CS 886: Multiagent Systems Cooperative Game Theory

Kate Larson

Cheriton School of Computer Science University of Waterloo

October 29, 2008

Outline

Introduction

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3

Introduction

Today we discuss *cooperative game theory* (also known as *coalitional game theory*.

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory

イロト イポト イヨト イヨト

- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

Introduction

Today we discuss *cooperative game theory* (also known as *coalitional game theory*.

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory

ヘロト ヘ戸ト ヘヨト ヘヨト

- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

Introduction

Today we discuss *cooperative game theory* (also known as *coalitional game theory*.

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory

ヘロト 人間 ト ヘヨト ヘヨト

- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

Introduction

Today we discuss *cooperative game theory* (also known as *coalitional game theory*.

- Basic modelling unit is the group
 - Compared to the individual in non-cooperative game theory

ヘロト ヘ戸ト ヘヨト ヘヨト

- Agents are still self-interested.
- We model preferences of the agents, but not their individual actions
 - Instead we look at group capabilities

Coalitional Games with Transferable Utility

A coalitional game with transferable utility is a pair (N, v) where

- N is a (finite) set of agents
- $v : 2^N \to \mathbb{R}$ is the *characteristic function*.
 - For each $S \subseteq N$, v(S) is the value that the agents can share amongst themselves.
 - $v(\emptyset) = 0$

ヘロン 人間 とくほ とくほ とう

3

Questions studied by cooperative game theory

- Which coalitions will form?
- How should the coalitions divide its value among its members?

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Examples: Voting game

- 4 political parties *A*, *B*, *C*, and *D* which have 45, 25, 15, and 15 representatives respectively
- To pass a \$100 billion spending bill, at least 51 votes are needed
- If passed, then the parties get to decide how the money should be allocated. If not passed, then everyone gets 0.

Game

- $N = A \cup B \cup C \cup D$
- $v: 2^N \to \mathbb{R}$ where

$$v(S) = \begin{cases} \$100 \text{ Billion} & \text{if } |S| \ge 51 \\ 0 & \text{otherwise} \end{cases}$$

ヘロン 人間 とくほ とくほ とう

-

Examples: Voting game

- 4 political parties *A*, *B*, *C*, and *D* which have 45, 25, 15, and 15 representatives respectively
- To pass a \$100 billion spending bill, at least 51 votes are needed
- If passed, then the parties get to decide how the money should be allocated. If not passed, then everyone gets 0.

Game

- $N = A \cup B \cup C \cup D$
- $v: 2^N \to \mathbb{R}$ where

ヘロト 人間 ト ヘヨト ヘヨト

Examples: Treasure Game

- N gold prospectors and more than 2|N| gold pieces
- Two prospectors are required to carry a gold piece

Game

- N agents
- $v(S) = \lfloor \frac{|S|}{2} \rfloor$

・ロト ・ 理 ト ・ ヨ ト ・

3

Examples: Treasure Game

- N gold prospectors and more than 2|N| gold pieces
- Two prospectors are required to carry a gold piece

Game

N agents

•
$$v(S) = \lfloor \frac{|S|}{2} \rfloor$$

ヘロト 人間 ト ヘヨト ヘヨト

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T \emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the *grand coalition* has the highest value among all coalitions.

ヘロト ヘ戸ト ヘヨト ヘヨト

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T\emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the *grand coalition* has the highest value among all coalitions.

ヘロト ヘアト ヘビト ヘビト

Types of Games: Superadditive

Definition

A game G = (N, v) is superadditive if for all $S, T \subset N$, if $S \cap T\emptyset$ then $v(S \cup T) \ge v(S) + v(T)$.

- Superadditivity makes sense if coalitions can always work without interfering with one another.
- Superadditive implies that the *grand coalition* has the highest value among all coalitions.

ヘロン 人間 とくほ とくほ とう

Types of Games: Convex Games

Definition

A game G = (N, v) is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

ヘロト 人間 ト ヘヨト ヘヨト

Types of Games: Convex Games

Definition

A game G = (N, v) is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

ヘロン 人間 とくほ とくほ とう

-

Types of Games: Convex Games

Definition

A game G = (N, v) is convex if for all $S, T \subset N$, $v(S \cup T) \ge v(S) + v(T) - v(S \cap T)$.

- Convex games are a special class of superadditive games.
- Quite common in practice.

ヘロト ヘアト ヘビト ヘビト

-

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that S ⊂ T, v(T) = 1

ヘロト ヘアト ヘビト ヘビト

• Note that this does not imply superadditivity.

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that S ⊂ T, v(T) = 1

イロト イポト イヨト イヨト 一日

• Note that this does not imply superadditivity.

Type of Games: Simple games

Definition

A game G = (N, v) is a simple game if for all $S \subset N$, $v(S) \in \{0, 1\}$.

- Simple games are useful for modelling voting situations.
- Often place additional requirement that if v(S) = 1 then for all T such that S ⊂ T, v(T) = 1

イロト イポト イヨト イヨト

• Note that this does not imply superadditivity.

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

• Payoff vector
$$x = (x_1, ..., x_n)$$
 where $n = |N|$.

Desire

- Feasibility: $\sum_{i \in N} x_i \leq v(N)$
- Efficiency: $\sum_{i \in N} x_i = v(N)$
- Individual Rationality: $x_i \ge v(\{i\})$

くロト (過) (目) (日)

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

• Payoff vector
$$x = (x_1, \ldots, x_n)$$
 where $n = |N|$.

Desire

- Feasibility: $\sum_{i \in N} x_i \leq v(N)$
- Efficiency: $\sum_{i \in N} x_i = v(N)$
- Individual Rationality: $x_i \ge v(\{i\})$

くロト (過) (目) (日)

Analyzing TU Games

The central question when analysing TU games is how to divide the value of the coalition among the members. We focus on the grand coalition.

- Payoff vector $x = (x_1, \ldots, x_n)$ where n = |N|.
- Desire
 - Feasibility: $\sum_{i \in N} x_i \leq v(N)$
 - Efficiency: $\sum_{i \in N} x_i = v(N)$
 - Individual Rationality: $x_i \ge v(\{i\})$

ヘロト ヘアト ヘビト ヘビト

-

Solution Concepts

Given a payoff vector, *x*, we are interested in understanding whether it is a *good* payoff vector.

- Stable: Would agents want to leave and form other coalitions? (Core)
- Fair: Does the payoff vector represent what each agent brings to the coalition? (Shapley value)

ヘロト ヘ戸ト ヘヨト ヘヨト

Solution Concepts

Given a payoff vector, *x*, we are interested in understanding whether it is a *good* payoff vector.

- Stable: Would agents want to leave and form other coalitions? (Core)
- Fair: Does the payoff vector represent what each agent brings to the coalition? (Shapley value)

ヘロト 人間 ト ヘヨト ヘヨト

The Core

Definition

A payoff vector is in the core of game (N, v) if and only if

$$orall oldsymbol{S} \subseteq oldsymbol{N}, \sum_{i \in oldsymbol{S}} x_i \geq oldsymbol{v}(oldsymbol{S})$$

2

イロト 不得 とくほと くほとう

Examples: Treasure Game

イロン 不同 とくほう イヨン

Examples: Voting Game

イロン 不同 とくほう イヨン

Existence of the Core: General characterization

Definition

A set of non-negative weights, λ , is balanced if

$$\forall i \in N, \sum_{S|i \in S} \lambda(S) = 1.$$

Theorem

A game (N, v) has a non-empty core if and only if for all balanced sets of weights, λ

$$v(N) \geq \sum_{S \subseteq N} \lambda(S) v(S).$$

ヘロト ヘアト ヘビト ヘビト

Existence of the Core: General characterization

Definition

A set of non-negative weights, λ , is balanced if

$$\forall i \in N, \sum_{S \mid i \in S} \lambda(S) = 1.$$

Theorem

A game (N, v) has a non-empty core if and only if for all balanced sets of weights, λ

$$v(N) \geq \sum_{S \subseteq N} \lambda(S) v(S).$$

ヘロト 人間 ト ヘヨト ヘヨト

3

Existence of the Core: Specific Results

• Convex games have a non-empty core.

- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that x_i = 0 if j is not a veto-agent.

イロト イポト イヨト イヨト

Existence of the Core: Specific Results

- Convex games have a non-empty core.
- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that x_i = 0 if j is not a veto-agent.

ヘロト 人間 ト ヘヨト ヘヨト

Existence of the Core: Specific Results

- Convex games have a non-empty core.
- In simple games the core is empty if and only if there are no veto agents.
 - An agent *i* is a veto agent if $v(N \setminus \{i\}) = 0$.
- If there are veto agents then the core consists of all x such that x_j = 0 if j is not a veto-agent.

イロン イボン イヨン イヨン

Fairness

- Interchangeable agents: *i* and *j* are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all *S* such that $i, j \notin S$
 - **Symmetry:** Interchangeable agents should receive the same payments, *x_i* = *x_j*
- Dummy agent: *i* is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: ∀S, *i* ∉ S, v(S ∪ {*i*}) − v(S) = v({*i*})

• Dummy agents: $x_i = v(\{i\})$

• Additivity:

・ロト ・ 理 ト ・ ヨ ト ・

Fairness

- Interchangeable agents: *i* and *j* are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all *S* such that $i, j \notin S$
 - Symmetry: Interchangeable agents should receive the same payments, $x_i = x_j$
- Dummy agent: *i* is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: ∀S, *i* ∉ S, v(S ∪ {*i*}) − v(S) = v({*i*})

• Dummy agents: $x_i = v(\{i\})$

• Additivity:

イロト 不得 とくほ とくほ とうほ

Fairness

- Interchangeable agents: *i* and *j* are interchangeable if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all *S* such that $i, j \notin S$
 - Symmetry: Interchangeable agents should receive the same payments, $x_i = x_j$
- Dummy agent: *i* is a dummy agent if the amount it contributes to a coalition is exactly the amount that it could have achieved alone: ∀S, *i* ∉ S, v(S ∪ {*i*}) − v(S) = v({*i*})

• Dummy agents: $x_i = v(\{i\})$

• Additivity:

イロト 不得 とくほ とくほう 二日

Shapley Value

There is a unique payoff vector that satisfies our fairness properties.

Definition

Given a game (N, v) the Shapley value of player i is

$$\phi(i) = rac{1}{N!} \sum_{\mathcal{S} \subseteq \mathcal{N} \setminus \{i\}} |\mathcal{S}|! (|\mathcal{N}| - |\mathcal{S}| - 1)! [v(\mathcal{S} \cup \{i\}) - v(\mathcal{S})].$$

イロト イポト イヨト イヨト

3

Example: Treasure Game

イロン 不同 とくほ とくほ とう

Example: Voting Game

イロト 不得 とくほ とくほ とう

Relation Between the Core and Shapley Value

- In general, there is none.
- For convex games, the Shapley value is in the core.

ヘロト ヘ戸ト ヘヨト ヘヨト

Relation Between the Core and Shapley Value

- In general, there is none.
- For convex games, the Shapley value is in the core.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Alternative Solution Concepts

- ϵ -core, least core
- Nucleolous
- Kernel

Compact Representations

イロト イポト イヨト イヨト

Alternative Solution Concepts

- ϵ -core, least core
- Nucleolous
- Kernel

Compact Representations

(신문) (문)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Extensions

Power in Weighted Voting Games

Shapley-Shubik Index : Let π be a permutation of the agents, and let S_π(i) denote all agents j such that π(j) < π(i)

$$\phi(i) = \frac{1}{N!} \sum_{\pi} [v(S\pi(i) \cup \{i\}) - v(S\pi(i))]$$

• Banzhaf Index

$$\beta(i) = \frac{1}{2^{|N|-1}} \sum_{S} [v(S \cup \{i\} - v(S))]$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Extensions

Power in Weighted Voting Games

Shapley-Shubik Index : Let π be a permutation of the agents, and let S_π(i) denote all agents j such that π(j) < π(i)

$$\phi(i) = \frac{1}{N!} \sum_{\pi} [v(S\pi(i) \cup \{i\}) - v(S\pi(i))]$$

Banzhaf Index

$$\beta(i) = \frac{1}{2^{|N|-1}} \sum_{S} [v(S \cup \{i\} - v(S))]$$

・ロト ・ 理 ト ・ ヨ ト ・

3