
Reinforcement Learning

CS 486/686
Introduction to AI

University of Waterloo

CS 486/686 - K Larson - F2007 2

Outline
• What is reinforcement learning
• Quick MDP review
• Passive learning

–Temporal-Difference learning

• Active learning
–Q-learning

• Readings: R&N Ch 21.1-21.4

CS 486/686 - K Larson - F2007 3

What is RL?
• Reinforcement learning is learning what to

do so as to maximize a numerical reward
signal

• Learner is not told what actions to take

• Learner discovers value of actions by;
– Trying actions out
– Seeing what the reward is

CS 486/686 - K Larson - F2007 4

What is RL
• Reinforcement learning differs from

supervised learning

Don’t
touch. You

will get
burnt

Supervised learning
Reinforcement learning

Ouch!

CS 486/686 - K Larson - F2007 5

Reinforcement Learning
Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2
…

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0≤ γ <1

CS 486/686 - K Larson - F2007 6

Example 1: Slot Machine

• State: Configuration of
slots

• Action: Stopping time
• Reward: $$$

• Problem: Find π:S→A
that maximizes R

CS 486/686 - K Larson - F2007 7

Example 2: Tic Tac Toe

• State: board
• Action: next move
• Reward: 1 for win, -1

for loss, 0 for draw

• Problem: Find π:S→A
that maximizes R

CS 486/686 - K Larson - F2007 8

Example 3: Inverted Pendulum

• State: x(t),x’(t), θ(t), θ’(t)
• Action: Force F
• Reward: 1 for any step

where pole balanced

• Problem: Find π:S→A that
maximizes R

CS 486/686 - K Larson - F2007 9

Example 4: Mobile Robot
• State: location of

robot, people
• Action: motion
• Reward: number of

happy faces

• Problem: Find π:S→A
that maximizes R

CS 486/686 - K Larson - F2007 10

RL Characteristics
• Delayed reward

–Credit assignment problem

• Exploration and exploitation

• Possibility that a state is only
partially observable

• Life-long learning

CS 486/686 - K Larson - F2007 11

Reinforcement learning model

• Set of states S

• Set of actions A
–Actions may be non-deterministic

• Set of reinforcement signals
(rewards)
–Rewards may be delayed

CS 486/686 - K Larson - F2007 12

A Markov Decision Process
1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½ ½½

½

½

½

½

½
½

½
γ = 0.9

You own a
company

In every state
you must
choose between
Saving money or
Advertising

CS 486/686 - K Larson - F2007 13

Markov Decision Processes (MDPs)
• Has a set of states {s1, s2,…sn}
• Has a set of actions {a1,…,am}
• Each state has a reward {r1, r2,…rn}
• Has a transition probability function

• ON EACH STEP…
0. Assume your state is si
1. You get given reward ri
2. Choose action ak
3. You will move to state sj with probability Pij

k

4. All future rewards are discounted by γ

CS 486/686 - K Larson - F2007 14

MDPs and RL

• With an MDP our goal was to find the
optimal policy given the model
– Given rewards and transition probabilities

• In RL our goal is to find the optimal policy
but we start without knowing the
model
– Not given rewards and transition probabilities

CS 486/686 - K Larson - F2007 15

Agent’s learning task
• Execute actions in the environment
• Observe the results
• Learn policy π:Sa A that maximizes

E[rt+γ rt+1+γ2 rt+2+…]
From any starting state in S

• Note:
– Target function is π
– We have no training examples of the form

<s,a>
– Our training examples are of the form

<<s,a>,r>

CS 486/686 - K Larson - F2007 16

Types of RL
• Model based vs Model free

– Model based: Learn the model and use it to
determine optimal policy

– Model free: Derive optimal policy without
learning the model

• Passive vs Active learning
– Passive learning: Agent observes world and

tries to determine the value of being in
different states

– Active learning: Agent watches and takes
actions

CS 486/686 - K Larson - F2007 17

Passive learning

• An agent has a policy π

• Executes a set of trials using π
– Starts in s0, has a series of state transitions

until it reaches a terminal state

• Tries to determine the expected utility of
being in each state

CS 486/686 - K Larson - F2007 18

Passive learning

lllu

-1uu

+1rrr

1

2

3

1 2 3 4

γ = 1

ri = -0.04 for non-terminal states

We do not know the
transition probabilities

(1,1)→ (1,2)→ (1,3)→ (1,2)→ (1,3)→ (2,3)→ (3,3)→ (4,3)+1
(1,1)→ (1,2)→ (1,3)→ (2,3)→(3,3)→ (3,2)→(3,3)→(4,3)+1
(1,1)→(2,1)→(3,1)→(3,2)→(4,2)-1

What is the value, V*(s) of being in state s?

CS 486/686 - K Larson - F2007 19

Direct utility estimation
• Direct utility estimation is a form of

supervised learning
– Input: state
– Output: reward to go

• Ignores an important piece of information
– Utility values obey Bellman equations

• Misses opportunities for learning

CS 486/686 - K Larson - F2007 20

Adaptive dynamic programming (ADP)

• Recall Bellman equations
– Vπ(si)=ri(si)+γΣj Pij

π(si)Vπ(sj)
– Connection between states can speed up

learning
• Do not need to consider any situation where the

above constraint is violated

• Adaptive dynamic programming (ADP)
– Learns transition probabilities, rewards from

observations
– Updates values of states

CS 486/686 - K Larson - F2007 21

ADP Example

lllu

-1uu

+1rrr

1

2

3

1 2 3 4
(1,1)→ (1,2)→ (1,3) → (1,2)→ (1,3) → (2,3)→ (3,3)→ (4,3)+1
(1,1)→ (1,2)→ (1,3) → (2,3)→(3,3)→ (3,2)→(3,3)→(4,3)+1
(1,1)→(2,1)→(3,1)→(3,2)→(4,2)-1

ri = -0.04 for non-terminal states

γ = 1

P(1,3)(2,3)
r=2/3

P(1,3)(1,2)
r=1/3 Use this information in the Bellman equation

CS 486/686 - K Larson - F2007 22

(Passive) TD
• Temporal difference

– Model free

• Key idea
– Use observed transitions to adjust values of

observed states so that they satisfy Bellman
equations

• At each time step
– Observe s, a, s’, r
– Update Vπ after each move
– Vπ(s)→ Vπ(s)+α (r(s)+γ Vπ(s’)-Vπ(s))

CS 486/686 - K Larson - F2007 23

TD(0)

• Thm: If α is appropriately decreased with
number of times a state is visited, then Vπ(s)
converges to correct value

• α must satisfy
– ∑n α(n) → ∞
– ∑nα2(n) < ∞

• α(n)=1/n satisfies conditions

Learning rate Temporal difference

CS 486/686 - K Larson - F2007 24

Algorithm TD(λ)
(not in Russell & Norvig book)

Idea: update from the whole training sequence, not
just on state transition.

Special cases:
λ=1: basically ADP (but use learning rate instead of explicit counts)

λ=0: TD

Intermediate choice of λ (between 0 and 1) is best
Empirically, λ=0.7 works well

CS 486/686 - K Larson - F2007 25

Active Learning

• We are really interested in finding a
good policy π

• Transition and reward model known
–V*(s)=maxa [r(s)+γ ∑s’P(s’|s,a)V*(s’)]

• Transition and reward model
unknown:
– Improve policy as agent executes policy

CS 486/686 - K Larson - F2007 26

Q-Learning
• Key idea: Learn a function Q:S×A→ℜ

– Value of state action pair
– Policy π (s)=argmaxa Q(s,a) is optimal policy
– V*(s)=maxa Q(s,a)

• Bellman’s equation:

CS 486/686 - K Larson - F2007 27

Q-learning
• For each state s and action a initialize

Q(s,a)
– 0 or random

• Observe current state
• Loop

– Select action a and execute it
– Receive immediate award r
– Observe new state s’
– Update Q(a,s)

• Q(s,a)=Q(s,a)+α(r+γ maxa’Q(s’,a’)-Q(s,a))
– s=s’

CS 486/686 - K Larson - F2007 28

Q-learning example

R 73 100

66 81

R81.5 100

66 81

r=0 for non-terminal states
γ=0.9
α = 0.5

CS 486/686 - K Larson - F2007 29

Q-learning
• For each state s and action a initialize

Q(s,a)
– 0 or random

• Observe current state
• Loop

– Select action a and execute it
– Receive immediate award r
– Observe new state s’
– Update Q(a,s)

• Q(s,a)=Q(s,a)+α(r+γ maxa’Q(s’,a’)-Q(s,a))
– s=s’

CS 486/686 - K Larson - F2007 30

Exploration vs Exploitation
• If an agent always chooses the action with

the highest value then it is exploiting
– The learned model is not the real model
– Leads to suboptimal results

• By taking random actions (pure exploration)
an agent may learn the model
– But what is the use of learning the correct model

if you never use it?

• Need a balance between exploitation and
exploration

CS 486/686 - K Larson - F2007 31

Common exploration methods
1. In value iteration in an ADP agent:

Optimistic estimate of utility J+(i)

2. Choose best action w.p. p and a random action otherwise.

3. Boltzmann exploration

∑+←
j

a
ija

iaNjVPfiriV)],(),([max)()(* *

Exploration func

∑
=

a

TasQ

TasQ

e
eaP /),(

/),(

)(

Fixed parameterOptimistic estimate of best reward

CS 486/686 - K Larson - F2007 32

Exploration and Q-learning
Q-learning converges to optimal Q-

values if

1. 1. Every state is visited infinitely often
(due to exploration)

2. 2. The action selection becomes greedy
as time approaches infinity

3. 3. The learning rate α is decreased fast
enough but not too fast

CS 486/686 - K Larson - F2007 33

A Triumph for Reinforcement
Learning: TD-Gammon

• Backgammon player with a neural network
representation of the value function:

• Performs TD(λ) changing it’s policy as it
goes towards the currently predicted
optimal one.

CS 486/686 - K Larson - F2007 34

Summary

• Active vs Passive learning
• Model based vs Model free
• ADP
• TD
• Q-learning
• Exploration vs exploitation tradeoff

	 Reinforcement Learning
	Outline
	What is RL?
	What is RL
	Reinforcement Learning Problem
	Example 1: Slot Machine
	Example 2: Tic Tac Toe
	Example 3: Inverted Pendulum
	Example 4: Mobile Robot
	RL Characteristics
	Reinforcement learning model
	A Markov Decision Process
	 Markov Decision Processes (MDPs)
	MDPs and RL
	Agent’s learning task
	Types of RL
	Passive learning
	Passive learning
	Direct utility estimation
	Adaptive dynamic programming (ADP)
	ADP Example
	 (Passive) TD
	 TD(0)
	Algorithm TD()�(not in Russell & Norvig book)
	Active Learning
	Q-Learning
	Q-learning
	Q-learning example
	Q-learning
	Exploration vs Exploitation
	Common exploration methods
	Exploration and Q-learning
	A Triumph for Reinforcement Learning: TD-Gammon
	Summary

