CS 886: Game-theoretic methods for computer science

Kate Larson

Computer Science
University of Waterloo

September 11, 2006
Outline

1. Introduction
 - Introduction
 - Two Communities

2. This Course

3. Examples
 - Selfish Routing
 - London Bus System
Outline

1. Introduction
 - Introduction
 - Two Communities

2. This Course

3. Examples
 - Selfish Routing
 - London Bus System
Introduction

- Growth in settings where there are multiple self-interacting parties
 - Networks
 - Electronic marketplaces
 - Game playing
 - ...

- For participants to act optimally in such settings, they must take into account how other agents are going to act.

- We want to be able to
 - Understand the ways agents will interact and behave
 - Provide incentives so that agents behave the way we would like them to
Outline

1. Introduction
 - Introduction
 - Two Communities

2. This Course

3. Examples
 - Selfish Routing
 - London Bus System
Two Communities

Economics
- Traditional emphasis on game theoretic rationality
- Describing how agents should behave
- Multiple self-interested agents

Computer Science
- Traditional emphasis on computational and informational constraints
- Building agents
- Individual or cooperative agents
New Research Problems

- How do we use game theory and mechanism design in computer science settings?
- How do we resolve conflicts between game-theoretic and computational constraints?
- Development of new theories and methodologies
New Research Area

Explosion of research in the area (Algorithmic game theory, computational mechanism design, Distributed algorithmic mechanism design, computational game theory,...)

- Papers appearing in AAAI, AAMAS, UAI, NIPS, PODC, SIGCOMM, INFOCOMM, SODA, STOC, FOCS, ...
- Papers by CS researchers appearing in Games and Economic Behavior, Journal of Economic Theory, Econometrica,...
- Numerous workshops and meetings,...
This Course

The goals of this course

- Introduction to game theory and mechanism design
- Study how they are used in computer science
- Study computational issues that arise

Course structure

- Introductory lectures
- Current research papers
Topics

- **Game theory**
 - Normal form and extensive form games
 - Dominance and iterated dominance
 - Minimax strategies, Nash equilibrium, correlated equilibrium, backward induction, subgame perfect equilibrium, Bayesian games
 - Repeated games, Folk theorems
 - Coalitional game theory

- **Social choice**
 - Arrow’s theorem, voting

- **Mechanism Design**
 - Incentive compatibility, individual rationality, positive and negative results, Revelation principle, Vlckrey-Clarke-Groves mechanisms
 - Auctions (both single-item and combinatorial)

- **Applications**
Topics

- Game theory
 - Normal form and extensive form games
 - Dominance and iterated dominance
 - Minimax strategies, Nash equilibrium, correlated equilibrium, backward induction, subgame perfect equilibrium, Bayesian games
 - Repeated games, Folk theorems
 - Coalitional game theory

- Social choice
 - Arrow’s theorem, voting

- Mechanism Design
 - Incentive compatibility, individual rationality, positive and negative results, Revelation principle, Vickrey-Clarke-Groves mechanisms
 - Auctions (both single-item and combinatorial)

- Applications
Topics

- **Game theory**
 - Normal form and extensive form games
 - Dominance and iterated dominance
 - Minimax strategies, Nash equilibrium, correlated equilibrium, backward induction, subgame perfect equilibrium, Bayesian games
 - Repeated games, Folk theorems
 - Coalitional game theory

- **Social choice**
 - Arrow’s theorem, voting

- **Mechanism Design**
 - Incentive compatibility, individual rationality, positive and negative results, Revelation principle, Vickrey-Clarke-Groves mechanisms
 - Auctions (both single-item and combinatorial)

- **Applications**
Topics

- Game theory
 - Normal form and extensive form games
 - Dominance and iterated dominance
 - Minimax strategies, Nash equilibrium, correlated equilibrium, backward induction, subgame perfect equilibrium, Bayesian games
 - Repeated games, Folk theorems
 - Coalitional game theory

- Social choice
 - Arrow’s theorem, voting

- Mechanism Design
 - Incentive compatibility, individual rationality, positive and negative results, Revelation principle, Vickrey-Clarke-Groves mechanisms
 - Auctions (both single-item and combinatorial)

- Applications
Prerequisites

- No formal prerequisites
- Students should be comfortable with mathematical proofs
- Some familiarity with probability
- Ideally students will have an AI course and background in algorithms and complexity
- I will cover the game theory and mechanism design required
Grading

- 2-3 assignments on game theory and mechanism design: 10%
- In class presentation(s): 20%
 - Peer-reviewed
- Class participation: 20%
- Research project: 50%
Presentations

Every student is responsible for presenting a research paper in class

- Short survey + a critique
- Everyone in class will provide feedback on the presentation
- Marks given on coverage of material + organization + presentation
Class Participation

You must participate!

- Before each class (before 6:00 am the day of the presentation) you must email me a list of comments on the paper to be presented\(^1\)
 - What is the main contribution?
 - Is it important? Why?
 - What assumptions are made?
 - What applications might arise from the results?
 - How can it be extended?
 - What was unclear?
 - ...

\(^1\)Plain text please. No attachments!
Projects

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, *in-depth* literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

- Proposals due October 18
- Final projects due December 6th\(^2\)
- Students will present projects in class

\(^2\)I will likely be flexible with this.
The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, *in-depth* literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

- Proposals due October 18
- Final projects due December 6th\(^2\)
- Students will present projects in class

\(^2\)I will likely be flexible with this.
The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, *in-depth* literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

- Proposals due October 18
- Final projects due December 6th2
- Students will present projects in class

2I will likely be flexible with this.
Projects

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, *in-depth* literature review, ...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

- Proposals due October 18
- Final projects due December 6th²

Students will present projects in class

²I will likely be flexible with this.
Projects

The goal of the project is to develop a deep understanding of a topic related to the course.

- The topic is open
 - Theoretical, experimental, *in-depth* literature review,...
 - Can be related to your own research
 - If you have trouble coming up with a topic, come and talk to me

- Proposals due October 18
- Final projects due December 6th\(^2\)
- Students will present projects in class

\(^2\) I will likely be flexible with this.
Other Information

- Class times: Monday-Wednesday 10:00-11:30
- Office Hours: Mondays 1:30-2:30
- Course website

http://www.cs.uwaterloo.ca/~klarson/teaching/F06-

\(^3\)Except Sept 18, Oct 16, and Nov 20.
Outline

1. Introduction
 - Introduction
 - Two Communities

2. This Course

3. Examples
 - Selfish Routing
 - London Bus System
Selfish Routing

- We want to find the least-cost route from S to T.
- Costs are private information – we do not know them.
- We do know that agents (nodes) are interested in maximizing revenue.
- How can we use this to figure out the least-cost route?
Outline

1. Introduction
 - Introduction
 - Two Communities

2. This Course

3. Examples
 - Selfish Routing
 - London Bus System
London Bus System

- 5 million passengers daily
- 7500 buses
- 700 routes
- The system has been privatized since 1997 by using competitive tendering
- Idea: Run an auction to allocate routes to companies

As of April 2004
Auction Protocol

Let G be set of all routes, I be the set of bidders

- Agent i submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S^* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1,...,S_n)} \sum_i v_i(S_i)$$

- Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1,...,S_n)} \sum_{j \neq i} v_j^*(S_j)$$

- Allocate each agent S_i^*, each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$
Auction Protocol

- Let G be the set of all routes, I be the set of bidders
- Agent i submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S^* to maximize sum of reported bids
 \[
 V^*(I) = \max_{(S_1, \ldots, S_n)} \sum_i v_i(S_i)
 \]
- Compute best allocation without each agent
 \[
 V^*(I \setminus i) = \max_{(S_1, \ldots, S_n)} \sum_{j \neq i} v_j^*(S_j)
 \]
- Allocate each agent S_i^*, each agent pays
 \[
 P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]
 \]
Auction Protocol

- Let G be the set of all routes, I be the set of bidders
- Agent i submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S^* to maximize sum of reported bids

\[
V^*(I) = \max_{(S_1, \ldots, S_n)} \sum_i v_i(S_i)
\]

- Compute best allocation without each agent

\[
V^*(I \setminus i) = \max_{(S_1, \ldots, S_n)} \sum_{j \neq i} v_j^*(S_j)
\]

- Allocate each agent S^*_i, each agent pays

\[
P(i) = v_i^*(S^*_i) - [V^*(I) - V^*(I \setminus i)]
\]
Auction Protocol

- Let G be set of all routes, I be the set of bidders
- Agent i submits bid $v_i(S)$ for all bundles $S \subseteq G$
- Compute allocation S^* to maximize sum of reported bids

$$V^*(I) = \max_{(S_1, \ldots, S_n)} \sum_i v_i(S_i)$$

- Compute best allocation without each agent

$$V^*(I \setminus i) = \max_{(S_1, \ldots, S_n)} \sum_{j \neq i} v_j^*(S_j)$$

- Allocate each agent S_i^*, each agent pays

$$P(i) = v_i^*(S_i^*) - [V^*(I) - V^*(I \setminus i)]$$
London Bus System

- **Mechanism**: Generalized Vickrey Auction
 - Specifies the rules
 - Describes how outcome will be determined
- **Strategies**
 - Policies which specify what actions to take
 - Agents are self-interested and rational
- **GVA** is efficient and strategy-proof
Computational Issues

- **Winner determination problem**: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem \(I + 1 \) times

- Agent valuation problem

- Communication complexity
 - Each agent has to communicate \(2^{700} \) bids to the auctioneer
Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem $l + 1$ times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2^{700} bids to the auctioneer
Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem \(I + 1 \) times
- Agent valuation problem
 - Communication complexity
 - Each agent has to communicate \(2^{700} \) bids to the auctioneer
Computational Issues

- Winner determination problem: Select bids to maximize sum of reported values
 - Maximum weighted set packing (NP-hard)
 - Solve this problem $I + 1$ times
- Agent valuation problem
- Communication complexity
 - Each agent has to communicate 2^{700} bids to the auctioneer