Markov Decision Processes (MDPs)

CS 486/686

 Introduction to AI University of Waterloo
Outline

- Sequential Decision Processes
- Markov chains
- Highlight Markov property
- Discounted rewards
- Value iteration
- Markov Decision Processes
- Reading: R\&N 17.1-17.4

Markov chains

- Simplified version of snakes and ladders

11	10	9	8	7	6
0	1	2	3	4	5

- Start at state 0 , roll dice, and move the number of positions indicated on the dice. If you land on square 4 you teleport to square 4
- Winner is the one who gets to 11 first

Markov chains

11	10	9	8	7	6
0	1	2	3	4	5

- Discrete clock pacing interaction of agent with the environment, $t=0,1,2, \ldots$
- Agent can be in one of a set of states $S=\{0,1, \ldots, 11\}$
- Initial state is $\mathrm{s}_{0}=0$
- If an agent is in state s_{t} at time t, the state at time s_{t+1} is determined only by the role of the dice at time t

Example by D Precup

Markov chains

11	10	9	8	7	6
0	1	2	3	4	5

- The probability of the next state s_{t+1} does not depend on how the agent got to the current state s_{t} (Markov Property)
- Example: Assume at time t, agent is at state 2
- $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=3 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6$
- $P\left(s_{t+1}=7 \mid s_{t}\right)=1 / 3$
- $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=5 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6, \mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=6 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6, \mathrm{P}\left(\mathrm{s}_{\mathrm{t}+1}=8 \mid \mathrm{s}_{\mathrm{t}}\right)=1 / 6$
- Game is completely described by the probability distribution of the next state given the current state

Markov Chain

- Formal representation

$$
-S=\{0,1,2,3,4,5,6,7,8,9,10,11\}
$$

Transition
probability
matrix $\quad\left[\begin{array}{cccccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 1 / 6 & 2 / 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 6 & 5 / 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ & & & & & & & & \\ \hline\end{array}\right.$ matrix

$$
P_{\mathrm{ij}}=\operatorname{Prob}\left(\operatorname{Next} t=s_{\mathrm{j}} \mid \text { This }=s_{\mathrm{i}}\right)
$$

Making sequential decisions

- Markov chains
- To highlight the Markov property
- Discounted rewards
- Value iteration
- Markov decision processes

Discounted Rewards

- An assistant professor gets paid, say, 30K per year
- How much, in total, will the AP earn in their life?
$30+30+30+30+\ldots=\infty$

Discounted Rewards

- A reward in the future is not worth quite as much as a reward now
- Because of chance of obliteration
- Because of chance of inflation
- Example:
- Being promised $\$ 10000$ next year is worth only 90% as much as receiving $\$ 10000$ now
- Assuming payment n years in future is worth only (0.9) ${ }^{\text {n }}$ of payment now, what is the AP's Future Discounted Sum of Rewards?

Discount Factors

- Used in economics and probabilistic decision-making all the time
- Discounted sum of future awards using discount factor γ is
- Reward now $+\gamma$ (reward in 1 time step) $+\gamma^{2}$ (reward in 2 time steps) + γ^{3} (reward in 3 time steps) $+\ldots$

The Academic Life

- Define
- $U_{A}=$ Expected discounted future rewards starting in state A
- $U_{B}=$ Expected discounted future rewards starting in state B
- $U_{T}=$ Expected discounted future rewards starting in state T
- $U_{S}=$ Expected discounted future rewards starting in state S
- $U_{D}=$ Expected discounted future rewards starting in state D How do we compare $U_{A}, U_{B}, U_{T}, U_{S}, U_{D}$?

A Markov System of Rewards...

- Has a set of states $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, . . \mathrm{s}_{\mathrm{n}}\right\}$
- Has a transition probability matrix

$$
P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
P_{n 1} & P_{n 2} & \cdots & P_{n n}
\end{array}\right] \mathrm{P}_{\mathrm{ij}}=\operatorname{Prob}\left(\mathrm{Next}=\mathrm{s}_{\mathrm{j}} \mid \text { This }=\mathrm{s}_{\mathrm{i}}\right)
$$

Each state has a reward $\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$
There's a discount factor $\gamma, 0<\gamma<1$
ON EACH STEP...
0 . Assume your state is s_{i}

1. You get given reward r_{i}
2. You randomly move to another state
$\mathrm{P}\left(\right.$ NextState $=\mathrm{s}_{\mathrm{j}} \mid$ This $\left.=\mathrm{s}_{\mathrm{i}}\right)=\mathrm{P}_{\mathrm{ij}}$
3. All future rewards are discounted by γ

Solving a Markov Matrix

- Write $\mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ expected discounted sum of future rewards starting in state s_{i}
- $\mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)=\mathrm{r}_{\mathrm{i}}+\gamma \times$ (expected future rewards starting from your next state)

$$
=\mathrm{r}_{\mathrm{i}}+\gamma\left(\mathrm{P}_{\mathrm{i} 1} \mathrm{U}^{*}\left(\mathrm{~s}_{1}\right)+\mathrm{P}_{\mathrm{i} 2} \mathrm{U}^{*}\left(\mathrm{~s}_{2}\right)+\ldots+\mathrm{P}_{\mathrm{iN}} \mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{N}}\right)\right)
$$

Using vector notation write:

$$
\overline{\mathrm{U}}=\left(\begin{array}{c}
U^{*}\left(S_{1}\right) \\
U^{*}\left(S_{2}\right) \\
\vdots \\
U^{*}\left(S_{n}\right)
\end{array}\right) \quad \overline{\mathrm{R}}=\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{n}
\end{array}\right) \quad \overline{\mathrm{P}}=\left(\begin{array}{cccc}
P_{11} & P_{12} & \cdots & P_{1 n} \\
P_{21} & P_{22} & \cdots & P_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
P_{n 1} & P_{2 n} & \cdots & P_{n n}
\end{array}\right)
$$

There is a closed form expression for U in terms of R, P and γ.

Solving a Markov System using

 Matrix I nversion- Upside: You get an exact number
- Downside:
- If you have 100,000 states you are solving a 100,00 by 100,000 system of equations

Value Iteration

- Define:
$\mathrm{U}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards over next 1 time step
$\mathrm{U}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards during next 2 time step
$\mathrm{U}^{3}\left(\mathrm{~s}_{\mathrm{i}}\right){ }^{\vdots}=$ Expected discounted sum of rewards during next 3 time step
$\mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards during next k time step

Value Iteration

- Define:
$\mathrm{U}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards over next 1 time step
$\mathrm{U}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards during next 2 time step
$\mathrm{U}^{3}\left(\mathrm{~s}_{\mathrm{i}}\right)=$ Expected discounted sum of rewards during next 3 time step
$U^{k}\left(s_{i}\right)=$ Expected discounted sum of rewards during next k time step

$$
\begin{aligned}
& U^{1}\left(S_{i}\right)=r_{i} \\
& U^{2}\left(S_{i}\right)=r_{i}+\gamma \Sigma_{j=1}^{n}{ }^{n} \mathrm{p}_{i j} U^{1}\left(s_{j}\right) \\
& U^{k+1}\left(S_{i}\right)=r_{i}+\gamma \Sigma_{j=1}{ }^{n}{ }^{n} \mathrm{P}_{i j} U^{k}\left(s_{j}\right)
\end{aligned}
$$

Let's Do Value Iteration

Value Iteration

- Compute $\mathrm{U}^{1}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for each i
- Compute $\mathrm{U}^{2}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for each i
- Compute $\mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right)$ for each i
- As $\mathrm{k} \rightarrow \infty \mathrm{U}^{\mathrm{k}}\left(\mathrm{s}_{\mathrm{i}}\right) \rightarrow \mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)$
- Why?
- When to stop? When:
$\max \left|U^{k+1}\left(\mathrm{~S}_{\mathrm{i}}\right)-\mathrm{U}^{\mathrm{k}}\left(\mathrm{S}_{\mathrm{i}}\right)\right|<\varepsilon^{2}$
this is faster than matrix inversion $\left(\mathrm{N}^{3}\right.$ style) IF the transition matrix is sparse.

Making sequential decisions

- Markov chains
- To highlight the Markov property
- Discounted rewards
- Value iteration
- Markov decision processes

A Markov Decision Process

CS 486/686 - K Larson - F2007

Markov Decision Processes (MDPs)

- Has a set of states $\left\{s_{1}, s_{2}, . . s_{n}\right\}$
- Has a set of actions $\left\{a_{1}, \ldots, a_{m}\right\}$
- Each state has a reward $\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$
- Has a transition probability function
$P_{i j}^{k}=\left(\right.$ Next $=s_{j} \mid$ This $=s_{i}$ and I take action $\left.a_{k}\right)$
- ON EACH STEP...

0 . Assume your state is s_{i}

1. You get given reward r_{i}
2. Choose action a_{k}
3. You will move to state s_{j} with probability $\mathrm{P}_{\mathrm{ij}}{ }^{\mathrm{k}}$ 4. All future rewards are discounted by γ

Planning in MDPs

- The goal of an agent in an MDP is to be rational
- Maximize its expected utility
- But maximizing immediate utility is not good enough
- Great action now can lead to death later...
- Goal is to maximize its long term reward
- Do this by finding a policy that has high return

Policies

- A policy is a mapping from states to actions

Policy 1

PU	S
PF	A
RU	S
RF	A

| Policy 2 |
| :--- | :--- |
| PU A
 PF A
 RU A
 RF A |

How many policies?

Fact

- For every MDP there exists an optimal policy
- It is the policy such that for every possible start state there is no better option than to follow the policy

Our goal: To find this policy!

Finding the optimal policy

- First idea:
- Simply run through all possible policies and select the best
- But we can do better!

Optimal Value Function

- Define $U^{*}\left(s_{i}\right)$ to be the expected discounted future rewards
- Starting from state s_{i}, assuming we use the optimal policy
- Define $\mathrm{U}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)=$ maximum possible sum of discounted rewards I can get if I start at state S_{i} and I live for t time steps
- Note: $U^{1}\left(s_{i}\right)=r_{i}$

t	$\mathrm{U}^{\mathrm{t}}(\mathrm{PU})$	$\mathrm{U}^{\mathrm{t}}(\mathrm{PF})$	$\mathrm{U}^{\mathrm{t}}(\mathrm{RU})$	$\mathrm{U}^{\mathrm{t}}(\mathrm{RF})$
1	0	0	10	10
2	0	4.5	14.5	19
3	2.03	8.55	16.53	25.08
4	4.76	12.20	18.35	28.72
5	7.63	15.07	20.40	31.18
6	10.22	17.46	22.61	33.21

CS 486/686 - K Larson - F2007

Bellman's Equation

$$
\mathrm{U}^{t+1}\left(s_{i}\right)=\max _{k}\left[r_{i}+\gamma \Sigma_{\mathrm{j}=1}{ }^{n} \mathrm{P}_{\mathrm{ij}}{ }^{k} \mathrm{U}^{\dagger}\left(s_{\mathrm{j}}\right)\right]
$$

- Now we can do Value Iteration!
- Compute $U^{1}\left(s_{i}\right)$ for all i
- Compute $U^{2}\left(s_{i}\right)$ for all i
- Compute $\mathrm{U}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)$ for all i
- Until converges
- $\operatorname{Max}_{\mathrm{i}}\left|\mathrm{U}^{\mathrm{t}+1}\left(\mathrm{~s}_{\mathrm{i}}\right)-\mathrm{U}^{\mathrm{t}}\left(\mathrm{s}_{\mathrm{i}}\right)\right|<\varepsilon$
aka Dynamic Programming

CS 486/686 - K Larson - F2007

Finding the optimal policy

- Compute $\mathrm{U}^{*}\left(\mathrm{~s}_{\mathrm{i}}\right)$ for all i using value iteration
- Define the best action in state s_{i} as
$\arg \max _{k}\left[r_{i}+\gamma \Sigma_{j} P_{i j}^{k} U^{*}\left(s_{j}\right)\right]$

Policy iteration

- There are other ways of finding the optimal policy
- Policy iteration
- Alternates between two steps
- Policy evaluation
- Given π_{i}, calculate $\mathrm{U}_{\mathrm{i}}=\mathrm{U}^{\pi}$
- Policy improvement
- Calculate a new π_{i+1} using one step lookahead

Policy iteration algorithm

- Start with random policy π
- Repeat
- Compute long term reward for each s_{i}, using π
- For each state s_{i}
- If
$\max _{k}\left[r_{i}+\gamma \Sigma_{j} P_{i j}^{k} U^{*}\left(s_{j}\right)\right]>r_{i}+\gamma \Sigma_{j} P_{i j}^{\pi\left(s_{i}\right)} U^{*}\left(s_{j}\right)$
Then $\pi\left(\mathrm{s}_{\mathrm{i}}\right) \leftarrow \operatorname{argmax}_{k}\left[\mathrm{r}_{\mathrm{i}}+\gamma \Sigma_{\mathrm{j}} \mathrm{P}_{\mathrm{ij}} \mathrm{k} U^{*}\left(\mathrm{~s}_{\mathrm{j}}\right)\right]$
- Until you stop changing the policy

Summary

- MDP's describe planning tasks in stochastic worlds
- Goal of the agent is to maximize its expected return
- Value functions estimate the expected return
- In finite MDP there is a unique optimal policy
- Dynamic programming can be used to find it

Summary

- Good news
- finding optimal policy is polynomial in number of states
- Bad news
- finding optimal policy is polynomial in number of states
- Number of states tends to be very very large
- exponential in number of state variables
- In practice, can handle problems with up to 10 million states

Extensions

- In "real life" agents may not know what state they are in
- Partial observability
- Partially Observable MDPs
- Has a set of states $\left\{s_{1}, s_{2}, . . s_{n}\right\}$
- Has a set of actions $\left\{a_{1}, \ldots, a_{m}\right\}$
- Has set of observations $O=\left\{0_{1}, \ldots, o_{k}\right\}$
- Each state has a reward $\left\{r_{1}, r_{2}, \ldots r_{n}\right\}$
- Has a transition probability function $\mathrm{P}\left(\mathrm{s}_{\mathrm{t}} \mid \mathrm{a}_{\mathrm{t}-1}, \mathrm{~s}_{\mathrm{t}-1}\right)$
- Has observation model $\mathbf{P}\left(o_{t} \mid s_{t}\right)$
- Has discount factor γ

POMDPs

- The agent maintains a belief state, b - Probability distribution over all possible states
$-b(s)$ is the probability assigned to state s
- Insight: optimal action depends only on agent's current belief state
- Policy is mapping from belief states to actions

POMDPs

- Decision cycle of agent
- Given current b, execute action $a=\pi^{*}(b)$
- Receive observation o
- Update current belief state
- $\mathrm{b}^{\prime}\left(\mathrm{s}^{\prime}\right)=\alpha \mathrm{O}\left(\mathrm{o} \mid \mathrm{s}^{\prime}\right) \sum_{\mathrm{s}} \mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{a}, \mathrm{s}\right) \mathrm{b}(\mathrm{s})$
- α is a normalizing factor
- Possible to write a POMDP as an MDP by summing over all actual states s' that the agent might reach
$-\operatorname{Pr}\left(b^{\prime} \mid a, b\right)=\sum_{0} P\left(b^{\prime} \mid o, a, b\right) \sum_{s^{\prime}} O\left(o \mid s^{\prime}\right) \sum_{s} P\left(s^{\prime} \mid a, s\right) b(s)$

POMDP's

- Complications
- Our (new) MDP has a continuous state space
- In general, finding (approximately) optimal properties is difficult (PSPACEhard)
- Problems with even a few dozen states are often infeasible
- New techniques, take advantage of structure...

