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Outline
• What is reinforcement learning
• Quick MDP review
• Passive learning

–Temporal-Difference learning

• Active learning
–Q-learning

• Readings: R&N Ch 21.1-21.4
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What is RL?
• Reinforcement learning is learning what to 

do so as to maximize a numerical reward 
signal

• Learner is not told what actions to take

• Learner discovers value of actions by;
– Trying actions out
– Seeing what the reward is
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What is RL
• Reinforcement learning differs from 

supervised learning

Don’t  
touch. You 

will get 
burnt

Supervised learning
Reinforcement learning

Ouch!
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Reinforcement Learning 
Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2
…

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0≤ γ <1
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Example 1: Slot Machine

• State: Configuration of 
slots

• Action: Stopping time
• Reward: $$$

• Problem: Find π:S→A 
that maximizes R
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Example 2: Tic Tac Toe

• State: board
• Action: next move
• Reward: 1 for win, -1 

for loss, 0 for draw

• Problem: Find π:S→A 
that maximizes R
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Example 3: Inverted Pendulum

• State: x(t),x’(t), θ(t), θ’(t)
• Action: Force F 
• Reward: 1 for any step 

where pole balanced

• Problem: Find π:S→A that
maximizes R
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Example 4: Mobile Robot
• State: location of 

robot, people
• Action: motion
• Reward: number of 

happy faces

• Problem: Find π:S→A 
that maximizes R
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RL Characteristics
• Delayed reward

–Credit assignment problem

• Exploration and exploitation

• Possibility that a state is only 
partially observable

• Life-long learning
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Reinforcement learning model

• Set of states S

• Set of actions A
–Actions may be non-deterministic

• Set of reinforcement signals 
(rewards)
–Rewards may be delayed
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A Markov Decision Process
1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½ ½½

½

½

½

½

½
½

½
γ = 0.9

You own a 
company

In every state 
you must 
choose between 
Saving money or 
Advertising



CS 486/686 - K Larson - F2007 13

Markov Decision Processes (MDPs)
• Has a set of states {s1, s2,…sn}
• Has a set of actions {a1,…,am}
• Each state has a reward {r1, r2,…rn}
• Has a transition probability function

• ON EACH STEP…
0. Assume your state is si
1. You get given reward ri
2. Choose action ak
3. You will move to state sj with probability Pij

k

4. All future rewards are discounted by γ
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MDPs and RL

• With an MDP our goal was to find the 
optimal policy given the model
– Given rewards and transition probabilities

• In RL our goal is to find the optimal policy
but we start without knowing the 
model
– Not given rewards and transition probabilities
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Agent’s learning task
• Execute actions in the environment
• Observe the results
• Learn policy π:Sa A that maximizes

E[rt+γ rt+1+γ2 rt+2+…]
From any starting state in S

• Note:
– Target function is π
– We have no training examples of the form 

<s,a>
– Our training examples are of the form 

<<s,a>,r>
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Types of RL
• Model based vs Model free

– Model based: Learn the model and use it to 
determine optimal policy

– Model free: Derive optimal policy without 
learning the model

• Passive vs Active learning
– Passive learning: Agent observes world and 

tries to determine the value of being in 
different states

– Active learning: Agent watches and takes 
actions 
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Passive learning

• An agent has a policy π

• Executes a set of trials using π
– Starts in s0, has a series of state transitions 

until it reaches a terminal state 

• Tries to determine the expected utility of 
being in each state 
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Passive learning

lllu

-1uu

+1rrr

1

2

3

1 2 3 4

γ = 1

ri = -0.04 for non-terminal states

We do not know the 
transition probabilities

(1,1)→ (1,2)→ (1,3)→ (1,2)→ (1,3)→ (2,3)→ (3,3)→ (4,3)+1
(1,1)→ (1,2)→ (1,3)→ (2,3)→(3,3)→ (3,2)→(3,3)→(4,3)+1
(1,1)→(2,1)→(3,1)→(3,2)→(4,2)-1

What is the value, V*(s) of being in state s?
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Direct utility estimation
• Direct utility estimation is a form of 

supervised learning
– Input: state
– Output: reward to go

• Ignores an important piece of information
– Utility values obey Bellman equations

• Misses opportunities for learning
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Adaptive dynamic programming (ADP)

• Recall Bellman equations
– Vπ(si)=ri(si)+γΣj Pij

π(si)Vπ(sj)
– Connection between states can speed up 

learning
• Do not need to consider any situation where the 

above constraint is violated

• Adaptive dynamic programming (ADP) 
– Learns transition probabilities, rewards from 

observations 
– Updates values of states



CS 486/686 - K Larson - F2007 21

ADP Example

lllu

-1uu

+1rrr

1

2

3

1 2 3 4
(1,1)→ (1,2)→ (1,3) → (1,2)→ (1,3) → (2,3)→ (3,3)→ (4,3)+1
(1,1)→ (1,2)→ (1,3) → (2,3)→(3,3)→ (3,2)→(3,3)→(4,3)+1
(1,1)→(2,1)→(3,1)→(3,2)→(4,2)-1

ri = -0.04 for non-terminal states

γ = 1

P(1,3)(2,3)
r=2/3

P(1,3)(1,2)
r=1/3 Use this information in the Bellman equation
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(Passive) TD 
• Temporal difference

– Model free

• Key idea
– Use observed transitions to adjust values of 

observed states so that they satisfy Bellman 
equations

• At each time step
– Observe s, a, s’, r
– Update Vπ after each move
– Vπ(s)→ Vπ(s)+α (r(s)+γ Vπ(s’)-Vπ(s))
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TD(0)

• Thm: If α is appropriately decreased with 
number of times a state is visited, then Vπ(s) 
converges to correct value

• α must satisfy
– ∑n α(n) → ∞
– ∑nα2(n) < ∞  

• α(n)=1/n satisfies conditions

Learning rate Temporal difference
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Algorithm TD(λ)
(not in Russell & Norvig book)

Idea: update from the whole training sequence, not 
just on state transition.

Special cases:
λ=1: basically ADP (but use learning rate instead of explicit counts)

λ=0: TD

Intermediate choice of λ (between 0 and 1) is best 
Empirically, λ=0.7 works well
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Active Learning

• We are really interested in finding a 
good policy π

• Transition and reward model known
–V*(s)=maxa [r(s)+γ ∑s’P(s’|s,a)V*(s’)]

• Transition and reward model 
unknown:
– Improve policy as agent executes policy
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Q-Learning
• Key idea: Learn a function Q:S×A→ℜ

– Value of state action pair
– Policy π (s)=argmaxa Q(s,a) is optimal policy
– V*(s)=maxa Q(s,a)

• Bellman’s equation:
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Q-learning
• For each state s and action a initialize 

Q(s,a) 
– 0 or random

• Observe current state
• Loop

– Select action a and execute it
– Receive immediate award r
– Observe new state s’
– Update Q(a,s)

• Q(s,a)=Q(s,a)+α(r+γ maxa’Q(s’,a’)-Q(s,a))
– s=s’
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Q-learning example

R 73 100

66 81

R81.5 100

66 81

r=0 for non-terminal states
γ=0.9
α = 0.5
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Q-learning
• For each state s and action a initialize 

Q(s,a) 
– 0 or random

• Observe current state
• Loop

– Select action a and execute it
– Receive immediate award r
– Observe new state s’
– Update Q(a,s)

• Q(s,a)=Q(s,a)+α(r+γ maxa’Q(s’,a’)-Q(s,a))
– s=s’
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Exploration vs Exploitation
• If an agent always chooses the action with 

the highest value then it is exploiting
– The learned model is not the real model
– Leads to suboptimal results

• By taking random actions (pure exploration) 
an agent may learn the model
– But what is the use of learning the correct model 

if you never use it?

• Need a balance between exploitation and 
exploration



CS 486/686 - K Larson - F2007 31

Common exploration methods
1. In value iteration in an ADP agent:

Optimistic estimate of utility J+(i)

2. Choose best action w.p. p and a random action otherwise.

3. Boltzmann exploration
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Fixed parameterOptimistic estimate of best reward
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Exploration and Q-learning
Q-learning converges to optimal Q-

values if

1. 1. Every state is visited infinitely often 
(due to exploration)

2. 2. The action selection becomes greedy 
as time approaches infinity

3. 3. The learning rate α is decreased fast 
enough but not too fast
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A Triumph for Reinforcement 
Learning: TD-Gammon

• Backgammon player with a neural network 
representation of the value function:

• Performs TD(λ) changing it’s policy as it 
goes towards the currently predicted 
optimal one. 
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Summary

• Active vs Passive learning
• Model based vs Model free
• ADP
• TD
• Q-learning
• Exploration vs exploitation tradeoff
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