Reinforcement Learning

CS 486/686 Introduction to AI University of Waterloo

Outline

- What is reinforcement learning
- Quick MDP review
- Passive learning

 Temporal-Difference learning
- Active learning
 –Q-learning
- Readings: R&N Ch 21.1-21.4

What is RL?

- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
- Learner is not told what actions to take
- Learner discovers value of actions by;
 - Trying actions out
 - Seeing what the reward is

What is RL

 Reinforcement learning differs from supervised learning

Reinforcement Learning Problem

Example 1: Slot Machine

- State: Configuration of slots
- Action: Stopping time
- **Reward**: \$\$\$
- Problem: Find π: S→A that maximizes R

Example 2: Tic Tac Toe

- State: board
- Action: next move
- Reward: 1 for win, -1 for loss, 0 for draw
- Problem: Find π: S→A that maximizes R

Example 3: Inverted Pendulum

- **State**: x(t), x'(t), θ(t), θ'(t)
- Action: Force F
- Reward: 1 for any step where pole balanced

 Problem: Find π: S→A that maximizes R

Example 4: Mobile Robot

- State: location of robot, people
- Action: motion
- Reward: number of happy faces
- Problem: Find π: S→A that maximizes R

RL Characteristics

- Delayed reward

 Credit assignment problem
- Exploration and exploitation
- Possibility that a state is only partially observable

• Life-long learning

Reinforcement learning model

Set of states S

- Set of actions A

 Actions may be non-deterministic
- Set of reinforcement signals (rewards)
 - -Rewards may be delayed

A Markov Decision Process

You own a company

In every state you must choose between Saving money or Advertising

CS 486/686 - K Larson - F2007

Markov Decision Processes (MDPs)

- Has a set of states {s₁, s₂,...s_n}
- Has a set of actions {a₁,...,a_m}
- Each state has a reward {r₁, r₂,...r_n}
- Has a transition probability function

$$P_{ij}^k = (\text{Next} = s_j | \text{This} = s_i \text{ and I take action } a_k)$$

- ON EACH STEP...
 - 0. Assume your state is s_i
 - 1. You get given reward r_i
 - 2. Choose action a_k
 - 3. You will move to state s_i with probability P_{ii}^k
 - 4. All future rewards are discounted by γ

MDPs and RL

• With an MDP our goal was to find the optimal policy given the model

- Given rewards and transition probabilities

 In RL our goal is to find the optimal policy but we start without knowing the model

- Not given rewards and transition probabilities

Agent's learning task

- Execute actions in the environment
- Observe the results
- Learn policy $\pi: S \mapsto A$ that maximizes $E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$ From any starting state in S
- Note:
 - Target function is $\boldsymbol{\pi}$
 - We have no training examples of the form <s,a>
 - Our training examples are of the form <<s,a>,r>

Types of RL

- Model based vs Model free
 - Model based: Learn the model and use it to determine optimal policy
 - Model free: Derive optimal policy without learning the model
- Passive vs Active learning
 - Passive learning: Agent observes world and tries to determine the value of being in different states
 - Active learning: Agent watches and takes actions

Passive learning

- An agent has a policy $\boldsymbol{\pi}$
- Executes a set of trials using π – Starts in s₀, has a series of state transitions until it reaches a terminal state
- Tries to determine the expected utility of being in each state

Passive learning

 $\gamma = 1$

 r_i = -0.04 for non-terminal states

We do not know the transition probabilities

 $\begin{array}{c} (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1} \\ (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1} \\ (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1} \end{array}$

What is the value, V*(s) of being in state s?

Direct utility estimation

- Direct utility estimation is a form of supervised learning
 - Input: state
 - Output: reward to go
- Ignores an important piece of information
 Utility values obey Bellman equations
- Misses opportunities for learning

Adaptive dynamic programming (ADP)

- Recall Bellman equations
 - $V^{\pi}(s_i) = r_i(s_i) + \gamma \Sigma_j P_{ij}^{\pi(s_i)} V^{\pi}(s_j)$
 - Connection between states can speed up learning
 - Do not need to consider any situation where the above constraint is violated
- Adaptive dynamic programming (ADP)
 - Learns transition probabilities, rewards from observations
 - Updates values of states

$$\begin{array}{c|cccc} & & \text{ADP Example} \\ & & & & \\ & & & & \\ &$$

(Passive) TD

- Temporal difference
 Model free
- Key idea
 - Use observed transitions to adjust values of observed states so that they satisfy Bellman equations
- At each time step
 - Observe s, a, s', r
 - Update V^{π} after each move
 - $V^{\pi}(s) \rightarrow V^{\pi}(s) + \alpha (r(s) + \gamma V^{\pi}(s') V^{\pi}(s))$

$$TD(0)$$

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r(s) + \gamma V^{\pi}(s') - V^{\pi}(s))$$
Learning rate
Temporal difference

- Thm: If α is appropriately decreased with number of times a state is visited, then V^π(s) converges to correct value
- α must satisfy
 - $\begin{array}{l} & \sum_{n} \alpha(n) \to \infty \\ & \sum_{n} \alpha^{2}(n) < \infty \end{array}$
- $\alpha(n) = 1/n$ satisfies conditions

Idea: update from the whole training sequence, not just on state transition.

$$V^{\pi}(s_i) \rightarrow V^{\pi}(s_i) + \alpha \sum_{m=i}^{\infty} \lambda^{m-i} [r(s_m) + \gamma V^{\pi}(s_{m+1}) - V^{\pi}(s_m)]$$

Special cases:

 $\lambda{=}1{:}$ basically ADP (but use learning rate instead of explicit counts) $\lambda{=}0{:}$ TD

Intermediate choice of λ (between 0 and 1) is best Empirically, λ =0.7 works well

Active Learning

- We are really interested in finding a good policy $\boldsymbol{\pi}$
- Transition and reward model known $-V^*(s) = \max_a [r(s) + \gamma \sum_{s'} P(s'|s,a)V^*(s')]$
- Transition and reward model unknown:
 - Improve policy as agent executes policy

Q-Learning

- Key idea: Learn a function $Q: S \times A \rightarrow \Re$
 - Value of state action pair
 - Policy π (s)=argmax_a Q(s,a) is optimal policy
 - $-V^{*}(s) = \max_{a} Q(s,a)$
- Bellman's equation:

$$Q(s_i, a) = r(s_i) + \sum_j P^a_{ij} \max_{a'} Q(s_j, a')$$

Q-learning

- For each state s and action a initialize Q(s,a)
 - 0 or random
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate award r
 - Observe new state s'
 - Update Q(a,s)
 - $Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_{a'}Q(s',a') Q(s,a))$

- S=S'

Q-learning example

r=0 for non-terminal states γ =0.9 α = 0.5

 $Q(s_1, a_{\mathsf{right}}) = Q(s_1, a_{\mathsf{right}}) + \alpha(r + \gamma \max_{a'} Q(s_2, a') - Q(s_1, a_{\mathsf{right}}))$

- $= 73 + 0.5(0 + 0.9 \max[66, 81, 100] 73)$
- = 73 + 0.5(17)

= 81.5

CS 486/686 - K Larson - F2007

Q-learning

- For each state s and action a initialize Q(s,a)
 - 0 or random
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate award r
 - Observe new state s'
 - Update Q(a,s)
 - $Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_{a'}Q(s',a') Q(s,a))$

- S=S'

Exploration vs Exploitation

- If an agent always chooses the action with the highest value then it is exploiting
 - The learned model is not the real model
 - Leads to suboptimal results
- By taking random actions (pure exploration) an agent may learn the model
 - But what is the use of learning the correct model if you never use it?
- Need a balance between exploitation and exploration

Common exploration methods

 In value iteration in an ADP agent: Optimistic estimate of utility J⁺(i)

$$V * (i) \leftarrow r(i) + \max_{a} f[\sum_{i} P_{ij}^{a} V^{*}(j), N(a, i)]$$

Exploration func $f(u, n) = \begin{cases} R^{+} & \text{if } n < N_{e} \\ u & \text{otherwise} \end{cases}$
Optimistic estimate of best reward Fixed parameter

- 2. Choose best action w.p. p and a random action otherwise.
- 3. Boltzmann exploration

$$P(a) = \frac{e^{Q(s,a)/T}}{\sum_{a} e^{Q(s,a)/T}}$$

Exploration and Q-learning

Q-learning converges to optimal Qvalues if

> Every state is visited infinitely often (due to exploration)

2. The action selection becomes greedy as time approaches infinity

3. The learning rate α is decreased fast enough but not too fast

CS 486/686 - K Larson - F2007

A Triumph for Reinforcement Learning: TD-Gammon

• Backgammon player with a neural network representation of the value function:

Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

 Performs TD(λ) changing it's policy as it goes towards the currently predicted optimal one.

Summary

- Active vs Passive learning
- Model based vs Model free
- ADP
- TD
- Q-learning
- Exploration vs exploitation tradeoff