CS 886: Multiagent Systems Multiagent Learning

Kate Larson

Cheriton School of Computer Science
University of Waterloo

November 5, 2008

Outline

(1) Introduction

(2) Repeated Games

(3) Learning in Repeated Games

4 Stochastic Games

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
- Play the game many times
- Update your strategy based on experience
- Why?
- Some aspect of the game may be unknown to you
- Other agents may not be playing in equilibrium
- Computing an optimal strategy is hard
- Learning is what people do

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
- Play the game many times
- Update your strategy based on experience
- Some aspect of the game may be unknown to you
- Other agents may not be playing in equilibrium
- Computing an optimal strategy is hard
- Learning is what people do

Introduction

- So far we have focused on computing optimal/equilibrium strategies
- Another approach: learn how to play a game
- Play the game many times
- Update your strategy based on experience
- Why?
- Some aspect of the game may be unknown to you
- Other agents may not be playing in equilibrium
- Computing an optimal strategy is hard
- Learning is what people do
- ...

Challenges

- There are other agents in the environment
- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
- Complex global behaviour of the system
- Difficult to separate learning from teaching

Challenges

- There are other agents in the environment
- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
- Complex global behaviour of the system
- Difficult to separate learning from teaching

Challenges

- There are other agents in the environment
- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
- Complex global behaviour of the system
- Difficult to separate learning from teaching

Challenges

- There are other agents in the environment
- Dynamic environment (true in single agent settings)
- What others are learning depend on what our agent is learning
- Complex global behaviour of the system
- Difficult to separate learning from teaching

	L	R
T	1,0	3,2
B	2,1	4,0

Goals of Multiagent Learning

Or What is meant by successful learning?

- No clear answer
- Descriptive Theories
- Prescriptive Theories

Goals of Multiagent Learning

Or What is meant by successful learning?

- No clear answer
- Descriptive Theories
- Prescriptive Theories

Repeated Games

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again
- ...

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

Repeated Games

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

Repeated Games

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

Repeated Games

Typically

- Agents play a normal-form game (the stage game)
- They see what happened (and get the payoffs)
- They play again

Can be repeated finitely or infinitely

- Extensive-form game with subgame-perfect equilibrium being repetition of some NE of the stage game
- Are there other equilibria?

Finitely-repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- What is the equilibrium?

Finitely-repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- What is the equilibrium?

Finitely-repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- What is the equilibrium?

Finitely-repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- What is the equilibrium?

Finitely-repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

- What will the agents do in the last round?
- What will the agents do in the second last round?
- What is the equilibrium?

Infinitely repeated games

- Utility?
- If you add up the utility over infinitely many rounds, then everyone gets infinity!
- Limit of average payoff:
- Discounted payoff:

Infinitely repeated games

- Utility?
- If you add up the utility over infinitely many rounds, then everyone gets infinity!
- Limit of average payoff:

$$
\lim _{n \rightarrow \infty} \sum_{1 \leq t \leq n} \frac{u(t)}{n}
$$

- Discounted payoff:

$$
\sum_{t} \delta^{t} u(t) \text { for some } \delta, 0<\delta<1
$$

Infinitely repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round
Trigger strategy:
- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Folk Theorem: Any utility vector can be realized in NE if and
only if it is feasible and enforceable.

Infinitely repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round
Trigger strategy:
- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Folk Theorem: Any utility vector can be realized in NE if and
only if it is feasible and enforceable.

Infinitely repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round
Trigger strategy:
- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Folk Theorem: Any utility vector can be realized in NE if and only if it is feasible and enforceable.

Infinitely repeated Prisoners' Dilemma

	C	D
C	2,2	0,3
D	3,0	1,1

Tit-for-tat strategy:

- Cooperate in first round
- In every later round do the same thing that the other player did in the previous round
Trigger strategy:
- Cooperate as long as everyone cooperates
- Once an agent defects, defect forever

Folk Theorem: Any utility vector can be realized in NE if and only if it is feasible and enforceable.

Fictitious Play

Early and simply learning rule

- Initialize beliefs about opponent's strategy
- Repeat
- Play a best-response to assessed strategy of opponent
- Observe opponent's actual play and update beliefs accordingly

Note that agent is oblivious to the other agent's utilities.

Properties of Fictitious Play

Definition

An action profile a is in steady state if whenever a is played in round t then it is played in round $t+1$.

Theorem

If a pure strategy profile is a strict NE of a stage game, then it is a steady state of fictitious play in the repeated game.

Theorem
If the empirical distribution of each agent's strategies converges in fictitious play then it converges to a Nash equilibrium.

Properties of Fictitious Play

Definition

An action profile a is in steady state if whenever a is played in round t then it is played in round $t+1$.

Theorem

If a pure strategy profile is a strict NE of a stage game, then it is a steady state of fictitious play in the repeated game.

Theorem

If the empirical distribution of each agent's strategies converges in fictitious play then it converges to a Nash equilibrium.

Regret-based Learning

Regret:

$$
R_{i}\left(a_{i}, t\right)=\frac{1}{t-1}\left[\sum_{1 \leq t^{\prime} \leq t-1} u_{i}\left(a_{i}, a_{-i, t^{\prime}}\right)-u_{i}\left(a_{i, t^{\prime}}, a_{-i, t^{\prime}}\right)\right]
$$

An algorithm has zero-regret if or each a_{i}, the regret for a_{i} becomes non-positive as t goes to infinity (almost surely) against any opponents

Regret-based Learning

Regret:

$$
R_{i}\left(a_{i}, t\right)=\frac{1}{t-1}\left[\sum_{1 \leq t^{\prime} \leq t-1} u_{i}\left(a_{i}, a_{-i, t^{\prime}}\right)-u_{i}\left(a_{i, t^{\prime}}, a_{-i, t^{\prime}}\right)\right]
$$

An algorithm has zero-regret if or each a_{i}, the regret for a_{i} becomes non-positive as t goes to infinity (almost surely) against any opponents

Regret-based Learning

- Regret matching:

$$
\sigma_{i}^{t+1}=\frac{R^{t}\left(a_{i}\right)}{\sum_{a^{\prime} \in A_{i}} R^{t}\left(a^{\prime}\right)}
$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of weak correlated equilibria
- Other types of regret-based learning have different properties

Regret-based Learning

- Regret matching:

$$
\sigma_{i}^{t+1}=\frac{R^{t}\left(a_{i}\right)}{\sum_{a^{\prime} \in A_{i}} R^{t}\left(a^{\prime}\right)}
$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of weak correlated equilibria
- Other types of regret-based learning have different properties

Regret-based Learning

- Regret matching:

$$
\sigma_{i}^{t+1}=\frac{R^{t}\left(a_{i}\right)}{\sum_{a^{\prime} \in A_{i}} R^{t}\left(a^{\prime}\right)}
$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of weak correlated equilibria
- Other types of regret-based learning have different properties

Regret-based Learning

- Regret matching:

$$
\sigma_{i}^{t+1}=\frac{R^{t}\left(a_{i}\right)}{\sum_{a^{\prime} \in A_{i}} R^{t}\left(a^{\prime}\right)}
$$

- Regret matching has zero regret.
- If all players use regret matching, then play converges to the set of weak correlated equilibria
- Other types of regret-based learning have different properties

Targeted Learning

- Assume that there is a limited set of possible opponents
- Try to do well against these

> Example: is there a learning algorithm that
> (1) Learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
> (2) Converges to a Nash equilibrium when playing against a copy of itself (self-play)?

Targeted Learning

- Assume that there is a limited set of possible opponents
- Try to do well against these

Example: is there a learning algorithm that
(1) Learns to best-respond against any stationary opponent (one that always plays the same mixed strategy), and
(2) Converges to a Nash equilibrium when playing against a copy of itself (self-play)?

Stochastic Games

- Multiple states $S=\left\{S_{1}, \ldots, S_{m}\right\}$
- Each state, S_{i} is a normal form game
- After a round, random transition to another state
- Transition probabilities depend on state and action taken
- Typically discount utilities over time

Note:

- 1-state stochastic game $=($ infinitely $)$ repeated game
- 1-agent stochastic game = Markov Decision Process (MDP)

Stochastic Games

- Multiple states $S=\left\{S_{1}, \ldots, S_{m}\right\}$
- Each state, S_{i} is a normal form game
- After a round, random transition to another state
- Transition probabilities depend on state and action taken
- Typically discount utilities over time

Note:

- 1-state stochastic game = (infinitely) repeated game
- 1-agent stochastic game = Markov Decision Process (MDP)

Stationary Strategies

- A stationary strategy specifies a mixed strategy for each state
- Strategy does not depend on history
- For example, in a repeated game, stationary strategy = always playing the same mixed strategy
- An equilibrium in stationary strategies always exists [Fink 64]
- For 2-player zero-sum stochastic games one can use Shapley's algorithm to solve (\sim Value Iteration)

Stationary Strategies

- A stationary strategy specifies a mixed strategy for each state
- Strategy does not depend on history
- For example, in a repeated game, stationary strategy = always playing the same mixed strategy
- An equilibrium in stationary strategies always exists [Fink 64]
- For 2-player zero-sum stochastic games one can use Shapley's algorithm to solve (\sim Value Iteration)

Stationary Strategies

- A stationary strategy specifies a mixed strategy for each state
- Strategy does not depend on history
- For example, in a repeated game, stationary strategy = always playing the same mixed strategy
- An equilibrium in stationary strategies always exists [Fink 64]
- For 2-player zero-sum stochastic games one can use Shapley's algorithm to solve (\sim Value Iteration)

