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Introduction

Today we discuss cooperative game theory (also known as
coalitional game theory.

Basic modelling unit is the group
Compared to the individual in non-cooperative game theory

Agents are still self-interested.
We model preferences of the agents, but not their
individual actions

Instead we look at group capabilities
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Coalitional Games with Transferable Utility

A coalitional game with transferable utility is a pair (N, v) where
N is a (finite) set of agents
v : 2N → R is the characteristic function.

For each S ⊆ N, v(S) is the value that the agents can
share amongst themselves.
v(∅) = 0
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Questions studied by cooperative game theory

Which coalitions will form?
How should the coalitions divide its value among its
members?
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Examples: Voting game

4 political parties A, B, C, and D which have 45, 25, 15,
and 15 representatives respectively
To pass a $100 billion spending bill, at least 51 votes are
needed
If passed, then the parties get to decide how the money
should be allocated. If not passed, then everyone gets 0.

Game
N = A ∪ B ∪ C ∪ D
v : 2N → R where

v(S) =

{
$100 Billion if |S| ≥ 51
0 otherwise
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Examples: Treasure Game

N gold prospectors and more than 2|N| gold pieces
Two prospectors are required to carry a gold piece

Game
N agents

v(S) = b |S|2 c
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Types of Games: Superadditive

Definition
A game G = (N, v) is superadditive if for all S, T ⊂ N, if S ∩ T∅
then v(S ∪ T ) ≥ v(S) + v(T ).

Superadditivity makes sense if coalitions can always work
without interfering with one another.
Superadditive implies that the grand coalition has the
highest value among all coalitions.
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Types of Games: Convex Games

Definition
A game G = (N, v) is convex if for all S, T ⊂ N,
v(S ∪ T ) ≥ v(S) + v(T )− v(S ∩ T ).

Convex games are a special class of superadditive games.
Quite common in practice.
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Type of Games: Simple games

Definition
A game G = (N, v) is a simple game if for all S ⊂ N,
v(S) ∈ {0, 1}.

Simple games are useful for modelling voting situations.
Often place additional requirement that if v(S) = 1 then for
all T such that S ⊂ T , v(T ) = 1

Note that this does not imply superadditivity.
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Analyzing TU Games

The central question when analysing TU games is how to
divide the value of the coalition among the members. We focus
on the grand coalition.

Payoff vector x = (x1, . . . , xn) where n = |N|.
Desire

Feasibility:
∑

i∈N xi ≤ v(N)
Efficiency:

∑
i∈N xi = v(N)

Individual Rationality: xi ≥ v({i})
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Solution Concepts

Given a payoff vector, x , we are interested in understanding
whether it is a good payoff vector.

Stable: Would agents want to leave and form other
coalitions? (Core)
Fair: Does the payoff vector represent what each agent
brings to the coalition? (Shapley value)
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The Core

Definition
A payoff vector is in the core of game (N, v) if and only if

∀S ⊆ N,
∑
i∈S

xi ≥ v(S)
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Examples: Treasure Game
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Examples: Voting Game
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Existence of the Core: General characterization

Definition
A set of non-negative weights, λ, is balanced if

∀i ∈ N,
∑

S|i∈S

λ(S) = 1.

Theorem
A game (N, v) has a non-empty core if and only if for all
balanced sets of weights, λ

v(N) ≥
∑
S⊆N

λ(S)v(S).
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Existence of the Core: Specific Results

Convex games have a non-empty core.
In simple games the core is empty if and only if there are
no veto agents.

An agent i is a veto agent if v(N \ {i}) = 0.

If there are veto agents then the core consists of all x such
that xj = 0 if j is not a veto-agent.
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Fairness

Interchangeable agents: i and j are interchangeable if
v(S ∪ {i}) = v(S ∪ {j}) for all S such that i , j 6∈ S

Symmetry: Interchangeable agents should receive the
same payments, xi = xj

Dummy agent: i is a dummy agent if the amount it
contributes to a coalition is exactly the amount that it could
have achieved alone: ∀S, i 6∈ S, v(S ∪ {i})− v(S) = v({i})

Dummy agents: xi = v({i})

Additivity:
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Shapley Value

There is a unique payoff vector that satisfies our fairness
properties.

Definition
Given a game (N, v) the Shapley value of player i is

φ(i) =
1

N!

∑
S⊆N\{i}

|S|!(|N| − |S| − 1)![v(S ∪ {i})− v(S)].
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Relation Between the Core and Shapley Value

In general, there is none.
For convex games, the Shapley value is in the core.
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Extensions

Alternative Solution Concepts
ε-core, least core
Nucleolous
Kernel

Compact Representations
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Extensions

Power in Weighted Voting Games
Shapley-Shubik Index : Let π be a permutation of the
agents, and let Sπ(i) denote all agents j such that
π(j) < π(i)

φ(i) =
1

N!

∑
π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]

Banzhaf Index

β(i) =
1

2|N|−1

∑
S

[v(S ∪ {i} − v(S)]
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