
Markov Decision Processes
(MDPs)

CS 486/686
Introduction to AI

University of Waterloo

CS 486/686 - K Larson - F2007

Outline

• Sequential Decision Processes
–Markov chains

• Highlight Markov property

–Discounted rewards
• Value iteration

–Markov Decision Processes

–Reading: R&N 17.1-17.4

CS 486/686 - K Larson - F2007

Markov chains

• Simplified version of snakes and ladders

• Start at state 0, roll dice, and move the
number of positions indicated on the dice.
If you land on square 4 you teleport to
square 4

• Winner is the one who gets to 11 first

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup

CS 486/686 - K Larson - F2007

Markov chains

• Discrete clock pacing interaction of agent with
the environment, t=0,1,2,…

• Agent can be in one of a set of states
S={0,1,…,11}

• Initial state is s0=0
• If an agent is in state st at time t, the state at

time st+1 is determined only by the role of the
dice at time t

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup

CS 486/686 - K Larson - F2007

Markov chains

• The probability of the next state st+1 does not depend on how
the agent got to the current state st (Markov Property)

• Example: Assume at time t, agent is at state 2
– P(st+1=3|st)=1/6
– P(st+1=7|st)=1/3
– P(st+1=5|st)=1/6, P(st+1=6|st)=1/6, P(st+1=8|st)=1/6
– Game is completely described by the probability

distribution of the next state given the current state

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup

CS 486/686 - K Larson - F2007

Markov Chain
• Formal representation

–S={0,1,2,3,4,5,6,7,8,9,10,11}

P =

Pij=Prob(Next=sj| This=si)

Transition
probability
matrix

CS 486/686 - K Larson - F2007

Making sequential decisions

• Markov chains
–To highlight the Markov property

• Discounted rewards
–Value iteration

• Markov decision processes

CS 486/686 - K Larson - F2007

Discounted Rewards

• An assistant professor gets paid, say,
30K per year

• How much, in total, will the AP earn
in their life?

30+30+30+30+…=∞

CS 486/686 - K Larson - F2007

Discounted Rewards
• A reward in the future is not worth quite

as much as a reward now
– Because of chance of obliteration
– Because of chance of inflation

• Example:
– Being promised $10000 next year is worth

only 90% as much as receiving $10000 now

• Assuming payment n years in future is
worth only (0.9)n of payment now, what is
the AP’s Future Discounted Sum of
Rewards?

CS 486/686 - K Larson - F2007

Discount Factors
• Used in economics and probabilistic

decision-making all the time

• Discounted sum of future awards
using discount factor γ is
–Reward now + γ (reward in 1 time step)

+ γ2(reward in 2 time steps) +
γ3(reward in 3 time steps)+…

CS 486/686 - K Larson - F2007

The Academic Life

• Define
– UA= Expected discounted future rewards starting in state A
– UB= Expected discounted future rewards starting in state B
– UT= Expected discounted future rewards starting in state T
– US= Expected discounted future rewards starting in state S
– UD= Expected discounted future rewards starting in state D
How do we compare UA, UB, UT, US, UD ?

0.6

0.7

0.7

A
Assistant
Professor

30

B
Associate
Professor

60

T
Tenured
Professor

100
S

Out on
The Street

10

D
Dead

0

0.6 0.2

0.2
0.2

0.2

0.30.3

Assume Discount
Factor γ = 0.9

CS 486/686 - K Larson - F2007

A Markov System of Rewards…
• Has a set of states {s1, s2,…sn}
• Has a transition probability matrix

• Each state has a reward {r1, r2,…rn}
• There's a discount factor γ, 0 < γ < 1
• ON EACH STEP…

0. Assume your state is si
1. You get given reward ri
2. You randomly move to another state

P(NextState = sj | This = si) = Pij
3. All future rewards are discounted by γ

Pij = Prob(Next = sj ⎥ This = si)

CS 486/686 - K Larson - F2007

Solving a Markov Matrix
• Write U*(si) = expected discounted sum of future

rewards starting in state si
• U*(si) = ri + γ x (expected future rewards starting

from your next state)
= ri + γ (Pi1U*(s1) + Pi2 U*(s2) +…+ PiN U*(sN))

Using vector notation write:

There is a closed form expression for U in
terms of R, P and γ.

CS 486/686 - K Larson - F2007

Solving a Markov System using
Matrix Inversion

• Upside: You get an exact number

• Downside:
– If you have 100,000 states you are

solving a 100,00 by 100,000 system of
equations

CS 486/686 - K Larson - F2007

Value Iteration

• Define:
U1(si) = Expected discounted sum of rewards

over next 1 time step
U2(si) = Expected discounted sum of rewards

during next 2 time step
U3(si) = Expected discounted sum of rewards

during next 3 time step

Uk(si) = Expected discounted sum of rewards
during next k time step

...

...

CS 486/686 - K Larson - F2007

Value Iteration
• Define:

U1(si) = Expected discounted sum of rewards over next 1 time
step

U2(si) = Expected discounted sum of rewards during next 2 time
step

U3(si) = Expected discounted sum of rewards during next 3 time
step

Uk(si) = Expected discounted sum of rewards during next k time
step

U1(Si)=ri

U2(Si)=ri+γΣj=1
n pijU1(sj)

Uk+1(Si)=ri+γΣj=1
n pijUk(sj)

CS 486/686 - K Larson - F2007

Let's Do Value Iteration

k Uk(sun) Uk(wind) Uk(hail)
1
2
3
4
5

Sun

+4

Wind

0 Hail

-8
½

½ ½

½ ½
½

γ=1/2

CS 486/686 - K Larson - F2007

Value Iteration
• Compute U1(si) for each i
• Compute U2(si) for each i

• Compute Uk(si) for each i
• As k ∞ Uk(si) U*(si)

– Why?

• When to stop? When:

max ⎥ Uk+1(si) - Uk(si) ⎥ < ε
• This is faster than matrix inversion (N3

style) IF the transition matrix is sparse.

a small number

CS 486/686 - K Larson - F2007

Making sequential decisions

• Markov chains
–To highlight the Markov property

• Discounted rewards
–Value iteration

• Markov decision processes

CS 486/686 - K Larson - F2007

A Markov Decision Process
1

Poor &
Unknown

+0

Poor &
Famous

+0

Rich &
Famous

+10

Rich &
Unknown

+10

S

S

S

S

A

A

A

A

1

1

½ ½½

½

½

½

½

½
½

½ γ = 0.9

You own a
company

In every state
you must
choose between
Saving money or
Advertising

CS 486/686 - K Larson - F2007

Markov Decision Processes (MDPs)
• Has a set of states {s1, s2,…sn}
• Has a set of actions {a1,…,am}
• Each state has a reward {r1, r2,…rn}
• Has a transition probability function

• ON EACH STEP…
0. Assume your state is si
1. You get given reward ri
2. Choose action ak
3. You will move to state sj with probability Pij

k

4. All future rewards are discounted by γ

CS 486/686 - K Larson - F2007

Planning in MDPs
• The goal of an agent in an MDP is to

be rational
–Maximize its expected utility
–But maximizing immediate utility is not

good enough
• Great action now can lead to death later…

• Goal is to maximize its long term
reward
–Do this by finding a policy that has high

return

CS 486/686 - K Larson - F2007

Policies
• A policy is a

mapping from
states to actions

PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A
1

1

½ ½½

½

½
½

½
½½

½

ARF
SRU
APF
SPU

Policy 1

ARF
ARU
APF
APU

Policy 2

How many policies?

CS 486/686 - K Larson - F2007

Fact
• For every MDP there exists an

optimal policy

• It is the policy such that for every
possible start state there is no better
option than to follow the policy

Our goal: To find this policy!

CS 486/686 - K Larson - F2007

Finding the optimal policy

• First idea:
–Simply run through all possible policies

and select the best

• But we can do better!

CS 486/686 - K Larson - F2007

Optimal Value Function
• Define U*(si) to be the expected

discounted future rewards
–Starting from state si, assuming we use

the optimal policy

• Define Ut(si)=maximum possible sum
of discounted rewards I can get if I
start at state Si and I live for t time
steps
–Note: U1(si)=ri

CS 486/686 - K Larson - F2007

1
PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A
1

1

½ ½½

½

½
½

½
½½

½
γ = 0.9

t Ut(PU) Ut(PF) Ut(RU) Ut(RF)

1 0 0 10 10

2 0 4.5 14.5 19

3 2.03 8.55 16.53 25.08

4 4.76 12.20 18.35 28.72

5 7.63 15.07 20.40 31.18

6 10.22 17.46 22.61 33.21

CS 486/686 - K Larson - F2007

Bellman’s Equation

• Now we can do Value Iteration!
– Compute U1(si) for all i
– Compute U2(si) for all i
– …
– Compute Ut(si) for all i
– Until converges

• Maxi | Ut+1(si)-Ut(si)|<ε

Ut+1(si)=maxk [ri+γΣj=1
n Pij

k Ut(sj)]

aka Dynamic Programming

CS 486/686 - K Larson - F2007

Finding the optimal policy

• Compute U*(si) for all i using value
iteration

• Define the best action in state si as

CS 486/686 - K Larson - F2007

Policy iteration
• There are other ways of finding the

optimal policy
–Policy iteration

• Alternates between two steps
–Policy evaluation

• Given πi, calculate Ui=Uπ

–Policy improvement
• Calculate a new πi+1 using one step lookahead

CS 486/686 - K Larson - F2007

Policy iteration algorithm
• Start with random policy π
• Repeat

–Compute long term reward for each si,
using π

–For each state si
• If

Then π(si)← argmaxk [ri+γΣj Pij
kU*(sj)]

–Until you stop changing the policy

CS 486/686 - K Larson - F2007

Summary
• MDP’s describe planning tasks in stochastic

worlds

• Goal of the agent is to maximize its
expected return

• Value functions estimate the expected
return

• In finite MDP there is a unique optimal
policy
– Dynamic programming can be used to find it

CS 486/686 - K Larson - F2007

Summary
• Good news

– finding optimal policy is polynomial in number of
states

• Bad news
– finding optimal policy is polynomial in number of

states

• Number of states tends to be very very large
– exponential in number of state variables

• In practice, can handle problems with up to
10 million states

CS 486/686 - K Larson - F2007

Extensions
• In “real life” agents may not know what

state they are in
– Partial observability

• Partially Observable MDPs
– Has a set of states {s1, s2,…sn}
– Has a set of actions {a1,…,am}
– Has set of observations O={o1,…,ok}
– Each state has a reward {r1, r2,…rn}
– Has a transition probability function P(st|at-1,st-1)

– Has observation model P(ot|st)
– Has discount factor γ

CS 486/686 - K Larson - F2007

POMDPs
• The agent maintains a belief state, b

–Probability distribution over all possible
states

–b(s) is the probability assigned to state
s

• Insight: optimal action depends only
on agent’s current belief state
–Policy is mapping from belief states to

actions

CS 486/686 - K Larson - F2007

POMDPs
• Decision cycle of agent

– Given current b, execute action a=π*(b)
– Receive observation o
– Update current belief state

• b’(s’)=α O(o|s’)∑s P(s’|a,s)b(s)
• α is a normalizing factor

• Possible to write a POMDP as an MDP by
summing over all actual states s’ that the
agent might reach
– Pr(b’|a,b)=∑oP(b’|o,a,b)∑s’O(o|s’)∑sP(s’|a,s)b(s)

CS 486/686 - K Larson - F2007

POMDP’s

• Complications
–Our (new) MDP has a continuous state

space
– In general, finding (approximately)

optimal properties is difficult (PSPACE-
hard)

–Problems with even a few dozen states
are often infeasible
• New techniques, take advantage of

structure…

	Markov Decision Processes (MDPs)
	Outline
	Markov chains
	Markov chains
	Markov chains
	Markov Chain
	Making sequential decisions
	Discounted Rewards
	Discounted Rewards
	Discount Factors
	The Academic Life
	A Markov System of Rewards…
	Solving a Markov Matrix
	Solving a Markov System using Matrix Inversion
	Value Iteration
	Value Iteration�
	Let's Do Value Iteration
	Value Iteration
	Making sequential decisions
	A Markov Decision Process
	 Markov Decision Processes (MDPs)
	Planning in MDPs
	Policies
	Fact
	Finding the optimal policy
	Optimal Value Function
	Bellman’s Equation
	Finding the optimal policy
	Policy iteration
	Policy iteration algorithm
	Summary
	Summary
	Extensions
	POMDPs
	POMDPs
	POMDP’s

