lie about their edge weights, we can’t find the optimal
path; need to create a payment function that promotes
truth-telling:

pi = dG |i=∞ − dG |i=0

Where dG |i=∞ is the weight of min. weight path that doesn’t use
i , and dG |i=0 is the weight of the path with θi = 0.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

Definition: A direct-revelation mechanism is a VCG mechanism if:

1 The outcome function maximizes overall agent valuation

2 The payment function for agent i is a combination of the sum
of other agents’ valuations, plus hi (θ−i), which is an arbitrary
function of other agents’ types.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

With this in mind, the mechanism that we are discussing is clearly
a VCG mechanism:

dG |i=∞ is equivalent to hi (θ−i)

dG |i=0 is the same as
∑

j 6=i vj(θj , o(t)).

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Review: Mechanism Design

This was a fairly simple example, but it has shown us:

how to apply VCG mechanisms to standard A&C problems.

a template for possible future VCG-based solutions, e.g.
minimum spanning tree.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Definition: Task Allocation Problem

Goal: Assign k tasks to n agents such that the completion
time is minimized

Set of feasible outputs is the set of all possible task partitions
Task partition x = x1, . . . , xn is an n-tuple of (possibly empty)
sets xi , where xi is the set of tasks allocated to i
Objective function is the completion time of the final task
(maxi

∑
j∈xi

θj
i)

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Agent properties:

Agent type θi determines θj
i , the amount of time an agent of

type i requires to complete task j

Agent valuation is the negation of the sum of the time to
complete all tasks assigned to it

Formally: vi (x , θi) = −
∑

j∈xi
θj
i

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

The näıve approach:

To start, consider a simple approximation of the task allocation
problem: the minimum work mechanism

Idea: attempt to minimize the total amount of work done

Allocate each task j to the agent with min θj

Not a close approximation – consider cases where all tasks are
allocated to one agent

Can be used to develop an upper bound on the task allocation
problem

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

The idea behind the mechanism is fairly simple:

Optimal allocation is simple: just choose the agent with the
smallest θj for each task.

Payment is simply the second-best time for each task assigned
to that agent.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Given a mechanism satisfying this problem that is also in the
family of VCG mechanisms:

Outcome is at most the sum of the minimum θj values for
j = 1 . . . n

More formally, g(x(t), t) ≤
∑k

j=1 miniθ
j
i

Assumes tasks are performed sequentially

Optimal value is at least 1/n times this value

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Lower Bound: Task Scheduling Problem

Theorem

There does not exist a mechanism that implements a
c-approximation for the task scheduling problem for any c < 2.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Proof: Consider scenario with 2 agents, k ≥ 3 tasks,
|x1(θ)| ≤ |x2(θ)|, and 0 < ε < 1.

Let x1(θ̂) be x1(θ) with θj
1 = ε for all j ∈ x1(θ)

Let x2(θ̂) be x2(θ) with θj
1 = 1 + ε for all j ∈ x2(θ)

Then x(θ̂) = x(θ)

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

As type of agent 2 is unchanged, prices offered remain the
same, so x1(θ̂) is an identical task allocation.

Since we are dealing with a two agent scenario, x2(θ̂) = x2(θ).

Finally, assuming |x2(θ)| is even, the optimal allocation on the
adjusted task vectors is at most 1

2 |x2|+ kε.

The odd case follows a similar proof.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Problem Definition
Upper Bound
Lower Bound

Paper also presents additional results for the task scheduling
problem:

Tight upper bound for additive mechanisms

Tight upper bound for local mechanisms

Approximation mechanism that circumvents the lower bound
for task scheduling

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Are there any problems with the existing model?

Doesn’t make any assumptions about agent strategies –
allows agents to report any θ ∈ Θ, regardless of actual type

Models the communication phase – agents communicate,
mechanism assigns tasks...

... but what about the actual execution of the tasks?

Authors propose a new model, mechanisms with verification,
that takes this into account.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Are there any problems with the existing model?

Doesn’t make any assumptions about agent strategies –
allows agents to report any θ ∈ Θ, regardless of actual type

Models the communication phase – agents communicate,
mechanism assigns tasks...

... but what about the actual execution of the tasks?

Authors propose a new model, mechanisms with verification,
that takes this into account.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Are there any problems with the existing model?

Doesn’t make any assumptions about agent strategies –
allows agents to report any θ ∈ Θ, regardless of actual type

Models the communication phase – agents communicate,
mechanism assigns tasks...

... but what about the actual execution of the tasks?

Authors propose a new model, mechanisms with verification,
that takes this into account.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Why take execution into account?

Allows us to observe difference between reported type and
actual type

Can withhold payment until after execution, basing it on
actual performance instead of declared performance

Seems to model real-world concerns more closely

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Definitions

Agent strategies now have two components: declaration (di)
and execution (ei ())

ei depends on both θi and outcome x(d)
Both di and ei (x) used to determine payment
Still representing minimum time to completion for task j with
θj
i ; actual time represented by θ̃j

Output is now o(x , e) – depends on task allocation and
execution times

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

The payment function

The payment function is broken into two components, resulting in
a Compensation-and-Bonus mechanism.

Payment function is the sum of the compensation function
and the bonus function

Compensation function is the sum of all actual execution
times (i.e.

∑
j∈xi (θ)

θ̃j))

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Bonus function is the negation of the maximum completion
time in i ’s corrected time vector (i.e.

−g(x(θ), corri (x(θ), θ, θ̃))

Corrected time vector for i (corri (x(θ), θ, θ̃)) is the set of all

declared execution times, with i ’s declared times (θj
i) replaced

with actual times (θ̃j
i)

Bonus function depends on i ’s execution times and declared
times for all other agents

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

The payment described above is maximized when the agent
executes its assignments in minimal time – increasing
execution time would only decrease the bonus value.

As we’re working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(θ), corri (x(θ), θ, θ̃)) is minimized.

Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i ’s bonus, or at best leave it unchanged.

Therefore, truth-telling is the only dominant strategy.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

The payment described above is maximized when the agent
executes its assignments in minimal time – increasing
execution time would only decrease the bonus value.

As we’re working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(θ), corri (x(θ), θ, θ̃)) is minimized.

Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i ’s bonus, or at best leave it unchanged.

Therefore, truth-telling is the only dominant strategy.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

The payment described above is maximized when the agent
executes its assignments in minimal time – increasing
execution time would only decrease the bonus value.

As we’re working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(θ), corri (x(θ), θ, θ̃)) is minimized.

Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i ’s bonus, or at best leave it unchanged.

Therefore, truth-telling is the only dominant strategy.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof of Truthfulness

Essentially:

The payment described above is maximized when the agent
executes its assignments in minimal time – increasing
execution time would only decrease the bonus value.

As we’re working with an optimal allocation algorithm, we
already know that the final completion time
(g(x(θ), corri (x(θ), θ, θ̃)) is minimized.

Since a minimization of this value is equal to a maximization
of the bonus, we know that reporting any other type will only
decrease agent i ’s bonus, or at best leave it unchanged.

Therefore, truth-telling is the only dominant strategy.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Problem: Intractability

Previous mechanism approaches mentioned rely on optimal
allocation algorithm, but this isn’t computationally feasible

How do we get around this?

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Poly-Time Approximation Algorithms

Question: What happens when we replace optimal allocation
with a poly-time algorithm?

Theorem

Let x() be a non-optimal approximation algorithm for task
scheduling. Let m = (x , p) be the Compensation-and-Bonus
mechanism based on x(). Then m is not truthful.

... but why?

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Poly-Time Approximation Algorithms

Question: What happens when we replace optimal allocation
with a poly-time algorithm?

Theorem

Let x() be a non-optimal approximation algorithm for task
scheduling. Let m = (x , p) be the Compensation-and-Bonus
mechanism based on x(). Then m is not truthful.

... but why?

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof: By contradiction. Consider the case for
Compensation-and-Bonus mechanisms. Assume that the
approximate allocation mechanism is truthful:

Let x(θ) represent the non-optimal approximation, and opt(θ)
the optimal

Let θ′1 be a type for agent 1 such that time to completion

(θ′j1) is the same as θj
i if task j was in the optimal task

allocation, and an arbitrarily high value otherwise.

Let θ′ = θ′1, θ2, . . . , θn

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

We already know that g(opt(θ), θ) < g(x(θ), θ), as x() is a
non-optimal approximation

From the above definition of θ′, we know that
g(x(θ′), θ) ≥ g(x(θ), θ), as otherwise agent 1 would lie about
its type, declaring θ′1
Apply this to all type vectors, and call the resulting set s

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

We know that g(x(s), θ) ≥ g(x(θ), θ) by the above argument.

However, it is also clear that g(x(s), θ) = g(opt(s), θ).

As we already know that g(x(s), θ) ≥ g(opt(s), θ), x(s) can’t
have the same allocation as opt(s) – there must be some task
j that is allocated to a different agent in x().

This contradicts the algorithm’s approximation, as the
completion time for task j will be ∞ for x()’s allocation.
Thus, we have demonstrated via contradiction that it cannot
be truthful.

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Overview
Compensation-and-Bonus Mechanism
Poly-Time Approximation Algorithms

Proof presented in this paper deals specifically with
Compensation-and-Bonus mechanisms

[NR00] examines the issue in a more general context

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Recap

In this paper, the authors presented:

Upper- and lower-bounds on approximation for the task
scheduling mechanism

An extended mechanism design model
(Compensation-and-Bonus) restricting agent actions to reflect
their type.

Proof that Compensation-and-Bonus-based approximation
mechanisms are not incentive- compatible

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Takeaway Messages

Standard mechanism design is fine in theory, but
computationally intractable in practice

Optimal approximation mechanisms are not always possible

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Future Work

The paper was very fundamental, so there were plenty of avenues
for possible research:

Different model extensions: examine other equilibrium types,
game types, agent strategy types

Further examine upper- and lower-bounds on examples
presented, or examine applications to other problems

Mechanism construction and implementation

Adam Bains Algorithmic Mechanism Design

Outline
Introduction

Application: Task Allocation
Mechanisms with Verification

Conclusion

Noam Nisan and Amir Ronen.
Computationally feasible vcg mechanisms.
In EC ’00: Proceedings of the 2nd ACM conference on
Electronic commerce, pages 242–252, New York, NY, USA,
2000. ACM.

Adam Bains Algorithmic Mechanism Design

	Outline
	Introduction
	Review: Mechanism Design

	Application: Task Allocation
	Problem Definition
	Upper Bound
	Lower Bound

	Mechanisms with Verification
	Overview
	Compensation-and-Bonus Mechanism
	Poly-Time Approximation Algorithms

	Conclusion

