
CS 886: Multiagent Sysytems

Assignment 2

November 13, 2008

Due Monday, November 10 in class. In this assignment you are expected to
work individually. You may use any sources that you want, but you must cite
them. You can email me or drop by my office if you have questions.

1. (30 points) (Thanks to K Leyton-Brown) Suppose you have some object
that each of n agents desires, but which you do not value. Assume that
each agent i values it at vi with vi’s drawn independently and uniformly
from some real line positive interval, say (0,10100]. Although you do not
desire the object and do not care about the actual values of the vi’s, you
need to compute

√
vi for each i.

Unfortunately, you face two problems. First, agents are not inclined to
just reveal to you anything about their vi’s. Second, your computer is
costly to operate. It costs you 1 unit to determine the greater of two
values, 2 units to perform any basic arithmetic operation (+,−,×,), and
anything more complicated (say

√
x) costs 20. The (accurate) current

time of day can be observed without cost.

(a) How much does it cost to compute
√

vi for each i using a straightfor-
ward VCG mechanism? When computing cost, ignore the revenue
that the auction will generate.
There are a couple of ways to do this, but the cheapest is to make
the observation that we can run a Vickrey auction, which means that
all non-winning agents pay zero. This means that we do not need to
compute payments for the n− 1 lowest bidders.
To run the mechanism we need to find the highest and second highest
bids. To do this in a naive way we need to do n− 1 comparisons to
find the highest bid. Once we have the higest bid, we need to do
n − 2 comparisons to find the second highest bid. (There are more
efficient ways to doing this). We also need to compute the square
root of each valuation, which costs us 20n. Therefore, the total cost
is

20n + (n− 1) + (n− 2) = 22n− 3.

1

(b) Your answer above gives an upper bound on the cost of computing
the square roots of the valuations. Design an incentive-compatible,
dominant strategy (“strategy-proof”) direct mechanism that will al-
low you to compute all

√
vi at minimal cost. Assume that the agents

can do computations for free. Make sure that you specify all the
components of the mechanism: players, actions, outcomes, mappings
from actions to outcomes. Explain why your mechanism is strategy-
proof. Specify the algorithms that you will use to implement those
mappings. Give your mechanism’s total computation cost (or an up-
per bound on it). You do not need to prove that your mechanism
has minimal cost. (Hint: Think about the revelation principle.)
There are different ways to solve this problem, but one way is to note
that the main cost is the square-root calculations. If you could make
the agents report the square-root of their true valuations, then you
would save 20n.
One approach is to run an auction where the winner is the agent with
the highest bid, but it must pay an amount equal to the square of
the second highest bid. The players, actions, and outcomes would be
the same as for the standard Vickrey auction except for this small
change in the payment function. The proof that agents will reveal
the true square root of their valuation is also similar to the proof of
the strategy-proofness of the Vickrey auction.
If an agent i had not won the auction by revealing

√
vi, then it still

would have lost by announcing bi <
√

vi. If it had announced bi >√
vi and won, then it would have paid b2 where bi > b >

√
vi. Thus,

agent i would have had negative utility from bidding bi. Similarly, if
the agent would have won by announcing

√
vi then it can not improve

its utility by bidding higher since this would not change the price that
it paid. By bidding lower, it can also not change the price it pays,
unless it bids below the second highest bid, at which point it loses
the auction.
The total cost of running this auction is the search costs of finding
the highest and second highest bids (n − 1 and n − 2) plus the cost
of squaring the second highest bid (2). Therefore, the total cost is

n− 1 + n− 2 + 2 = 2n− 1.

(c) In the previous part you were restricted to direct mechanisms. Show
that an indirect (multistage) mechanism can achieve even lower cost.
You can use the clock to run an ascending auction. Initialise the
clock to zero. Tell all agents that they are assumed to be active
bidders in the auction (that is, willing to pay the current price which
is the current time on the clock) until they explicitly indicate that
they withdraw from the auction. The winner is the last agent left in
the auction, and will pay the square of the price (time) at which the

2

second last bidder left. Then start the clock and wait. If agents are
allowed to see each other exit then you may not get the value of the
square root of the highest bidder. However, if you do not allow the
agents to observe when others leave the auction you can just keep on
running the clock until the last bidder exits (and still have them pay
the price at which the second highest bidder left). Each agent is best
off by staying in the auction until the clock goes past the square root
of their valuation. The only cost that the auctioneer experiences is
when it computes the square of the second highest price. That is,
the cost is 2.

2. (30 points) Recall that the OR* bidding language adds dummy goods to
bids in a combinatorial auction in order to express complex bidding lan-
guages within the OR language. Consider a combinatorial auction with n
items. For each valuation function below, explain how to encode it in the
OR* language using as few bids as possible. Explain how many dummy
items your encoding requires.

(a) v(S) = k|S| for some constant k

Bid = ({x1}, k)OR({x2}, k)OR . . . OR({xn}, k)

No dummy items are required, and there are n atomic bids.

(b) v(S) = k|S| if |S| ≤ j for some j, otherwise v(S) = 0
For each item xi, create bids ({xi, dl}, k) where 1 ≤ l ≤ j. Then the
bid to express the valuation is

ORn
i=1ORj

l=1({xi, dl}, k)

There are j dummy items and n · j atomic bids.

(c) v(S) = 1 is |S| ≥ n/2 and v(S) = 0 otherwise
We can look at the different cases in order to determine the atomic
bids and when dummy items are required.
If |S| = n

2 , then the atomic bid has the form (S ∪ {d}, 1) where d is
the only dummy item used. In addition to these bids, you also add
in atomic bids ({xi}, 0) to allow for the formation of sets which are
larger than n

2 . That is, you use 1 dummy and
(

n
n
2

)
+ n atomic bids.

You could also do it as follows (not as compact, but I also accepted
it for fully marks)

|S| < n
2 : You would not place any atomic bids of this size.

|S| > n
2 : All S such that |S| > n

2 must have overlaping bids and so
are mutually exclusive. Therefore, each atomic bid would take
the form (S, 1), and these would be ORed together.

3

|S| = n
2 : Here you must add a single common dummy bid to all S

such that |S| = n
2 since otherwise it is possible that two of these

atomic bids are accepted when you really want to accept a single
one.

That is, the bid looks like

(S1, 1)OR . . . , OR(Sm, 1)OR(T1 ∪ {d}, 1)OR . . . OR(Tk ∪ {d}, 1)

where |Si| ≥ n
2 and |Tj | = n

2 , and d is the dummy item. Therefore,
you would use a single dummy item, and submit

n∑
i= n

2

(
n

i

)

atomic bids.

(d) Goods come in three colours, red, blue and green; there are n/3
goods of each colour. v(S) = kR|S| if it contains only red items,
v(S) = kG|S| if it has only green items, and v(S) = kB |S| if it has
only blue items (for some constants kR, kG, kB). v(S) = 0 otherwise.
Let ri, bi, and gi denote the ith red, blue and green item respectively.
All red atomic bids take the form

({ri, dri,b1 , dri,b2 , . . . , dri,bn/3 , dri,g1 , . . . , dri,gn/3}, kR)

All blue atomic bids take the form

({bi, dbi,r1 , dbi,r2 , . . . , dbi,rn/3 , dbi,g1 , . . . , dbi,gn/3}, kB)

All green atomic bids take the form

({gi, dgi,r1 , dgi,r2 , . . . , dgi,rn/3 , dgi,b1 , . . . , dgi,bn/3}, kG)

The number of unique dummy items is

(
2n

3
)
n

3
+ (

n

3
)
n

3
=

n2

3
.

The number of atomic bids is n.

(e) Goods come in pairs. v(S) = |S| if it contains at most one item from
every pair, and v(S) = 0 otherwise.
Let xi, x

′
i denote the ith pair of items. Let di denote the dummy

item associated with pair i. The valuation is represented as

({x1, d1}, 1)OR({x′
1, d1}, 1)OR . . . OR({xn/2, dn/2}, 1)OR({x′

n/2, dn/2})

A total of n
2 dummy items are used, and n atomic bids.

4

