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Game Theory
Given a game we are able
to analyse the strategies
agents will follow

Social Choice
Given a set of agents’
preferences we can
choose some outcome
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Today Mechanism Design
Game Theory + Social Choice

Goal of Mechanism Design is to
Obtain some outcome (function of agents’ preferences)
But agents are rational

They may lie about their preferences

Goal
Define the rules of a game so that in equilibrium the agents do
what we want.
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Fundamentals

Set of possible outcomes O
Set of agents N, |N| = n

Each agent i has type θi ∈ Θi
Type captures all private information that is relevent to the
agent’s decision making

Utility ui(o, θi) over outcome o ∈ O
Recall: goal is to implement some system wide solution

Captured by a social choice function

f : Θ1 × . . .×Θn → O

where f (θ1, . . . , θn) = o is a collective choice
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Examples of Social Choice Functions

Voting:
Choose a candidate among a group

Public project:
Decide whether to build a swimming pool whose cost must
be funded by the agents themselves

Allocation:
Allocate a single, indivisible item to one agent in a group
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Mechanisms
Recall that we want to implement a social choice function

Need to know agents’ preferences
They may not reveal them to us truthfully

Example:
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Mechanism Design Problem

By having agents interact through an institution we might
be able to solve the problem
Mechanism:

M = (S1, . . . , Sn, g(·))
where

Si is the strategy space of agent i
g : S1 × . . .× Sn → O is the outcome function
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Implementation

Definition
A mechanism M = (S1, . . . , Sn, g(·)) implements social choice
function f (Θ) if there is an equilibrium strategy profile

s∗ = (s∗1(θ1, . . . , s∗n(θn))

of the game induced by M such that

g(s∗1(θ1), . . . , s∗n(θn)) = f (θ1, . . . , θn)

for all
(θ1, . . . , θn) ∈ Θ1 × . . .×Θn
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Implementation
We did not specify the type of equilibrium in the definition

Nash

ui(g(s∗i (θi), s∗−i(θ−i)), θi) ≥ ui(g(s′i (θi), s∗−i(θ−i)), θi)

∀i ,∀θi ,∀s′i 6= s∗i
Bayes-Nash

E [ui(g(s∗i (θi), s∗−i(θ−i)), θi)] ≥ E [ui(g(s′i (θi), s∗−i(θ−i)), θi)]

∀i ,∀θi ,∀s′i 6= s∗i
Dominant

ui(g(s∗i (θi), s∗−i(θ−i)), θi) ≥ ui(g(s′i (θi), s∗−i(θ−i)), θi)

∀i ,∀θi ,∀s′i 6= s∗i ,∀s−i
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Properties for Mechanisms
Efficiency

Select the outcome that maximizes total utility
Fairness

Select outcome that minimizes the variance in utility
Revenue maximization

Select outcome that maximizes revenue to a seller (or,
utility to one of the agents)

Budget-balanced
Implement outcomes that have balanced transfers across
agents

Pareto Optimal
Only implement outcomes o∗ for which for all o′ 6= o∗ either
ui(o′, θi) = ui(o∗, θi)∀i or ∃i ∈ N with ui(o′, θi) < ui(o∗, θi)
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Participation Constraints
We can not force agents to participate in the mechanism. Let
ûi(θi) denote the (expected) utility to agent i with type θi of its
outside option.

ex ante individual-rationality: agents choose to
participate before they know their own type

Eθ∈Θ[ui(f (θ), θi)] ≥ Eθi∈Θi ûi(θi)

interim individual-rationality: agents can withdraw once
they know their own type

Eθ−i∈Θ−i [ui(f (θi , θ−i), θi)] ≥ ûi(θi)

ex-post individual-rationality: agents can withdraw from
the mechanism at the end

ui(f (θ), θi) ≥ ûi(θi)Kate Larson Mechanism Design
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Direct Mechanisms

Definition
A direct mechanism is a mechanism where

Si = Θi for all i

and
g(θ) = f (θ) for all θ ∈ Θ1 × . . .×Θn
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Incentive Compatibility

Definition
A direct mechanism is incentive compatible if it has an
equilibrium s∗ where

s∗i (θi) = θi

for all θi ∈ Θi and for all i . That is, truth-telling by all agents is
an equilibrium.

Definition
A direct mechanism is strategy-proof if it is incentive
compatible and the equilibrium is a dominant strategy
equilibrium.
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Revelation Principle

Theorem
Suppose there exists a mechanism M = (S1, . . . , Sn, g(·)) that
implements social choice function f in dominant strategies.
Then there is a direct strategy-proof mechanism M ′ which also
implements f .
[Gibbard 73; Green & Laffont 77; Myerson 79]

“The computations that go on within the mind of any
bidder in the nondirect mechanism are shifted to
become part of the mechanism in the direct
mechanism.”
[McAfee & McMillan 87]

Kate Larson Mechanism Design



Introduction
Mechanisms

Mechanism Design Problem
Direct Mechanisms
Revelation Principle
Gibbard-Satterthwaite
Quasi-Linear Preferences
Groves Mechanisms

Revelation Principle

Theorem
Suppose there exists a mechanism M = (S1, . . . , Sn, g(·)) that
implements social choice function f in dominant strategies.
Then there is a direct strategy-proof mechanism M ′ which also
implements f .
[Gibbard 73; Green & Laffont 77; Myerson 79]

“The computations that go on within the mind of any
bidder in the nondirect mechanism are shifted to
become part of the mechanism in the direct
mechanism.”
[McAfee & McMillan 87]

Kate Larson Mechanism Design



Introduction
Mechanisms

Mechanism Design Problem
Direct Mechanisms
Revelation Principle
Gibbard-Satterthwaite
Quasi-Linear Preferences
Groves Mechanisms

Revelation Principle: Proof
1 Construct mechanism M = (S, g) that implements f (θ) in

dominant strategies. Then g(s∗(θ)) = f (θ) for all θ ∈ Θ
where s∗ is a dominant strategy equilibrium.

2 Construct direct mechanism M ′ = (Θ, f (Θ)).
3 By contradiction suppose

∃θ′i 6= θi s.t. ui(f (θ′i , θ−i), θi) > ui(f (θi , θ−i), θi)

for some θ′i 6= θi , some θ−i .
4 But, because f (θ) = g(s∗(θ)) this implies that

ui(g(s∗i (θ
′
i ), s∗−i(θ−i)), θi) > ui(g(s∗i (θi), s∗−i(θ−i)), θi)

which contradicts the strategyproofness of s∗ in
mechanism M.
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Revelation Principle: Intuition
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Theoretical Implications

Literal interpretation: Need only study direct
mechanisms

A modeler can limit the search for an optimal mechanism to
the class of direct IC mechanisms
If no direct mechanism can implement social choice
function f then no mechanism can
Useful because the space of possible mechanisms is huge
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Practical Implications

Incentive-compatibility is “free”
Any outcome implemented by mechanism M can be
implemented by incentive-compatible mechanism M ′

“Fancy” mechanisms are unneccessary
Any outcome implemented by a mechanism with complex
strategy space S can be implemented by a direct
mechanism

BUT Lots of mechanisms used in practice are not direct and
incentive-compatible!
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Quick Review

We now know
What a mechanism is
What it means for a SCF to be dominant-strategy
implementable
Revelation Principle

We do not yet know
What types of SCF are dominant-strategy implementable
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Gibbard-Satterthwaite Impossibility
Theorem
Assume that

O is finite and |O| ≥ 3,
each o ∈ O can be achieved by SCF f for some θ, and
Θ includes all possible strict orderings over O.

Then f is implementable in dominant strategies (strategy-proof)
if and only if it is dictatorial.

Definition
SCF f is dictatorial if there is an agent i such that for all θ

f (θ) ∈ {o ∈ O|ui(o, θi) ≥ ui(o′, θi)∀o′ ∈ O}
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Circumventing Gibbard-Satterthwaite
Use a weaker equilibrium concept
Design mechanisms where computing a beneficial
manipulation is hard
Randomization
Restrict the structure of agents’ preferences

Kate Larson Mechanism Design



Introduction
Mechanisms

Mechanism Design Problem
Direct Mechanisms
Revelation Principle
Gibbard-Satterthwaite
Quasi-Linear Preferences
Groves Mechanisms

Outline

1 Introduction
Introduction
Fundamentals

2 Mechanisms
Mechanism Design Problem
Direct Mechanisms
Revelation Principle
Gibbard-Satterthwaite
Quasi-Linear Preferences
Groves Mechanisms

Kate Larson Mechanism Design



Introduction
Mechanisms

Mechanism Design Problem
Direct Mechanisms
Revelation Principle
Gibbard-Satterthwaite
Quasi-Linear Preferences
Groves Mechanisms

Quasi-linear preferences
Outcome o = (x , t1, . . . , tn)

x is a “project choice”
ti ∈ R are transfers (money)

Utility function of agent i

ui(o, θi) = vi(x , θi)− ti

Quasi-linear mechanism

M = (S1, . . . , Sn, g(·))

where
g(·) = (x(·), t1(·), . . . , tn(·))
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Social Choice Functions and Quasi-linearity
SCF is efficient if for all θ

n∑
i=1

vi(x(θ), θi) ≥
n∑

i=1

vi(x ′(θ), θi)∀x ′(θ)

This is also known as social welfare maximizing
SCF is budget-balanced if

n∑
i=1

ti(θ) = 0

Weakly budget-balanced if
n∑

i=1

ti(θ) ≥ 0
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Groves Mechanisms [Groves 73]
A Groves mechanism M = (S1, . . . , Sn, (x , t1, . . . , tn)) is
defined by

Choice rule

x∗(θ) = arg max
x

∑
i

vi(x , θi)

Transfer rules

ti(θ) = hi(θ−i)−
∑
j 6=i

vj(x∗(θ), θj)

where hi(·) is an (arbitrary) function that does not depend
on the reported type θ′i of agent i .
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Groves Mechanisms

Theorem
Groves mechanisms are strategy-proof and efficient.

We have gotten around Gibbard-Satterthwaite.
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Proof

Agent i ’s utility for strategy θ̂i , given θ̂−i from agents j 6= i is

ui(θ̂i) = vi(x∗(θ̂, θi)− ti(θ̂)

= vi(x∗(θ̂, θi) +
∑
j 6=i

vj(x∗(θ̂, θ̂j)− hi(θ̂−i)

Ignore hi(θ̂−i) and notice x∗(θ̂) = arg maxx
∑

i vi(x , θ̂i)
i.e it maximizes the sum of reported values. Therefore, agent i
should announce θ̂i = θi to maximize its own payoff.

Thm: Groves mechanisms are unique (up to hi(θ−i)).
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Vickrey-Clarke-Groves Mechanism
aka Clarke mechansism, aka Pivotal mechanism

Implement efficient outcome

x∗ = arg max
x

∑
i

vi(x , θi)

Compute transfers

ti(θ) =
∑
j 6=i

vj(x−i , θj)−
∑
j 6=i

vj(x∗, θj)

where x−i = arg maxx
∑

j 6=i vj(x , θj)

VCG are efficient and strategy-proof.
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VCG Mechanism

Agent’s equilibrium utility is

ui((x∗, t), θi) = vi(x∗, θi)−

∑
j 6=i

vj(x−i , θj)−
∑
j 6=i

vj(x∗, θj)


=

n∑
j=1

vj(x∗, θj)−
∑
j 6=i

vj(x−i , θj)

= marginal contribution to the welfare of the system
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Example: Building a Pool

Cost of building the pool is $300
If together all agents value the pool more than $300 then it
will be built
Clarke Mechanism

Each agent announces vi and if
∑

i vi ≥ 300 then it is built
Payments ti =

∑
j 6=i vj(x−i , vj)−

∑
j 6=i vj(x∗, vj)

Assume v1 = 50, v2 = 50, v3 = 250. Clearly, the pool should be
built.
Transfers: t1 = (250 + 50)− (250 + 50) = 0 = t2 and
t3 = (0)− (100) = −100. Note that it is not budget-balanced.
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Vickrey Auction
Highest bidder gets the item and pays an amount equal to
the second highest bid
This is also a VCG mechanism

Allocation rule: get item if bi = maxj [bj ]
Every agent pays

ti(v) =
∑
j 6=i

vj(x−i , vj)−
∑
j 6=i

vj(x∗, vj)

Note that
∑

j 6=i vj(x−i , vj) = maxj 6=i bj and

∑
j 6=i

vj(x∗, vj) =

{
maxj 6=i [bj ] if i is not the higest bidder
0 if it is.
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London Bus System1

5 million passengers daily
7500 buses
700 routes
The system has been privatized since 1997 by using
competitive tendering
Idea: Run an auction to allocate routes to companies

1As of April 2004
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Auction Protocol
Let G be set of all routes, I be the set of bidders
Agent i submits bid vi(S) for all bundles S ⊆ G
Compute allocation S∗ to maximize sum of reported bids

V ∗(I) = max
(S1,...,Sn)

∑
i

vi(Si)

Compute best allocation without each agent

V ∗(I \ i) = max
(S1,...,Sn)

∑
j 6=i

v∗j (Sj)

Allocate each agent S∗
i , each agent pays

P(i) = v∗i (S∗
i )− [V ∗(I)− V ∗(I \ i)]
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Appendix For Further Reading

For Further Reading I

A. Mas-Colell, M. Whinston, and J. Green.
Microeconomic Theory.
Oxford University Press, 1995.

David Parkes.
Chapter 2, Iterative Combinatorial Auctions: Achieving
Economic and Computational Efficiency.
PhD Thesis, University of Pennsylvania, 2001.
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