Bidding Languages

Noam Nissan
October 18, 2004

Presenter:
Shahram Esmaeilsabzali

Outline

Outline

- The Problem

Outline

- The Problem
- Some Bidding Languages(OR, XOR, and etc)

Outline

- The Problem
- Some Bidding Languages(OR, XOR, and etc)
- Extension to Bidding Languages

Outline

- The Problem
- Some Bidding Languages(OR, XOR, and etc)
- Extension to Bidding Languages
- Complexity of handling bids

Outline

- The Problem
- Some Bidding Languages(OR, XOR, and etc)
- Extension to Bidding Languages
- Complexity of handling bids
- Conclusion

What is a bid?

What is a bid?

"Theoretically speaking, bids are simply abstract elements drawn from some space of strategies defined by the auction." [Nis04]

What is a bid?

"Theoretically speaking, bids are simply abstract elements drawn from some space of strategies defined by the auction." [Nis04]

- Main challenge arises when dealing with combinational auctions.

What is a bid?

"Theoretically speaking, bids are simply abstract elements drawn from some space of strategies defined by the auction." [Nis04]

- Main challenge arises when dealing with combinational auctions.
- For m items, there are $2^{m}-1$ possible bids to specify.

What is a bid?

"Theoretically speaking, bids are simply abstract elements drawn from some space of strategies defined by the auction." [Nis04]

- Main challenge arises when dealing with combinational auctions.
- For m items, there are $2^{m}-1$ possible bids to specify.
- Bidding languages are meant to provide the syntax for encoding bids' information in a succinct, simple manner.

What is a bid?

"Theoretically speaking, bids are simply abstract elements drawn from some space of strategies defined by the auction." [Nis04]

- Main challenge arises when dealing with combinational auctions.
- For m items, there are $2^{m}-1$ possible bids to specify.
- Bidding languages are meant to provide the syntax for encoding bids' information in a succinct, simple manner.
- Needless to say, similar to any language, there is a trade of between expressiveness and simplicity.

Some Definitions

Some Definitions

- We denote the number of items in an auction by m.

Some Definitions

- We denote the number of items in an auction by m.
- v is the valuation function. $v(S)$ is the valuation of items in S by a bidder.

Some Definitions

- We denote the number of items in an auction by m.
- v is the valuation function. $v(S)$ is the valuation of items in S by a bidder.
- Notice that the value for S is assumed to be equal to $v(S)$. In this sense, the bidding languages can be considered valuation languages.

Some Definitions

- We denote the number of items in an auction by m.
- v is the valuation function. $v(S)$ is the valuation of items in S by a bidder.
- Notice that the value for S is assumed to be equal to $v(S)$. In this sense, the bidding languages can be considered valuation languages.
- Complementary: if $v(S \cup T)>v(S)+v(T)$.

Some Definitions

- We denote the number of items in an auction by m.
- v is the valuation function. $v(S)$ is the valuation of items in S by a bidder.
- Notice that the value for S is assumed to be equal to $v(S)$. In this sense, the bidding languages can be considered valuation languages.
- Complementary: if $v(S \cup T)>v(S)+v(T)$.
- Substitutes: if $v(S \cup T)<v(S)+v(T)$.

Valuation Functions

Valuation Functions

Bidding languages basically try to efficiently model different patterns for bids. We are interested in bidding languages that can present useful patterns efficiently.

Valuation Functions

Bidding languages basically try to efficiently model different patterns for bids. We are interested in bidding languages that can present useful patterns efficiently.

A natural taxonomy for valuation functions is:

Valuation Functions

Bidding languages basically try to efficiently model different patterns for bids. We are interested in bidding languages that can present useful patterns efficiently.

A natural taxonomy for valuation functions is:

1. Symmetric Valuations: The valuation function $v(S)$ depends only on $|S|$. All items are similar from bidders' point of view.

Valuation Functions

Bidding languages basically try to efficiently model different patterns for bids. We are interested in bidding languages that can present useful patterns efficiently.

A natural taxonomy for valuation functions is:

1. Symmetric Valuations: The valuation function $v(S)$ depends only on $|S|$. All items are similar from bidders' point of view.
2. Asymmetric Valuations: The valuation function distinguishes between different items in the auction.

Some Symmetric Valuations

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$
- The simple unit demand valuation: $v(S)=1$ for all $S \neq \emptyset$.

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$
- The simple unit demand valuation: $v(S)=1$ for all $S \neq \emptyset$.
- The simple K-Budget valuation: $v(S)=\min (K,|S|)$.

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$
- The simple unit demand valuation: $v(S)=1$ for all $S \neq \emptyset$.
- The simple K-Budget valuation: $v(S)=\min (K,|S|)$.
- The Majority-valuation: $v(S)=1$ if $|S| \geq m / 2$ else $v(S)=0$.

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$
- The simple unit demand valuation: $v(S)=1$ for all $S \neq \emptyset$.
- The simple K-Budget valuation: $v(S)=\min (K,|S|)$.
- The Majority-valuation: $v(S)=1$ if $|S| \geq m / 2$ else $v(S)=0$.
- The General Symmetric valuation: The price p_{j} specifies the price for the j 'th item won and $v(S)=\sum_{j=1}^{|S|} p_{j}$.

Some Symmetric Valuations

- The simple additive valuation: $v(S)=|S|$
- The simple unit demand valuation: $v(S)=1$ for all $S \neq \emptyset$.
- The simple K-Budget valuation: $v(S)=\min (K,|S|)$.
- The Majority-valuation: $v(S)=1$ if $|S| \geq m / 2$ else $v(S)=0$.
- The General Symmetric valuation: The price p_{j} specifies the price for the j 'th item won and $v(S)=\sum_{j=1}^{|S|} p_{j}$.
- A Downward Symmetric valuation: A symmetric valuation where $p_{1} \geq p_{2} \geq \ldots \geq p_{m}$.

Some Asymmetric Valuations

Some Asymmetric Valuations

- An additive valuation: Value of item j is v^{j} and $v(S)=\Sigma_{j \in S} v^{j}$.

Some Asymmetric Valuations

- An additive valuation: Value of item j is v^{j} and $v(S)=\Sigma_{j \in S} v^{j}$.
- The unit demand valuation: The value for item j is v^{j} and the bidder wants only a single item, $v(S)=\max _{j \in S} v^{j}$.

Some Asymmetric Valuations

- An additive valuation: Value of item j is v^{j} and $v(S)=\Sigma_{j \in S} v^{j}$.
- The unit demand valuation: The value for item j is v^{j} and the bidder wants only a single item, $v(S)=\max _{j \in S} v^{j}$.
- The monochromatic valuation: There are colors blue and red, and the bidder requires items from the "same" color. Given the value for each item is 1 , the valuation for any set of k blue and l red items is $\max (k, l)$.

Some Asymmetric Valuations

- An additive valuation: Value of item j is v^{j} and $v(S)=\Sigma_{j \in S} v^{j}$.
- The unit demand valuation: The value for item j is v^{j} and the bidder wants only a single item, $v(S)=\max _{j \in S} v^{j}$.
- The monochromatic valuation: There are colors blue and red, and the bidder requires items from the "same" color. Given the value for each item is 1 , the valuation for any set of k blue and l red items is $\max (k, l)$.
- The one-of-each-kind valuation: There are k pairs and l singletons $(|S|=2 k+l)$. the bidder desires one item from each type at value 1 . The valuation would be then $(k+l)$.

Bidding Languages

Bidding Languages

- Having recognized some natural valuation patterns, we would like to have bidding languages that can specify such patterns efficiently and succinctly.

Bidding Languages

- Having recognized some natural valuation patterns, we would like to have bidding languages that can specify such patterns efficiently and succinctly.
- Often each language is good in expressing some patterns and weak or unable in expressing some other patterns.

Bidding Languages

- Having recognized some natural valuation patterns, we would like to have bidding languages that can specify such patterns efficiently and succinctly.
- Often each language is good in expressing some patterns and weak or unable in expressing some other patterns.
- While some classes of languages can be compared based on their expressivity, it is not always possible to accurately compare two bidding languages.

Atomics Bids

Atomics Bids

- Also called Single Minded Bids. [LOS99]

Atomics Bids

- Also called Single Minded Bids. [LOS99]
- (S, P) says that the bidder chooses S, a subset of available items, for price P :

$$
v(S)=P
$$

Atomics Bids

- Also called Single Minded Bids. [LOS99]
- (S, P) says that the bidder chooses S, a subset of available items, for price P :

$$
v(S)=P
$$

- For all $S^{\prime} \neq S, v\left(S^{\prime}\right)=0$.

Atomics Bids

- Also called Single Minded Bids. [LOS99]
- (S, P) says that the bidder chooses S, a subset of available items, for price P :

$$
v(S)=P
$$

- For all $S^{\prime} \neq S, v\left(S^{\prime}\right)=0$.
- Obviously, atomic bids are not expressive enough to express majority of symmetric/assymetric valuation patterns, e.g. they can not specify "simple additive valuation".

OR Bids

OR Bids

- Bidder chooses multiple bids. Bids are not necessarily disjoint.

$$
S=\left(S_{1}, p_{1}\right) \mathrm{OR}\left(S_{2}, p_{2}\right) \mathrm{OR} \ldots \mathrm{OR}\left(S_{k}, p_{k}\right)
$$

OR Bids

- Bidder chooses multiple bids. Bids are not necessarily disjoint.

$$
S=\left(S_{1}, p_{1}\right) \mathrm{OR}\left(S_{2}, p_{2}\right) \mathrm{OR} \ldots \mathrm{OR}\left(S_{k}, p_{k}\right)
$$

- The valuation of bids for a certain bidder consists of only disjoint bids.

$$
v(S)=\operatorname{Max}_{W}\left(\sum_{i \in W} p_{i}\right), \quad S_{i}, S_{j} \in W \Rightarrow S_{i} \cap S_{j}=\emptyset
$$

OR Bids

- Bidder chooses multiple bids. Bids are not necessarily disjoint.

$$
S=\left(S_{1}, p_{1}\right) \mathrm{OR}\left(S_{2}, p_{2}\right) \mathrm{OR} \ldots \mathrm{OR}\left(S_{k}, p_{k}\right)
$$

- The valuation of bids for a certain bidder consists of only disjoint bids.

$$
v(S)=\operatorname{Max}_{\mathrm{W}}\left(\sum_{i \in W} p_{i}\right), \quad S_{i}, S_{j} \in W \Rightarrow S_{i} \cap S_{j}=\emptyset
$$

- The real problem with OR bids is that they don't support substitutability.

OR Bids: Example

OR Bids: Example

- It is not to possible to express simple unit demand valuation.

OR Bids: Example

- It is not to possible to express simple unit demand valuation.
- Consider the following OR bid:

$$
S=\{(\{1\}, 5 \$) \text { OR }(\{2\}, 4 \$) \text { OR }(\{1,2\}, 7 \$))\}
$$

OR Bids: Example

- It is not to possible to express simple unit demand valuation.
- Consider the following OR bid:

$$
S=\{(\{1\}, 5 \$) \text { OR }(\{2\}, 4 \$) \text { OR }(\{1,2\}, 7 \$))\}
$$

The bidder is interested in having both items 1 and 2, only if she pays $7 \$$.

OR Bids: Example

- It is not to possible to express simple unit demand valuation.
- Consider the following OR bid:

$$
S=\{(\{1\}, 5 \$) \mathrm{OR}(\{2\}, 4 \$) \mathrm{OR}(\{1,2\}, 7 \$))\}
$$

The bidder is interested in having both items 1 and 2, only if she pays $7 \$$.

We can't express such constraints with OR bids.

XOR Bids

XOR Bids

XOR is expressive enough to express all valuation variations. Given a XOR bid:

$$
S=\left(S_{1}, p_{1}\right) \operatorname{XOR}\left(S_{2}, p_{2}\right) \operatorname{XOR} \ldots \operatorname{XOR}\left(S_{k}, p_{k}\right)
$$

XOR Bids

XOR is expressive enough to express all valuation variations. Given a XOR bid:

$$
S=\left(S_{1}, p_{1}\right) \operatorname{XOR}\left(S_{2}, p_{2}\right) \operatorname{XOR} \ldots \operatorname{XOR}\left(S_{k}, p_{k}\right)
$$

the valuation function is as follows:

$$
v(S)=\max _{i \mid s_{i} \subseteq S} p_{i}
$$

XOR Bids: Cont'd

XOR Bids: Cont'd

- While XOR is more expressive than OR, there are valuations that can be specified more succinctly by OR.

XOR Bids: Cont'd

- While XOR is more expressive than OR, there are valuations that can be specified more succinctly by OR.
- Consider the simple additive valuation. OR can specify that in size m while XOR require 2^{m} clauses.

XOR Bids: Cont'd

- While XOR is more expressive than OR, there are valuations that can be specified more succinctly by OR.
- Consider the simple additive valuation. OR can specify that in size m while XOR require 2^{m} clauses.
- This motivates to combine OR and XOR. The result introduces two languages: OR-of-XORs and XOR-of-ORs.

OR-of-XORs

OR-of-XORs

- Bids consist of clauses that entirely consist of XOR bids and such clauses are connected by ORs.
(... XOR . . .) OR (. . XOR . . .) OR . . . OR (. . XOR . . .)

OR-of-XORs

- Bids consist of clauses that entirely consist of XOR bids and such clauses are connected by ORs.

$$
(\ldots \text { XOR ...) OR (... XOR ...) OR ... OR (. . XOR ... })
$$

- A downward slopping symmetric evaluation can be expressed in size m^{2}.

$$
\begin{aligned}
& p_{1} \geq p_{2} \\
& v(s)=\left(\left(\left(s, p_{1}\right) \operatorname{XOR}\left(s, p_{1}\right)\right) \operatorname{OR}\left(\left(s, p_{2}\right) \operatorname{XOR}\left(s, p_{2}\right)\right)\right)
\end{aligned}
$$

OR-of-XORs Cont'd

OR-of-XORs Cont'd

- The monochromatic valuation of m items, on the other hand, is exponential, $2.2^{m / 2}$.

$$
\begin{aligned}
& S=\left\{\left(s_{1 r}, p_{1 r}\right),\left(s_{2 r}, p_{2 r}\right),\left(s_{1 b}, p_{1 b}\right),\left(s_{2 b}, p_{2 b}\right)\right\} \\
& v(S)=\left(\left(s_{1 r}, p_{1 r}\right) \operatorname{XOR}\left(s_{2 r}, p_{2 r}\right) \operatorname{XOR}\left(\left(s_{1 r} \cup s_{2 r}\right), p_{1 r}+p_{2 r}\right)\right. \\
& \quad \operatorname{XOR} \ldots \operatorname{XOR}\left(\left(s_{1 b} \cup s_{2 b}\right), p_{1 b}+p_{2 b}\right)
\end{aligned}
$$

OR-of-XORs Cont'd

- The monochromatic valuation of m items, on the other hand, is exponential, $2.2^{m / 2}$.

$$
\begin{aligned}
& S=\left\{\left(s_{1 r}, p_{1 r}\right),\left(s_{2 r}, p_{2 r}\right),\left(s_{1 b}, p_{1 b}\right),\left(s_{2 b}, p_{2 b}\right)\right\} \\
& v(S)=\left(\left(s_{1 r}, p_{1 r}\right) \operatorname{XOR}\left(s_{2 r}, p_{2 r}\right) \operatorname{XOR}\left(\left(s_{1 r} \cup s_{2 r}\right), p_{1 r}+p_{2 r}\right)\right. \\
& \quad \operatorname{XOR} \ldots \operatorname{XOR}\left(\left(s_{1 b} \cup s_{2 b}\right), p_{1 b}+p_{2 b}\right)
\end{aligned}
$$

- This motivates the bidding language XOR-of-ORs.

XOR-of-ORs

XOR-of-ORs

- Bids consist of clauses that entirely consist of OR bids and such clauses are connected by XORs.
(. . . OR . . .) XOR (. . . OR . . .) XOR . . . XOR (. . . OR . . .

XOR-of-ORs

- Bids consist of clauses that entirely consist of OR bids and such clauses are connected by XORs.
(...OR . . .) XOR (. . . OR . . .) XOR . . . XOR (. . . OR . . .
- Consider the problem of specifying monochromatic valuation of m items. This can be achieved in size m with XOR-of-ORs.

$$
\begin{aligned}
& S=\left\{\left(s_{1 r}, p_{1 r}\right),\left(s_{2 r}, p_{2 r}\right),\left(s_{1 b}, p_{1 b}\right),\left(s_{2 b}, p_{2 b}\right)\right\} \\
& v(S)=\left(\left(\left(s_{1 r}, p_{1 r}\right) \operatorname{OR}\left(s_{2 r}, p_{2 r}\right)\right) \operatorname{XOR}\left(\left(s_{1 b}, p_{1 b}\right) \operatorname{OR}\left(s_{2 b}, p_{2 b}\right)\right)\right)
\end{aligned}
$$

XOR-of-ORs

- Bids consist of clauses that entirely consist of OR bids and such clauses are connected by XORs.

$$
(\ldots \text { OR . . .) XOR (. . OR . . .) XOR . . . XOR (. . OR . . . }
$$

- Consider the problem of specifying monochromatic valuation of m items. This can be achieved in size m with XOR-of-ORs.

$$
\begin{aligned}
& S=\left\{\left(s_{1 r}, p_{1 r}\right),\left(s_{2 r}, p_{2 r}\right),\left(s_{1 b}, p_{1 b}\right),\left(s_{2 b}, p_{2 b}\right)\right\} \\
& v(S)=\left(\left(\left(s_{1 r}, p_{1 r}\right) \operatorname{OR}\left(s_{2 r}, p_{2 r}\right)\right) \operatorname{XOR}\left(\left(s_{1 b}, p_{1 b}\right) \operatorname{OR}\left(s_{2 b}, p_{2 b}\right)\right)\right)
\end{aligned}
$$

- However, The K-budget valuation requires exponential time to be expressed.

OR/XOR Formulas

OR/XOR Formulas

- Alternatively, it is possible to specify the bids by applying $O R$ and XOR on the valuation function.

OR/XOR Formulas

- Alternatively, it is possible to specify the bids by applying $O R$ and XOR on the valuation function.
- This approach is also capable of simulating XOR-of-ORs and OR-of-XORs, and all other bidding languages discussed so far.

OR/XOR Formulas

- Alternatively, it is possible to specify the bids by applying $O R$ and XOR on the valuation function.
- This approach is also capable of simulating XOR-of-ORs and OR-of-XORs, and all other bidding languages discussed so far.
$-(v \operatorname{XOR} u)(S)=\max (v(S), u(S))$
$-(v \mathrm{OR} u)(S)=\max _{R, T \subseteq S, R \cap T=\emptyset}(v(R)+u(T))$

OR/XOR Formulas

- Alternatively, it is possible to specify the bids by applying $O R$ and XOR on the valuation function.
- This approach is also capable of simulating XOR-of-ORs and OR-of-XORs, and all other bidding languages discussed so far.
$-(v \operatorname{XOR} u)(S)=\max (v(S), u(S))$
$-(v \mathrm{OR} u)(S)=\max _{R, T \subseteq S, R \cap T=\emptyset}(v(R)+u(T))$
- OR/XOR formulas are defined recursively and provide succinct presentation of bids.

OR* Bids

OR* Bids

- The idea is to express XOR with OR.

OR* Bids

- The idea is to express XOR with OR.
- This can be achieved by using dummy items.

OR* Bids

- The idea is to express XOR with OR.
- This can be achieved by using dummy items.
- Dummy items don't have any values but can constrain bids to represent XOR.

$$
\left(S_{1}, p_{1}\right) \operatorname{XOR}\left(S_{2}, p_{2}\right)
$$

OR* Bids

- The idea is to express XOR with OR.
- This can be achieved by using dummy items.
- Dummy items don't have any values but can constrain bids to represent XOR.

$$
\left(S_{1}, p_{1}\right) \operatorname{XOR}\left(S_{2}, p_{2}\right)
$$

Can be shown as:

$$
\left(S_{1} \cup\{d u m m y\}, p_{1}\right) \text { OR }\left(S_{2} \cup\{d u m m y\}, p_{2}\right)
$$

OR* Bids

- The idea is to express XOR with OR.
- This can be achieved by using dummy items.
- Dummy items don't have any values but can constrain bids to represent XOR.

$$
\left(S_{1}, p_{1}\right) \operatorname{XOR}\left(S_{2}, p_{2}\right)
$$

Can be shown as:

$$
\left(S_{1} \cup\{d u m m y\}, p_{1}\right) \text { OR }\left(S_{2} \cup\{d u m m y\}, p_{2}\right)
$$

- This language can simulate all bidding languages discussed so far.

OR* Bids Cont'd

OR* Bids Cont'd

- It can be shown that any OR/XOR bid with s clause can be converted to an $\mathbf{O R}^{*}$ bid with s clause and s^{2} dummy bids.

OR* Bids Cont'd

- It can be shown that any OR/XOR bid with s clause can be converted to an $\mathbf{O R}^{*}$ bid with s clause and s^{2} dummy bids.
- This can be observed by considering that there are at most $\binom{s}{2}$ mutually exclusive bid pairs.

OR* Bids Cont'd

- It can be shown that any OR/XOR bid with s clause can be converted to an $\mathbf{O R}^{*}$ bid with s clause and s^{2} dummy bids.
- This can be observed by considering that there are at most $\binom{s}{2}$ mutually exclusive bid pairs.
- The good thing is that we can use the systems compatible with OR bids to work with OR*.

Extensions to Bidding Languages: Logical Languages

Extensions to Bidding Languages: Logical Languages

- Natural extension of OR and XOR would be a bidding language that supports more logical operations.

Extensions to Bidding Languages: Logical Languages

- Natural extension of OR and XOR would be a bidding language that supports more logical operations.
- In [HB00], authors use CNF-like formulas (AND-of-ORs) to express bids.

Extensions to Bidding Languages: Logical Languages

- Natural extension of OR and XOR would be a bidding language that supports more logical operations.
- In [HB00], authors use CNF-like formulas (AND-of-ORs) to express bids.
- A more general approach would use all possible logical connectors.

Extensions to Bidding Languages: Logical Languages Cont'd

Extensions to Bidding Languages: Logical Languages Cont'd

- Another approach, in [ZBS03], uses AND on valuation function rather than on bids themselves. Authors call such ANDs, ALL.

$$
\begin{aligned}
& v=v_{1} \operatorname{ALL} v_{2} \\
& \left\{\begin{array}{l}
v(S)=0, \quad \operatorname{if}\left(v_{1}(S)=0\right) \text { or }\left(v_{1}(S)=0\right) \\
v(S)=v_{1}(S)+v_{2}(S), \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Extensions to Bidding Languages: Logical Languages Cont'd

- Another approach, in [ZBS03], uses AND on valuation function rather than on bids themselves. Authors call such ANDs, ALL.

$$
\begin{aligned}
& v=v_{1} \operatorname{ALL} v_{2} \\
& \left\{\begin{array}{l}
v(S)=0, \quad \text { if }\left(v_{1}(S)=0\right) \text { or }\left(v_{1}(S)=0\right) \\
v(S)=v_{1}(S)+v_{2}(S), \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- They use ALL along with SUM and MAX operators for expressing bids.

Extensions to Bidding Languages: Logical Languages Cont'd

- Another approach, in [ZBS03], uses AND on valuation function rather than on bids themselves. Authors call such ANDs, ALL.

$$
\begin{aligned}
& v=v_{1} \operatorname{ALL} v_{2} \\
& \left\{\begin{array}{l}
v(S)=0, \quad \text { if }\left(v_{1}(S)=0\right) \text { or }\left(v_{1}(S)=0\right) \\
v(S)=v_{1}(S)+v_{2}(S), \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- They use ALL along with SUM and MAX operators for expressing bids.
- This approach can solve some special cases of preference elicitation in polynomial time.

Extensions to Bidding Languages: k - OR

Extensions to Bidding Languages: $k-0 \mathrm{R}$

- k - $O R$ is the generalization of $O R$ and XOR.

Extensions to Bidding Languages: k - OR

- $k-O R$ is the generalization of $O R$ and $X O R$.
- An evaluation on k-OR lets at most k bids to be true.

$$
\begin{aligned}
& v=O R_{k}\left(v_{1} \ldots v_{t}\right) \\
& v(S)=\max _{S_{1} \ldots S_{k}} \sum_{j=1}^{k} v_{i_{j}}\left(S_{j}\right)
\end{aligned}
$$

$S_{1} \ldots S_{k}$ form a partition of the items and $i_{1}<i_{2} \ldots<i_{k}$.

Extensions to Bidding Languages: associated prices

Extensions to Bidding Languages: associated prices

- Instead of specifying the bids' values explicitly the bidder factors out the base price (associated prices).

Extensions to Bidding Languages: associated prices

- Instead of specifying the bids' values explicitly the bidder factors out the base price (associated prices).
- Let item A's value to be 101 and item B's to be, 102. They can be considered to provide at least benefit of 100 and thus can be shown as:

$$
([(\mathrm{A}, 1) \mathrm{OR}(\mathrm{~B}, 2)], 100)
$$

Special Cases: Symmetric Valuations

Special Cases: Symmetric Valuations

- Symmetric valuations often only deal with the number of items won.

Special Cases: Symmetric Valuations

- Symmetric valuations often only deal with the number of items won.
- The information for valuation $v_{1}, v_{2}, \ldots, v_{m}$ can be stored by a simple vector.

Special Cases: Symmetric Valuations

- Symmetric valuations often only deal with the number of items won.
- The information for valuation $v_{1}, v_{2}, \ldots, v_{m}$ can be stored by a simple vector.
- Alternatively, it is possible to store marginal values, $p_{i}=v_{i}-v_{i-1}$.

Special Cases: Symmetric Valuations

- Symmetric valuations often only deal with the number of items won.
- The information for valuation $v_{1}, v_{2}, \ldots, v_{m}$ can be stored by a simple vector.
- Alternatively, it is possible to store marginal values, $p_{i}=v_{i}-v_{i-1}$.
- Also, it is possible to model the information by a demand curve d.

Special Cases: Network Valuations

Special Cases: Network Valuations

- Often, the items for sale are network resources. The resources can be considered as edges of a graph where nodes represent locations of the network.

Special Cases: Network Valuations

- Often, the items for sale are network resources. The resources can be considered as edges of a graph where nodes represent locations of the network.
- Consider, as an example, the case where a bidder is interested to transfer information from node s to t. The bid then should consist of (s, t) and the proposed price p for network resource(s) for information transformation between s and t.

Complexity of Bidding Languages

Complexity of Bidding Languages

Complexity of bidding languages can be studied in three areas:

Complexity of Bidding Languages

Complexity of bidding languages can be studied in three areas:

- Expressions: How efficient different bidding languages can be translated.

Complexity of Bidding Languages

Complexity of bidding languages can be studied in three areas:

- Expressions: How efficient different bidding languages can be translated.
- Winner Determination: In general, it is independent of the bidding language and leads to NP-Complete problems.

Complexity of Bidding Languages

Complexity of bidding languages can be studied in three areas:

- Expressions: How efficient different bidding languages can be translated.
- Winner Determination: In general, it is independent of the bidding language and leads to NP-Complete problems.
- Evaluation: It is basically about how we can extract information from bids.

Complexity of Evaluation

Complexity of Evaluation

Two basic types of evaluation, are:

- value query: Given a set S what is $v(S)$?

Complexity of Evaluation

Two basic types of evaluation, are:

- value query: Given a set S what is $v(S)$?
- demand query:Given a set of items $\left\{p_{i}\right\}$, find the set that maximizes $v(S)-\sum_{i \in S} p_{i}$.

Complexity of Evaluation

Two basic types of evaluation, are:

- value query: Given a set S what is $v(S)$?
- demand query:Given a set of items $\left\{p_{i}\right\}$, find the set that maximizes $v(S)-\sum_{i \in S} p_{i}$.

A value query can be reduced to a demand query via polynomial-time Turing reduction.

Complexity of Evaluation

Two basic types of evaluation, are:

- value query: Given a set S what is $v(S)$?
- demand query:Given a set of items $\left\{p_{i}\right\}$, find the set that maximizes $v(S)-\sum_{i \in S} p_{i}$.

A value query can be reduced to a demand query via polynomial-time Turing reduction.

While, for Simple and XOR bids, it is possible to provide efficient algorithm for evaluation, for other bidding languages, evaluation usually leads to the problem of item allocation which is in general NP-Complete.

Complete Bidding Languages

Complete Bidding Languages

- The idea is to design a language that is capable of simulating all bidding languages.

Complete Bidding Languages

- The idea is to design a language that is capable of simulating all bidding languages.
- An idea is to submit program as valuations for the bids.

Complete Bidding Languages

- The idea is to design a language that is capable of simulating all bidding languages.
- An idea is to submit program as valuations for the bids.
- The challenge is then what should such programs provide.

Complete Bidding Languages

- The idea is to design a language that is capable of simulating all bidding languages.
- An idea is to submit program as valuations for the bids.
- The challenge is then what should such programs provide.
- It follows that such program valuations still hold the NPCompleteness property of other bidding languages.

Conclusion

Conclusion

- Differen Bidding Languages provide different levels of expressivity.
- Regardless of the type of bidding language, we are dealing with NP-Complete problems of allocation and winner determination.
- In this way, it seems to me that expressivity should be the main concern for the bidding languages.
- While there seems to exist a hierarchy of languages based on their expressiveness, there is no formal specification of ideal bidding language.

Reference

Literatur

[HB00] Holger H. Hoos and Craig Boutilier. Solving combinatorial auctions using stochastic local search. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pages 22-29. AAAI Press / The MIT Press, 2000.
[LOS99] Daniel J. Lehmann, Liaden Ita O'Callaghan, and Yoav Shoham. Truth revelation in approximately efficient combinatorial auctions. In ACM Conference on Electronic Commerce, pages 96-102, 1999.
[Nis04] Noam Nisan. Bidding Languages. 2004.
[ZBS03] Martin A. Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-time preference elicitation with value queries. In Proceedings of the 4th ACM conference on Electronic commerce, pages 176-185. ACM Press, 2003.

