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What is a bid?

“Theoretically speaking, bids are simply abstract elements drawn

from some space of strategies defined by the auction.”[Nis04]

• Main challenge arises when dealing with combinational auctions.

• For m items, there are 2m − 1 possible bids to specify.

• Bidding languages are meant to provide the syntax for encoding

bids’ information in a succinct, simple manner.

• Needless to say, similar to any language, there is a trade of between

expressiveness and simplicity.
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Some Definitions

• We denote the number of items in an auction by m.

• v is the valuation function. v(S) is the valuation of items in S by

a bidder.

• Notice that the value for S is assumed to be equal to v(S). In this

sense, the bidding languages can be considered valuation languages.

• Complementary: if v(S ∪ T ) > v(S) + v(T ).

• Substitutes: if v(S ∪ T ) < v(S) + v(T ).
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Valuation Functions

Bidding languages basically try to efficiently model different pat-

terns for bids. We are interested in bidding languages that can present

useful patterns efficiently.

A natural taxonomy for valuation functions is:

1. Symmetric Valuations: The valuation function v(S) depends only

on |S|. All items are similar from bidders’ point of view.

2. Asymmetric Valuations: The valuation function distinguishes bet-

ween different items in the auction.
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• The simple unit demand valuation: v(S) = 1 for all S 6= ∅.

• The simple K-Budget valuation: v(S) = min(K, |S|).

• The Majority-valuation: v(S) = 1 if |S| ≥ m/2 else v(S) = 0.

• The General Symmetric valuation: The price pj specifies the

price for the j’th item won and v(S) =
∑|S|

j=1 pj.

• A Downward Symmetric valuation: A symmetric valuation where

p1 ≥ p2 ≥ . . . ≥ pm.
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Some Asymmetric Valuations

• An additive valuation: Value of item j is vj and v(S) = Σj∈Svj.

• The unit demand valuation: The value for item j is vj and the

bidder wants only a single item, v(S) = maxj∈Svj.

• The monochromatic valuation: There are colors blue and red,
and the bidder requires items from the “same” color. Given the

value for each item is 1, the valuation for any set of k blue and l

red items is max(k, l).

• The one-of-each-kind valuation: There are k pairs and l single-

tons (|S| = 2k + l). the bidder desires one item from each type at

value 1. The valuation would be then (k + l).
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Bidding Languages

• Having recognized some natural valuation patterns, we would like

to have bidding languages that can specify such patterns efficiently

and succinctly.

• Often each language is good in expressing some patterns and weak

or unable in expressing some other patterns.

• While some classes of languages can be compared based on their

expressivity, it is not always possible to accurately compare two

bidding languages.
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Atomics Bids

• Also called Single Minded Bids. [LOS99]

• (S, P ) says that the bidder chooses S, a subset of available items,

for price P :

v(S) = P

• For all S′ 6= S, v(S′) = 0.

• Obviously, atomic bids are not expressive enough to express majority

of symmetric/assymetric valuation patterns, e.g. they can not

specify “simple additive valuation”.
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• Bidder chooses multiple bids. Bids are not necessarily disjoint.

S = (S1, p1) OR (S2, p2) OR . . . OR (Sk, pk)

• The valuation of bids for a certain bidder consists of only disjoint

bids.

v(S) = MaxW(
∑

i∈W pi), Si, Sj ∈ W ⇒ Si ∩ Sj = ∅

• The real problem with OR bids is that they don’t support substi-

tutability.
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OR Bids: Example

• It is not to possible to express simple unit demand valuation.

• Consider the following OR bid:

S = { ({1}, 5$) OR ({2}, 4$) OR ({1, 2}, 7$)) }

The bidder is interested in having both items 1 and 2, only if she

pays 7$.

We can’t express such constraints with OR bids.
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XOR Bids

XOR is expressive enough to express all valuation variations. Given

a XOR bid:

S = (S1, p1) XOR (S2, p2) XOR . . . XOR (Sk, pk)

the valuation function is as follows:

v(S) = maxi|si⊆S pi

11



XOR Bids: Cont’d

12



XOR Bids: Cont’d

• While XOR is more expressive than OR, there are valuations that can

be specified more succinctly by OR.

12



XOR Bids: Cont’d

• While XOR is more expressive than OR, there are valuations that can

be specified more succinctly by OR.

• Consider the simple additive valuation. OR can specify that in size

m while XOR require 2m clauses.

12



XOR Bids: Cont’d

• While XOR is more expressive than OR, there are valuations that can

be specified more succinctly by OR.

• Consider the simple additive valuation. OR can specify that in size

m while XOR require 2m clauses.

• This motivates to combine OR and XOR. The result introduces two

languages: OR-of-XORs and XOR-of-ORs.
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OR-of-XORs

• Bids consist of clauses that entirely consist of XOR bids and such

clauses are connected by ORs.

(. . . XOR . . .) OR (. . . XOR . . .) OR . . . OR (. . . XOR . . .)

• A downward slopping symmetric evaluation can be expressed in

size m2.

p1 ≥ p2

v(s) = ( ((s, p1) XOR (s, p1)) OR ((s, p2) XOR (s, p2)) )
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exponential, 2.2m/2.
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v(S) = ((s1r, p1r) XOR (s2r, p2r) XOR ((s1r ∪ s2r), p1r + p2r)
XOR . . . XOR ((s1b ∪ s2b), p1b + p2b)

• This motivates the bidding language XOR-of-ORs.
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XOR-of-ORs

• Bids consist of clauses that entirely consist of OR bids and such

clauses are connected by XORs.

(. . . OR . . .) XOR (. . . OR . . .) XOR . . . XOR (. . . OR . . .)

• Consider the problem of specifying monochromatic valuation of m

items. This can be achieved in size m with XOR-of-ORs.

S = {(s1r, p1r), (s2r, p2r), (s1b, p1b), (s2b, p2b)}
v(S) = ( ((s1r, p1r) OR (s2r, p2r)) XOR ((s1b, p1b)OR(s2b, p2b)) )

• However, The K-budget valuation requires exponential time to be

expressed.
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OR/XOR Formulas

• Alternatively, it is possible to specify the bids by applying OR and

XOR on the valuation function.

• This approach is also capable of simulating XOR-of-ORs and

OR-of-XORs, and all other bidding languages discussed so far.

– (v XORu)(S) = max(v(S), u(S))
– (v ORu)(S) = maxR,T⊆S,R∩T=∅(v(R) + u(T ))

• OR/XOR formulas are defined recursively and provide succinct pre-

sentation of bids.
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OR∗ Bids

• The idea is to express XOR with OR.

• This can be achieved by using dummy items.

• Dummy items don’t have any values but can constrain bids to

represent XOR.
(S1, p1) XOR (S2, p2)

Can be shown as:

(S1 ∪ {dummy}, p1) OR (S2 ∪ {dummy}, p2)

• This language can simulate all bidding languages discussed so far.
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OR∗ Bids Cont’d

• It can be shown that any OR/XOR bid with s clause can be converted

to an OR∗ bid with s clause and s2 dummy bids.

• This can be observed by considering that there are at most

(
s

2

)
mutually exclusive bid pairs.

• The good thing is that we can use the systems compatible with OR
bids to work with OR∗.
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Extensions to Bidding Languages: Logical Languages

• Natural extension of OR and XOR would be a bidding language that

supports more logical operations.

• In [HB00], authors use CNF-like formulas (AND-of-ORs) to express

bids.

• A more general approach would use all possible logical connectors.
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Extensions to Bidding Languages: Logical
Languages Cont’d

• Another approach,in [ZBS03], uses AND on valuation function rather

than on bids themselves. Authors call such ANDs, ALL.

v = v1 ALL v2{
v(S) = 0, if (v1(S) = 0) or (v1(S) = 0)
v(S) = v1(S) + v2(S), otherwise

• They use ALL along with SUM and MAX operators for expressing

bids.

• This approach can solve some special cases of preference elicitation

in polynomial time.
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Extensions to Bidding Languages: k-OR

• k-OR is the generalization of OR and XOR.

• An evaluation on k-OR lets at most k bids to be true.

v = ORk(v1 . . . vt)
v(S) = maxS1...Sk

∑k
j=1 vij(Sj)

S1 . . . Sk form a partition of the items andi1 < i2 . . . < ik.
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Extensions to Bidding Languages: associated prices

• Instead of specifying the bids’ values explicitly the bidder factors

out the base price (associated prices).

• Let item A’s value to be 101 and item B’s to be, 102. They can

be considered to provide at least benefit of 100 and thus can be

shown as:

( [(A, 1) OR (B, 2)], 100).
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Special Cases: Symmetric Valuations

• Symmetric valuations often only deal with the number of items

won.

• The information for valuation v1, v2, . . . , vm can be stored by a

simple vector.

• Alternatively, it is possible to store marginal values, pi = vi− vi−1.

• Also, it is possible to model the information by a demand curve d.
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Special Cases: Network Valuations

• Often, the items for sale are network resources. The resources can

be considered as edges of a graph where nodes represent locations

of the network.

• Consider, as an example, the case where a bidder is interested

to transfer information from node s to t. The bid then should

consist of (s, t) and the proposed price p for network resource(s)

for information transformation between s and t.
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Complexity of Bidding Languages

Complexity of bidding languages can be studied in three areas:

• Expressions: How efficient different bidding languages can be

translated.

• Winner Determination: In general, it is independent of the bidding

language and leads to NP-Complete problems.

• Evaluation: It is basically about how we can extract information

from bids.
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Complexity of Evaluation

Two basic types of evaluation, are:

• value query: Given a set S what is v(S)?

• demand query:Given a set of items {pi}, find the set that maxi-

mizes v(S)−
∑

i∈S pi.

A value query can be reduced to a demand query via polynomial-time

Turing reduction.

While, for Simple and XOR bids, it is possible to provide efficient

algorithm for evaluation, for other bidding languages, evaluation

usually leads to the problem of item allocation which is in general

NP-Complete.
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• The idea is to design a language that is capable of simulating all

bidding languages.

• An idea is to submit program as valuations for the bids.

• The challenge is then what should such programs provide.

• It follows that such program valuations still hold the NP-

Completeness property of other bidding languages.
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Conclusion

• Differen Bidding Languages provide different levels of expressivity.

• Regardless of the type of bidding language, we are dealing with

NP-Complete problems of allocation and winner determination.

• In this way, it seems to me that expressivity should be the main

concern for the bidding languages.

• While there seems to exist a hierarchy of languages based on their

expressiveness, there is no formal specification of ideal bidding

language.
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