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General Discrete Resource Allocation Problem

Definition

G, a set of n discrete goods

A, a set of m agents

⊥, the seller

p =< p1, ..., pn >, set of prices

Valuations

Agent j has utility vj(X ) for holding set of goods X , X ⊆ G

Seller has utility qi = reserve price, if good i is unallocated
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Allocation Solution

A mapping, f , assigns discrete good to agents :

f : G → A ∪ ⊥

Allocated to Unallocated

agent j

Set of goods Fj ≡ {i |f (i) = j} F⊥ ≡ {i |f (i) =⊥}
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Values Achievable

Maximum surplus value of agent j for holding set X at p

Hj(p) ≡ max
X⊆G

[vj(X )−
∑
i∈X

pi ]

Global value of solution f

Sum of agent values achieved + reserve value of goods not sold

v(f ) ≡
m∑

j=1

vj(Fj) +
∑
i∈F⊥

qi
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Simple Scheduling

Definition

Each agent j has a job of :

Length λj

Deadlines d1
j < ... < d

Kj

j

Values v1
j > ... > v

Kj

j

where 1 ≤ Kj ≤ n, n total number of slots available

Several deadlines : higher values for earlier deadlines
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Different Problems

1 Lengths of job :

Single-unit λj = 1 for all j

Multiple-unit λj > 1 for some j

2 Deadlines of job :

Fixed-deadline Kj = 1 for all j

Variable-deadline Kj > 1 for some j
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Price Equilibrium

Definition

A solution f is in equilibrium at prices p iff :

1 All agents j get goods in allocation f that max his surplus at p

vj(Fj)−
∑
i∈Fj

pi = Hj(p)

2 For all i , pi ≥ qi

3 For all i ∈ F⊥, pi = qi
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Optimality of Equilibrium

Theorem

For the general discrete resource allocation problem, if there exists
a p such that f is in equilibrium at p, then f is an optimal solution.

Proof (Main Idea).

Price forms a boundary between equilibrium and alternate
solution.
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No Equilibrium Exists

Problem of complementarities in Agent1 preferences.
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Equilibrium

Single-unit scheduling problem always has at least one price
equilibrium.

But in general case, equilibrium may not exist.

Single complementarity is sufficient to prevent a price
equilibrium.
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Market Mechansim Advantages

Considering decentralized scheduling :

Markets are naturally decentralized

Communication = exchange of bids & prices

Mechanism can elicit info for Pareto & global optima

Price is a common scale of value

Price system significantly simplifies resources allocation
mechanism
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Ascending Auction Protocol

Mechanism Bidding Rules

Bid price, βi = highest bid so far

Ask price, αi = βi + ε or qi if undefined

Agent must bid at least ask price

Agent Bidding Policies

Agent bids ask prices for the set of goods, maximizing his surplus.
No anticipation of other agents’ strategies.
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Ascending Auction Problems

1 Protocol may not find an equilibrium solution.
AA Example 1

2 Protocol can produce a solution arbitrary far from optimal.
AA Example 2

3 Protocol restricted to single-unit length job,
is still not guaranteed to reach equilibrium.

AA Example 3
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Incremental Auction Closing

Sunk costs are considered

Positive or negative effects on the solution
AAIC Example 1

No effect for:

1 Single-unit problem, no sunk costs
2 If allocation represents a price equilibrium

Order of reopening matters
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Combinatorial Auction Needs

Ascending auction mostly works well for single-unit problem.

Ascending auction cannot always find existing equilibria in
multiple-unit problem.

Combinatorial auctions help complementary issues.
But, computationally more complex.

Elodie Fourquet Mechanism Design for Scheduling



Introduction
Formal Model

Ascending Auction (MM)
Combinatorial Auction (MM)

Generalized Vickery Auction (DRM)
Conclusions

Formal Definition
Equilibrium Definition
Example
Performance

Combinatorial Auction Needs

Ascending auction mostly works well for single-unit problem.

Ascending auction cannot always find existing equilibria in
multiple-unit problem.

Combinatorial auctions help complementary issues.
But, computationally more complex.

Elodie Fourquet Mechanism Design for Scheduling



Introduction
Formal Model

Ascending Auction (MM)
Combinatorial Auction (MM)

Generalized Vickery Auction (DRM)
Conclusions

Formal Definition
Equilibrium Definition
Example
Performance

Problem Allocation Reformulation

Definition

G, a set of n discrete basic goods

G’, a expanded set of market goods
good(y , z), denotes “bundle of y slots no later than slot z”

A, a set of m agents

⊥, the seller

P’, set of prices p(y , z) for all market goods in G’
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Scheduling Computational Tractability

Order

No need to consider all 2n combinations

θ(l · n) market goods in G’ and prices in P’
where l is a bound on y , i.e. y ≤ l (l ≥ maxj∈A λj)

Because additional structure (similar to Rothkopf at al. 1998)
Agents will want some number of slots before some deadline

Goal is to preserve tractability
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Market Good Allocation Solution

A mapping, φ, assigns market goods to agents :

φ : G ′ → A ∪ ⊥

Set of market goods allocated to agent j :

Φj ≡ {i |φ(i) = j}

A market allocation φ is consistent with a solution f
if f gives each agent what is promised by φ
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Combinatorial Price Equilibrium

Definition

A solution φ is in equilibrium at prices p iff :

1 For all agent j , Φj maximizes j ’s guaranteed surplus at p

2 Market good price at least min consistent reserve price.
For all (y , z), p(y , z) ≥ minB

∑
i∈B qi

3 There exists an implementing solution f , consistent with φ s.t.
1 Allocated market good price ≥ sum of basic good prices

comprising market good in f
2 When market good could be satisfied by basic goods

unallocated, reserve prices of those goods define an upper
bound on its price
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Agents’ Jobs
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Optimal Solution
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Combinatorial Auction

Consider l = 2, p(1, 9 : 00) = p(1, 10 : 00) = 2.1 and
p(2, 10 : 00) = 2.9

Computed allocation Φ1 = {(2, 10 : 00)}, Φ2 = �
Satisfies combinatorial equilibrium conditions.
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Optimal and Equilibrium

Combinatorial equilibrium prices can support :

1 Optimal solution
2 But also non-optimal solution.

Sub-optimality is not usefully bounded
-even without reserve prices.

Optimal solution supported by equilibria in original
formulation are retained in the combinatorial one.

Given monotone reserve prices, optimal solution can be
supported with θ(l · n) price system.
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Generalized Vickery Auction

Neither ascending nor combinatorial auction guarantee
optimal solution to scheduling problem.

GVA finds efficient schedules for all our scheduling problem.

GVA is a direct revelation mechanism :

GVA is not a price system.
Rather GVA computes overall payments for agents’ allocations.
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VGA Protocol

Mechanism Bidding Rules

Each agent j announces his alleged utility function ṽj .
Not constrained to be truthful.

Auction knows the reserve values, qi .

Allocation Rules and Optimality

After receiving bids, GVA returns :

1 Allocation solution f ∗,

2 Payments to agents.
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VGA Payments

Payments to agent j :

V−j ≡ W−j(f
∗)− Pj(ṽj)

where :

1 W−j = agents’ total reported value at f ∗, excluding j
2 Pj = residual payment (function of other agent’s

reported valuations)

Payments force truthful bidding as a dominant strategy.
Optimal allocation is computed on truthful bids, therefore
allocation is globally optimal.
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VGA

Mechanism finds optimal solution : f ∗(9 : 00) = 2 and
f ∗(10 : 00) = 3

j Agent 1 Agent 2 Agent3

W−j 4 2 2

vj(Fj) + V−j 0 + [4− P1] 2 + [2− P2] 2 + [2− P3]
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VGA

For participation, received total value vj(Fj) + V−j ≥ 0
Pj ≤ 4 for j ∈ {1, 2, 3}

j Agent 1 Agent 2 Agent3

vj(Fj) + V−j 0 + [4− P1] 2 + [2− P2] 2 + [2− P3]

Pj 4 (pays 0) 3 (pays 1) 3 (pays 1)

Net revenue $2.0
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Payments
Example
Performance

Performance

Single-unit, fixed-deadline has optimal solution
Greedy algorithm running in θ(m lg m)

VGA mechanism must solve multiple optimization problems :

1 One to determine optimal solution
2 One for each agent j with his bids removed to find Pj

Therefore VGA adds a factor of m to the computation

Single-unit, fixed-deadline has optimal VGA solution
With preference revelation needs θ(m2 lg m)

Multiple-unit scheduling problem is NP-complete
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But there exists more scheduling problems,
If we have time, for example....
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Schedulings seen so far
Another Scheduling Problem : Online and Real-time
Last words...

Online Real-time Scheduling Problem

Online scheduling of jobs on a single processor
Online = not all jobs are known in advance

Jobs are owned by seperate, self-interested agents

1 Decide when to submit job after true release time
2 Can inflate job’s length
3 Can declare arbitrary value and deadline for job

Strategic agent can manipulate the system by annoucing false
characteristics of job, if beneficial for its completion

Sellers schedule jobs and determine amount to charge to
buyers
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Ascending Auction (MM)
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Generalized Vickery Auction (DRM)
Conclusions

Schedulings seen so far
Another Scheduling Problem : Online and Real-time
Last words...

Online Real-time Scheduling Goals

1 Schedule needs to be constructed in real-time

2 Maximizing sum of job’s values completed on time

3 Online algorithm needs to compare well against the optimal
offline one

4 Preemption of a running job by a newly arrived job is possible
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Schedulings seen so far
Another Scheduling Problem : Online and Real-time
Last words...

Online Real-time Scheduling Direct Mechanism

Input : job declared by each agent

Output : schedule and payment to be made by each agent to
mechanism

Goal = incentive compatibility
Agent’s best interests :

1 To submit job upon release
2 To declare truthfully value, length and deadline of job

Approximate solutions compare well with offline solutions
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Generalized Vickery Auction (DRM)
Conclusions

Schedulings seen so far
Another Scheduling Problem : Online and Real-time
Last words...

To Take Home

Scheduling is important

Many types of scheduling problem exist

Most scheduling problems are hard,
and most often NP-complete

Price systems and auctions are a promising new approach for
multiple scheduling problems

Auction mechanisms encourage truth revelation about jobs
Crucial for distributed scheduling
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Questions ?
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Challenges

1 Message passing / closure / final schedule determination
Protocol problem : asynchronous communication

2 Appropriate messages elicited
Mechanism design problem : socially desirable outcome
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Challenges

1 Message passing / closure / final schedule determination
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Combinatorial Price Equilibrium

Definition

A solution φ is in equilibrium at prices p iff :

1 For all agent j , Φj maximizes j’s guaranteed surplus at p

2 For all (y , z), p(y , z) ≥ min{B⊆Gz :|B|=y}
∑

i∈B qi

3 There exists an implementing solution f s.t.
1 For all j ,

∑
(y ,z)∈Φj

p(y , z) ≥
∑

i∈Fj
qi

2 For all “unallocated (y,z)”, p(y , z) ≤ minB

∑
i∈B qi
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AA arbitrary far from optimal
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Bids

Agent 2 wins slot 3 but cannot complete his job

Agent 3 cannot get slot 3, p3 > 2 blocked by Agent 2

Not an optimal solution. Solution global value = $20.0
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Problem
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Equilibrium Solution

Price equilibrium if Agent3 wins slot 3 at p3 ≤ 2

Optimal solution. Solution global value = $22.0

Return
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Agent jobs
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

A2 Bids First
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

A1 Bids Second
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Allocation

Agent 2 wins slot 2 but cannot complete his job

Solution global value = $3.0
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Optimal Solution

Optimal solution (not equilibrium).
Solution global value = $12.0

Solution can be arbitrary far from optimal

Return
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Agents’ jobs
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Allocation

But p2 = $3 < p1 not an equilibrium

Agent 1 would maximize his surplus by demanding p2 at the
final prices
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Equilibrium Solution

Return
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Auction Closed for Slot 2
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Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Agent 2 sunk cost

Agent 2 treats his payment as sunk, and value slot 1 at $11
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Appendix

Decentralized Scheduling Problem
AA may not find equilibrium solution
AA arbitrary far from optimal
AA single-unit may not find equilibrium solution
AAIC may do better

Allocation

Agent 2 outbids Agent 1 for slot 1

Solution global value = $11
(better >$3 but not optimal <$12)

Return
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