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Outline

• Sequential Decision Processes
–Markov chains

• Highlight Markov property

–Discounted rewards
• Value iteration

–Markov Decision Processes

–Reading: R&N 17.1-17.4
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Markov chains

• Simplified version of snakes and ladders

• Start at state 0, roll dice, and move the 
number of positions indicated on the dice. 
If you land on square 4 you teleport to 
square 4

• Winner is the one who gets to 11 first

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup
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Markov chains

• Discrete clock pacing interaction of agent with 
the environment, t=0,1,2,…

• Agent can be in one of a set of states
S={0,1,…,11}

• Initial state is s0=0
• If an agent is in state st at time t, the state at 

time st+1 is determined only by the role of the 
dice at time t

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup
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Markov chains

• The probability of the next state st+1 does not depend on how 
the agent got to the current state st (Markov Property)

• Example: Assume at time t, agent is at state 2
– P(st+1=3|st)=1/6
– P(st+1=7|st)=1/3
– P(st+1=5|st)=1/6, P(st+1=6|st)=1/6, P(st+1=8|st)=1/6
– Game is completely described by the probability 

distribution of the next state given the current state

11 10 9 8 7 6
0 1 2 3 4 5

Example by D Precup
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Markov Chain
• Formal representation

–S={0,1,2,3,4,5,6,7,8,9,10,11}

P =

Pij=Prob(Next=sj| This=si)

Transition 
probability 
matrix
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Making sequential decisions

• Markov chains
–To highlight the Markov property

• Discounted rewards
–Value iteration

• Markov decision processes
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Discounted Rewards

• An assistant professor gets paid, say, 
30K per year

• How much, in total, will the AP earn 
in their life?

30+30+30+30+…=∞
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Discounted Rewards
• A reward in the future is not worth quite 

as much as a reward now
– Because of chance of obliteration
– Because of chance of inflation

• Example:
– Being promised $10000 next year is worth 

only 90% as much as receiving $10000 now

• Assuming payment n years in future is 
worth only (0.9)n of payment now, what is 
the AP’s Future Discounted Sum of 
Rewards?
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Discount Factors
• Used in economics and probabilistic 

decision-making all the time

• Discounted sum of future awards
using discount factor γ is
–Reward now + γ (reward in 1 time step) 

+ γ2(reward in 2 time steps) + 
γ3(reward in 3 time steps)+…
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The Academic Life

• Define
– UA= Expected discounted future rewards starting in state A
– UB= Expected discounted future rewards starting in state B
– UT= Expected discounted future rewards starting in state T
– US= Expected discounted future rewards starting in state S
– UD= Expected discounted future rewards starting in state D
How do we compare UA, UB, UT, US, UD ?
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A Markov System of Rewards…
• Has a set of states {s1, s2,…sn}
• Has a transition probability matrix

• Each state has a reward {r1, r2,…rn}
• There's a discount factor γ, 0 < γ < 1 
• ON EACH STEP…

0. Assume your state is si
1. You get given reward ri
2. You randomly move to another state

P(NextState = sj | This = si) = Pij
3. All future rewards are discounted by γ

Pij = Prob(Next = sj ⎥ This = si)
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Solving a Markov Matrix
• Write U*(si) = expected discounted sum of future 

rewards starting in state si
• U*(si) = ri + γ x (expected future rewards starting 

from your next state)
= ri + γ (Pi1U*(s1) + Pi2 U*(s2) +…+ PiN U*(sN))

Using vector notation write:

There is a closed form expression for U in 
terms of R, P and γ.
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Solving a Markov System using 
Matrix Inversion

• Upside:  You get an exact number

• Downside: 
– If you have 100,000 states you are 

solving a 100,00 by 100,000 system of 
equations
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Value Iteration

• Define:
U1(si) = Expected discounted sum of rewards 

over next 1 time step
U2(si) = Expected discounted sum of rewards 

during next 2 time step
U3(si) = Expected discounted sum of rewards 

during next 3 time step

Uk(si) = Expected discounted sum of rewards 
during next k time step

...

...
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Value Iteration
• Define:

U1(si) = Expected discounted sum of rewards over next 1 time 
step

U2(si) = Expected discounted sum of rewards during next 2 time 
step

U3(si) = Expected discounted sum of rewards during next 3 time 
step

Uk(si) = Expected discounted sum of rewards during next k time 
step

U1(Si)=ri

U2(Si)=ri+γΣj=1
n pijU1(sj)

Uk+1(Si)=ri+γΣj=1
n pijUk(sj)
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Let's Do Value Iteration

k Uk(sun) Uk(wind) Uk(hail)
1
2
3
4
5

Sun

+4

Wind

0 Hail

-8
½

½ ½

½ ½
½

γ=1/2
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Value Iteration
• Compute U1(si) for each i
• Compute U2(si) for each i

• Compute Uk(si) for each i
• As k ∞ Uk(si) U*(si)

– Why?

• When to stop? When:

max ⎥ Uk+1(si) - Uk(si) ⎥ < ε
• This is faster than matrix inversion (N3

style) IF the transition matrix is sparse.

a small number
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Making sequential decisions

• Markov chains
–To highlight the Markov property

• Discounted rewards
–Value iteration

• Markov decision processes
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A Markov Decision Process
1
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you must 
choose between 
Saving money or 
Advertising
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Markov Decision Processes (MDPs)
• Has a set of states {s1, s2,…sn}
• Has a set of actions {a1,…,am}
• Each state has a reward {r1, r2,…rn}
• Has a transition probability function

• ON EACH STEP…
0. Assume your state is si
1. You get given reward ri
2. Choose action ak
3. You will move to state sj with probability Pij

k

4. All future rewards are discounted by γ
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Planning in MDPs
• The goal of an agent in an MDP is to 

be rational
–Maximize its expected utility
–But maximizing immediate utility is not 

good enough
• Great action now can lead to death later…

• Goal is to maximize its long term 
reward
–Do this by finding a policy that has high 

return
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Policies
• A policy is a 

mapping from 
states to actions
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APU

Policy 2

How many policies?
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Fact
• For every MDP there exists an 

optimal policy

• It is the policy such that for every 
possible start state there is no better 
option than to follow the policy

Our goal: To find this policy!



CS 486/686 - K Larson - F2007

Finding the optimal policy

• First idea:
–Simply run through all possible policies 

and select the best

• But we can do better!
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Optimal Value Function
• Define U*(si) to be the expected 

discounted future rewards
–Starting from state si, assuming we use 

the optimal policy

• Define Ut(si)=maximum possible sum 
of discounted rewards I can get if I 
start at state Si and I live for t time 
steps
–Note: U1(si)=ri
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1
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γ = 0.9

t Ut(PU) Ut(PF) Ut(RU) Ut(RF)

1 0 0 10 10

2 0 4.5 14.5 19

3 2.03 8.55 16.53 25.08

4 4.76 12.20 18.35 28.72

5 7.63 15.07 20.40 31.18

6 10.22 17.46 22.61 33.21
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Bellman’s Equation

• Now we can do Value Iteration!
– Compute U1(si) for all i
– Compute U2(si) for all i
– …
– Compute Ut(si) for all i
– Until converges

• Maxi | Ut+1(si)-Ut(si)|<ε

Ut+1(si)=maxk [ri+γΣj=1
n Pij

k Ut(sj)]

aka Dynamic Programming
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Finding the optimal policy

• Compute U*(si) for all i using value 
iteration

• Define the best action in state si as
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Policy iteration
• There are other ways of finding the 

optimal policy
–Policy iteration

• Alternates between two steps
–Policy evaluation

• Given πi, calculate Ui=Uπ

–Policy improvement
• Calculate a new πi+1 using one step lookahead
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Policy iteration algorithm
• Start with random policy π
• Repeat

–Compute long term reward for each si, 
using π

–For each state si
• If  

Then π(si)← argmaxk [ri+γΣj Pij
kU*(sj)]

–Until you stop changing the policy
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Summary
• MDP’s describe planning tasks in stochastic 

worlds

• Goal of the agent is to maximize its 
expected return

• Value functions estimate the expected 
return

• In finite MDP there is a unique optimal 
policy
– Dynamic programming can be used to find it
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Summary
• Good news

– finding optimal policy is polynomial in number of 
states

• Bad news
– finding optimal policy is polynomial in number of 

states 

• Number of states tends to be very very large 
– exponential in number of state variables

• In practice, can handle problems with up to 
10 million states
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Extensions
• In “real life” agents may not know what 

state they are in
– Partial observability

• Partially Observable MDPs
– Has a set of states {s1, s2,…sn}
– Has a set of actions {a1,…,am}
– Has set of observations O={o1,…,ok}
– Each state has a reward {r1, r2,…rn}
– Has a transition probability function P(st|at-1,st-1)

– Has observation model P(ot|st)
– Has discount factor γ
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POMDPs
• The agent maintains a belief state, b

–Probability distribution over all possible 
states

–b(s) is the probability assigned to state 
s

• Insight: optimal action depends only 
on agent’s current belief state
–Policy is mapping from belief states to 

actions
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POMDPs
• Decision cycle of agent

– Given current b, execute action a=π*(b)
– Receive observation o
– Update current belief state

• b’(s’)=α O(o|s’)∑s P(s’|a,s)b(s)
• α is a normalizing factor

• Possible to write a POMDP as an MDP by 
summing over all actual states s’ that the 
agent might reach
– Pr(b’|a,b)=∑oP(b’|o,a,b)∑s’O(o|s’)∑sP(s’|a,s)b(s)
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POMDP’s

• Complications
–Our (new) MDP has a continuous state 

space
– In general, finding (approximately) 

optimal properties is difficult (PSPACE-
hard)

–Problems with even a few dozen states 
are often infeasible
• New techniques, take advantage of 

structure…
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