CS 886: Multiagent Systems
Normal Form Games

Kate Larson
Cheriton School of Computer Science
University of Waterloo

September 10, 2008
Outline

1. Self-Interested Agents
2. What is Game Theory?
3. Quick Utility Theory Review
4. Normal Form Games
 - Nash Equilibria
Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

- the agent has its *own* description of states of the world that it likes, and that its actions are motivated by this description
Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

- the agent has its *own* description of states of the world that it likes, and that its actions are motivated by this description
Self-Interested Agents

We are interested in **self-interested** agents.

It does not mean that

- they want to harm other agents
- they only care about things that benefit them

It means that

- the agent has its *own* description of states of the world that it likes, and that its actions are motivated by this description
What is game theory?

The study of games!

- Bluffing in poker
- What move to make in chess
- How to play Rock-Scissors-Paper

Also study of auction design, strategic deterrence, election laws, coaching decisions, routing protocols,...
What is game theory?

The study of games!

- Bluffing in poker
- What move to make in chess
- How to play Rock-Scissors-Paper

Also study of auction design, strategic deterrence, election laws, coaching decisions, routing protocols,...
What is game theory?

Game theory is a formal way to analyze *interactions* among a *group* of *rational* agents who behave *strategically*.
What is game theory?

Game theory is a formal way to analyze **interactions** among a **group** of **rational** agents who behave **strategically**.

Group: Must have more than one decision maker
- Otherwise you have a decision problem, not a game

Solitaire is not a game.
What is game theory?

Game theory is a formal way to analyze interactions among a group of rational agents who behave strategically.

Interaction: What one agent does directly affects at least one other agent

Strategic: Agents take into account that their actions influence the game

Rational: An agent chooses its best action (maximizes its expected utility)
Example

Pretend that the entire class is going to go for lunch:

1. Everyone pays their own bill
2. Before ordering, everyone agrees to split the bill equally

Which situation is a game?
Impact

Influential in a variety of fields, including

- economics
- political science
- linguistics
- psychology
- biology
- computer science
- ...

2 branches

- Non-cooperative: basic unit is the individual
- Cooperative: basic unit is the group
Impact

Influential in a variety of fields, including:
- economics
- political science
- linguistics
- psychology
- biology
- computer science
- ...

2 branches
- Non-cooperative: basic unit is the individual
- Cooperative: basic unit is the group
Preferences and Utility

Agents have preferences over outcomes ($A \succ B$, $B \succ A$, $A \sim B$).
Agents can also have preferences over lotteries with possible outcomes C_1, \ldots, C_n

$$L = [p_1 : C_1, \ldots, p_n : C_n]$$
Properties (Axioms)

- Orderability
- Transitivity
- Continuity

\[A \succ B \succ C \Rightarrow \exists p [p : A, (1 - p) : C] \sim B \]

- Substitutability

\[A \sim B \Rightarrow [p : A, (1 - p) : C] \sim [p : B, (1 - p) : C] \]

- Monotonicity

\[A \succ B \Rightarrow (p \geq q \iff [p : A, (1 - p) : B] \succeq [q : A, (1 - q) : B]) \]

- Decomposability

Utility Principle

Theorem (Utility Principle)

If the axioms are followed then there exists a function $U : O \rightarrow \mathbb{R}$ *such that* $\forall A, B \in O$

$$U(A) > U(B) \iff A \succ B$$

$$U(A) = U(B) \iff A \sim B.$$

Maximum Expected Utility: Rational choice – select lottery L^* such that

$$L^* = \arg \max_L \sum_i p_i U_i(C_i)$$
Utility

- The “units” do not matter
- Affine transformations do not really change anything;

\[U'(o) = aU(o) + b \]

will result in the same decision.

Note: Risk attitudes are important.
Utility

- The “units” do not matter
- Affine transformations do not really change anything:

\[U'(o) = aU(o) + b \]

will result in the same decision.

Note: Risk attitudes are important.
An Example
A normal form game is defined by

- Finite set of agents (or players) N, $|N| = n$
- Each agent i has an action space A_i
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, \ldots, a_n))$ where a_i is the action taken by agent i
- Each agent has a utility function $u_i : A_1 \times \ldots \times A_n \mapsto \mathbb{R}$
Normal Form

A normal form game is defined by

- **Finite set of agents (or players)** N, $|N| = n$
- **Each agent i has an action space** A_i
 - A_i is non-empty and finite
- **Outcomes are defined by action profiles** $(a = (a_1, \ldots, a_n))$
 where a_i is the action taken by agent i
- **Each agent has a utility function** $u_i : A_1 \times \ldots \times A_n \mapsto \mathbb{R}$
Normal Form

A normal form game is defined by

- Finite set of agents (or players) $N, |N| = n$
- Each agent i has an action space A_i
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, \ldots, a_n))$ where a_i is the action taken by agent i
- Each agent has a utility function $u_i : A_1 \times \ldots \times A_n \mapsto \mathbb{R}$
Normal Form

A normal form game is defined by

- Finite set of agents (or players) N, $|N| = n$
- Each agent i has an action space A_i
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, \ldots, a_n))$ where a_i is the action taken by agent i
- Each agent has a utility function $u_i : A_1 \times \ldots \times A_n \mapsto \mathbb{R}$
Normal Form

A normal form game is defined by

- Finite set of agents (or players) N, $|N| = n$
- Each agent i has an action space A_i
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, \ldots, a_n))$
 where a_i is the action taken by agent i
- Each agent has a utility function $u_i : A_1 \times \ldots \times A_n \mapsto \mathbb{R}$
Normal Form

A normal form game is defined by

- Finite set of agents (or players) N, $|N| = n$
- Each agent i has an action space A_i
 - A_i is non-empty and finite
- Outcomes are defined by action profiles $(a = (a_1, \ldots, a_n))$
 where a_i is the action taken by agent i
- Each agent has a utility function $u_i : A_1 \times \ldots \times A_n \rightarrow \mathbb{R}$
Examples

Prisoners’ Dilemma

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>a,a</td>
<td>b,c</td>
</tr>
<tr>
<td>D</td>
<td>c,b</td>
<td>d,d</td>
</tr>
</tbody>
</table>

\[c > a > d > b \]

Pure coordination game

\[
\forall \text{ action profiles } \\
a \in A_1 \times \ldots \times A_n \text{ and } \forall i, j, \\
u_i(a) = u_j(a).
\]

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1,1</td>
<td>0,0</td>
</tr>
<tr>
<td>R</td>
<td>0,0</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Agents do not have conflicting interests. Their sole challenge is to coordinate on an action which is good for all.
Zero-sum games

$$\forall a \in A_1 \times A_2, \ u_1(a) + u_2(a) = 0.$$ That is, one player gains at the other player's expense.

Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>T</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Given the utility of one agent, the other's utility is known.
More Examples

Most games have elements of both cooperation and competition.

BoS

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>S</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Hawk-Dove

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,3</td>
<td>1,4</td>
</tr>
<tr>
<td>H</td>
<td>4,1</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Strategies

Notation: Given set X, let ΔX be the set of all probability distributions over X.

Definition

Given a normal form game, the set of mixed strategies for agent i is

$$S_i = \Delta A_i$$

The set of mixed strategy profiles is $S = S_1 \times \ldots \times S_n$.

Definition

A strategy s_i is a probability distribution over A_i. $s_i(a_i)$ is the probability action a_i will be played by mixed strategy s_i.
Strategies

Definition

The support of a mixed strategy s_i is

$$\{a_i | s_i(a_i) > 0\}$$

Definition

A pure strategy s_i is a strategy such that the support has size 1, i.e.

$$|\{a_i | s_i(a_i) > 0\}| = 1$$

A pure strategy plays a single action with probability 1.
Expected Utility

The expected utility of agent i given strategy profile s is

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j=1}^{n} s_j(a_j)$$

Example

Given strategy profile

$s = ((\frac{1}{2}, \frac{1}{2}), (\frac{1}{10}, \frac{9}{10}))$

$$u_1 = -1\left(\frac{1}{2}\right)\left(\frac{1}{10}\right) - 4\left(\frac{1}{2}\right)\left(\frac{9}{10}\right) - 3\left(\frac{1}{2}\right)\left(\frac{9}{10}\right) = -3.2$$

$$u_2 = -1\left(\frac{1}{2}\right)\left(\frac{1}{10}\right) - 4\left(\frac{1}{2}\right)\left(\frac{1}{10}\right) - 3\left(\frac{1}{2}\right)\left(\frac{9}{10}\right) = -1.6$$
Outline

1. Self-Interested Agents
2. What is Game Theory?
3. Quick Utility Theory Review
4. Normal Form Games
 - Nash Equilibria
Best-response

Given a game, what strategy should an agent choose? We first consider only pure strategies.

Definition

Given a_{-i}, the best-response for agent i is $a_i \in A_i$ such that

$$u_i(a_i^*, a_{-i}) \geq u_i(a_i', a_{-i}) \forall a_i' \in A_i$$

Note that the best response may not be unique. A best-response set is

$$B_i(a_{-i}) = \{ a_i \in A_i | u_i(a_i, a_{-i}) \geq u_i(a_i', a_{-i}) \forall a_i' \in A_i \}$$
Nash Equilibrium

Definition

A profile a^* is a Nash equilibrium if $\forall i$, a^*_i is a best response to a^*_{-i}. That is

$$\forall i u_i(a^*_i, a^*_{-i}) \geq u_i(a'_i, a^*_{-i}) \forall a'_i \in A_i$$

Equivalently, a^* is a Nash equilibrium if $\forall i$

$$a^*_i \in B(a^*_{-i})$$
Examples

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1,-1</td>
<td>-4,0</td>
</tr>
<tr>
<td>D</td>
<td>0,-4</td>
<td>-3,-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2,1</td>
<td>0,0</td>
</tr>
<tr>
<td>T</td>
<td>0,0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching Pennies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>T</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
Nash Equilibria

We need to extend the definition of a Nash equilibrium. Strategy profile s^* is a Nash equilibrium is for all i

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i', s_{-i}^*)$$

$$\forall s_i' \in S_i$$

Similarly, a best-response set is

$$B(s_{-i}) = \{s_i \in S_i | u_i(s_i, s_{-i}) \geq u_i(s_i', s_{-i}) \forall s_i' \in S_i\}$$
Examples
Characterization of Mixed Nash Equilibria

s^* is a (mixed) Nash equilibrium if and only if

- the expected payoff, given s_{-i}^*, to every action to which s_i^* assigns positive probability is the same, and
- the expected payoff, given s_{-i}^*, to every action to which s_i^* assigns zero probability is at most the expected payoff to any action to which s_i^* assigns positive probability.
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex). Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i’s best response to s'_{-i}. Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s). Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex). Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i's best response to s'_{-i}. Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s). Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex).

Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i’s best response to s'_{-i}.

Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s).

Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.
Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex). Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i’s best response to s'_{-i}.
Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s).
Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.

Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex). Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i’s best response to s'_{-i}. Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s).

Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Existence

Theorem (Nash, 1950)

Every finite normal form game has a Nash equilibrium.

Proof: Beyond scope of course.
Basic idea: Define set X to be all mixed strategy profiles. Show that it has nice properties (compact and convex). Define $f : X \mapsto 2^X$ to be the best-response set function, i.e. given s, $f(s)$ is the set all strategy profiles $s' = (s'_1, \ldots, s'_n)$ such that s'_i is i's best response to s'_{-i}.
Show that f satisfies required properties of a fixed point theorem (Kakutani’s or Brouwer’s). Then, f has a fixed point, i.e. there exists s such that $f(s) = s$. This s is mutual best-response – NE!
Interpretations of Nash Equilibria

- Consequence of rational inference
- Focal point
- Self-enforcing agreement
- Stable social convention
- ...

Kate Larson
CS 886