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ABSTRACT
In this paper we present a methodology for deciding the bidding
strategy of agents participating in a significant number of simulta-
neous auctions, when finding an analytical solution is not possible.
We decompose the problem into sub-problems and then use rigor-
ous experimentation to determine the best partial strategies. In or-
der to accomplish this we use a modular, adaptive and robust agent
architecture combining principled methods and empirical knowl-
edge. We applied this methodology when creating WhiteBear, the
agent that achieved the highest score at the 2002 International Trad-
ing Agent Competition (TAC). TAC was designed as a realistic
complex test-bed for designing agents trading in e-marketplaces.
The agent faced several technical challenges. Deciding the opti-
mal quantities to buy and sell, the desired prices and the time of
bid placement was only part of its design. Other important issues
that we resolved were balancing the aggressiveness of the agent’s
bids against the cost of obtaining increased flexibility and the in-
tegration of domain specific knowledge with general agent design
techniques. We present our observations in dealing with these de-
sign tradeoffs and back up our conclusions with empirical results.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Intelligent Agents

General Terms
Design, Experimentation

Keywords
Agent-Mediated Electronic Commerce, Bidding Agents, Bidding
Strategies, Electronic Marketplaces, Simultaneous Auctions

1. INTRODUCTION
Auctions are becoming an increasingly popular method for trans-

acting business either over the Internet (e.g. eBay) or even between
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businesses and their suppliers. While a good deal of research on
auction theory exists, this is mostly from the point of view of auc-
tion mechanisms (for a survey see [9]). Strategies for bidding in
an auction for a single item are also known. However, in practice
agents (or humans) are rarely interested in a single item.1 They
wish to bid in several auctions in parallel for multiple interacting
goods. In this case they must bid intelligently in order to get ex-
actly what they need. For example a person may wish to buy a
TV and a VCR, but if she does not have a “flexible plan”, she may
only end up acquiring the VCR. Goods are called complementary
if the value of acquiring both together is higher than the sum of
their individual values. On the other hand if that person bids for
VCRs in several auctions, she may end up with more than one.
Goods are called substitutable if the value of acquiring two of them
is less than the sum of their individual values. There have been rel-
atively few studies about agents bidding in multiple simultaneous
auctions and they mostly involve bidding for substitutable goods
(e.g. [1], [11], [8]). In this and other related work, such as [7], re-
searchers tested their ideas about agent design in smaller market
games that they designed themselves. Time was spent on the de-
sign and implementation of the market, but there was no common
market scenario that researchers could focus on and use to compare
strategies. In order to provide a universal test-bed, Wellman and his
team [17] designed and organized the Trading Agent Competition
(TAC). It is a challenging benchmark domain which incorporates
several elements found in real marketplaces in the realistic setup of
travel agents that organize trips for their clients. It includes several
complementary and substitutable goods traded in a variety of dif-
ferent auctions. However, instead of bidding for bundles of goods
and letting the auctioneer determine the final allocation that maxi-
mizes its income (as in the combinatorial auction mechanism2), in
this setting the computational cost is shifted to the agents who have
to deal themselves with the complementarities and substitutabilities
between the goods.

In order to tackle this problem, we investigate a methodology for
decomposing the problem into several subparts and use systematic
experimentation to determine the strategies that work best for the
problem in question. We chose TAC as our test-bed and we imple-
mented our methodology in WhiteBear, the agent that achieved the
top score (1st place) in this year’s (2002) TAC. An earlier version of
Whitebear, which was not tuned using the methodology decribed in
this paper, reached 3rd place in last year’s competition.3 Our goal
is to provide a scalable and robust bidding agent that incorporates

1Even on eBay one looks for the same good in several auctions!
2For instances of this problem and algorithms to determine the win-
ners, see [4], [12], [18], [10].
3It was during this phase that a small number of parameters (e.g. the
increment to be added to the current hotel prices when bidding) was
determined. During the experiments we only experimented with the
different strategies and did not really change these parameters.
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principled methods and empirical knowledge. As part of our exper-
imentation, we studied design tradeoffs applicable to many market
domains. We examine the tradeoff of the agent paying a premium
either for acquiring information or for having a wider range of ac-
tions available against the increased flexibility that this informa-
tion provides. We also examined how agents of varying degrees of
bidding aggressiveness perform in a range of environments against
other agents of different aggressiveness. We find that there is a
certain optimal level of “aggressiveness”: an agent that is just ag-
gressive enough to implement its plan outperforms agents who are
either not aggressive enough or too aggressive. We will show that
the resulting agent strategy is quite robust and performs well in a
range of agent environments.

We also show that even though generating a good plan is crucial
for the agent to maximize its utility, it may not be necessary to com-
pute the optimal plan. In particular, we will see that a randomized
greedy search methods produces plans that are close to optimal and
of sufficient quality to allow for effective bidding. The use of such a
randomized greedy strategy results in a more scalable agent design.
Overall our agent is adaptive and robust. Moreover, it appears that
its design elements are general enough to work well under a vari-
ety of settings that requires bidding in a large number of multiple
simultaneous auctions.

The paper is organized as follows. In the section 2, we give the
definition of the general problem our methodology is applied and
the rules of the TAC market game. In section 3, we present our
methodology and how it is applied to the TAC domain. In section
4 we explain in detail the controlled experiments needed in order
to implement our methodology and to study the agent design trade-
offs. In section 5 we present the results and our observations from
the TAC competition. Finally in section 6 we discuss possible di-
rections for future work and conclude.

2. TRADING GOODS IN SIMULTANEOUS
AUCTIONS

We first present the problem setting in section 2.1. In section 2.2,
we present the description of the TAC game together with the rea-
sons why this game captures many of the issues of the general prob-
lem setting.

2.1 General Problem Setting
The general problem setting that we deal with involves several

autonomous agents, which wish to trade commodities in order to
acquire the goods that they need. There is a predefined time win-
dow during which the trades can take place (defining the duration
of each “game”), after which each agent calculates the payoff to
itself. The agents are not allowed to cooperate in any explicit way
(even though implicit cooperation might arise from their behavior)
and they are also assumed to be self interested. In particular, each
agent i is trying to maximize its own utility function Ui(θi, Ci, ti),
where θi is type of the agent (parameters selected randomly from
a given distribution, that influence the utility function), Ci is the
set of commodities that the agent owns and ti is the net monetary
transfer, that is the algebraic sum of payments for selling goods mi-
nus the cost of buying goods. In most cases we can assume that
the utility is quasilinear, i.e. linear in the monetary transfers ti;
thus Ui(θi, Ci, ti) = ui(θi, Ci) + ti. The combination of goods
Ci owned should include several complementary and substitutable
goods in order for the game to be interesting; otherwise one might
be able to find an equilibrium to the game analytically.

The mechanism used in order to exchange the various commodi-
ties is several different auctions during which each unit of a certain
commodity is traded in exchange for a monetary payment. We will
assume that there is no discriminatory pricing in these auctions,
which means that if two agents wish to buy the same good at the
same time they will have to make the same payment. We will also

assume that similar goods are sold in auctions with similar rules4.
Other than that we allow the auctions to have a wide variety of rules,
the most important of which are:

1. Agents may act as buyers only, sellers only or both in the
auctions, so we can have single-sided and double-sided auc-
tions. In case e.g. they act as buyers then an external source
would have to provide (input) goods into the system and re-
move money from it.

2. There can be a finite or an infinite number of units for each
commodity. In the extreme case, only 1 unit exists.

3. Auctions can clear continuously, several times or only once.
The first case means that trades can take place at any time,
while the last that trades take place exactly once, when the
auction closes.

4. Auctions can close at set known times, or at unspecified times
(e.g. determined by random parameters).

5. Clearing prices can be determined only by the bids of the
agents or by external parameters as well (e.g. set by an ex-
ternal seller). Pricing in the first case in particular can follow
any pricing scheme (e.g. N th, (N + 1)th highest bid, where
N is the number of identical goods for sale in the auction).

The question we are interested in answering is what bids to place
at each auction. There are therefore 3 main parameters to deter-
mine: the quantity of each good to be bought, the prices offered for
each individual unit and the times at which the bids are placed.

2.2 TAC: A description of the Market Game
The TAC game encapsulates most of the issues of the general

problem and is thus an appropriate test-bed for evaluating our agent
design.

• Each auction has rules which cover the various options dis-
cussed in the previous section: some auctions are single-
sided and others double-sided, some offer a finite and some
an infinite number of identical goods, some clear continu-
ously and others only once, some close at preset times and
some at random times, some auction clearing prices are de-
termined by the agents’ bids and others by outside sellers.

• There are 28 auctions running in parallel (and in fact our
strategies and methodology scales well and would also work
for a larger TAC game with many more auctions). This set-
ting is too complex to allow for analytical derivation of equi-
librium (or optimal) strategies.

• A number of different tradeoffs are present in this game, which
makes the determination of an appropriate bidding strategy
a difficult design problem. For a detailed analysis of these
tradeoffs, see section 3.2.

• The TAC setting is designed to model a realistic market place
setting, as might be encountered by, for example, a travel
agent. It also includes several complementary and substi-
tutable goods and a complex utility function.

In the Trading Agent Competition, an agent competes against 7
other agents in each game. Each agent is a travel agent with the goal
of arranging a trip to Tampa for CUST = 8 customers. To do so it
must purchase plane tickets, hotel rooms and entertainment tickets.
Each good is traded in separate simultaneous online auctions. The
agents send their bids to the central server and are informed about
price quotes and transaction information. Each game lasts for 12
minutes (720 seconds). For the full details of the mechanism and
the rules of TAC, see the url: http://www.sics.se/tac.
Plane tickets (8 auctions): There is only one flight per day each
4We make these assumptions because this usually makes reasoning
about bidding strategies easier. However there are several cases in
which our methodology would work even if discriminatory pricing
exists or similar goods are sold in auctions with different rules.
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way with an infinite amount of tickets, which are sold in separate,
continuously clearing auctions in which prices follow a random
walk. For each flight auction a hidden parameter x is chosen. The
prices tend to increase every 30 seconds or so and the hidden pa-
rameter influences the change. The agents may not resell tickets.
Hotels (8 auctions): There are only two hotels in Tampa: the
Tampa Towers (cleaner and more convenient) and the Shoreline
Shanties (the not so good and expected to be the less expensive ho-
tel). There are 16 rooms available each night at each hotel. Rooms
for each of the days are sold by each hotel in separate, ascending,
multi-unit, 16th-price auctions with price quotes announced peri-
odically. A customer must stay in the same hotel for the duration
of her stay and placed bids may not be removed. One randomly
selected auction closes at minutes 4 to 11 (one each minute, on the
minute). No prior knowledge of the closing order exists and agents
may not resell rooms they have bought.
Entertainment tickets (12 auctions): They are traded (bought and
sold) among the agents in continuous double auctions (stock market
type auctions) that close when the game ends. Bids match contin-
uously. Each agent starts with an endowment of 12 random tickets
and these are the only tickets available in the game.

The type of each agent is determined by the preferences of its
clients. Each customer i has a preferred arrival date PRarr

i and
a preferred departure date PRdep

i . She also has a preference for
staying at the good hotel represented by a utility bonus UH i as well
as individual preferences for each entertainment event j represented
by utility bonuses UENT i,j .

The parameters of customer i’s itinerary that an agent has to de-
cide upon are the assigned arrival and departure dates, AAi and
ADi respectively, whether the customer is placed in the good hotel
GHi (which takes value 1 if she is placed in the Towers and 0 oth-
erwise) and ENT i,j which is the day that a ticket of the event j is
assigned to customer i (this is e.g. 0 if no such ticket is assigned).
Let DAYS be the total number of days and ET the number of dif-
ferent entertainment types.

The utility that the travel plan has for each customer i is:
util i =1000 + UH i · GHi (1)

+
�ADi

d=AAi
max

j

�
UENT i,j · I(ENT i,j = d)

�

−100 · �|PRarr
i − AAi| + |PRdep

i − ADi|
�

if 1 ≤ AAi < ADi ≤ DAYS ,
else utili = 0, because the plan is not feasible.
It should be noted that only one entertainment ticket can be as-

signed each day and this is modeled by taking the maximum utility
from each entertainment type on each day. We assume that an un-
feasible plan means no plan (e.g. AAi = ADi = 0). The function
I(bool expr) is 1 if the bool expr =TRUE and 0 otherwise.

The total income for an agent is equal to the sum of its clients’
utilities. Each agent searches for a set of itineraries (represented by
the parameters AAi, ADi, GHi and ENT i,j ) that maximize this
profit while minimizing its expenses.

3. OUR PROPOSED METHODOLOGY AND
THE AGENT ARCHITECTURE

In the first year that the TAC was organized (2000), the auctions
rules did not introduce any real tradeoffs in the design of the agent.
A dominant bidding strategy was found by some of the top scor-
ing agents: buy everything at the last moment and bid high (the
marginal utility) for hotel rooms [5]. This happened because the
hotel auctions were not closing at random intervals and the prices
of plane tickets remained approximately the same over time. There-
fore most top-scoring teams concentrated on solving the optimiza-
tion problem of maximizing the utility, since bid prices and bid
placement times were not an issue. The rule changes in the 2001
TAC introduced the tradeoffs that made the game interesting. Most

teams decided to use a learning strategy (e.g. ATTac, the winner of
the 2000 TAC, used a boosting-based method [14]) in order to pre-
dict the prices at different times and also decided that decomposing
the problem completely was probably not to their best interest as
there are obvious dependencies among the quantity, the price and
the placement time of each bid. Given our research interests in-
volve bidding strategies for agents and experimentation on how the
different agent behaviors influence the behavior of the multi-agent
system, we decided to investigate in the opposite direction and fur-
ther decompose the problem.

The high-level description of the methodology we propose is:

A. Decompose the problem into subproblems:
1. Decide the quantities to buy assuming that everything

will be bought at current prices (optimize utility)
2. For each different auction type (and good) do:

a. Determine boundary “partial strategies” for this auction
b. Generate “intermediate” strategies. Main approaches:

- combine the boundary strategies, or
- modify them using empirical knowledge from the domain

B. Use rigorous experimentation to evaluate partial strategies:
1. Keep other partial strategies fixed if possible
2. Experiment with different mixtures of agents as follows:

a. Keep fixed the agents using intermediate strategies
b. Vary the number of agents using boundary strategies

3. Evaluate differences in performance using statistical tests
4. Determine best strategy overall (in all possible mixtures)

The first part of our methodology requires little further explana-
tion; for each different auction type, which corresponds to a differ-
ent commodity type, we compute (usually analytically but some-
times also using domain knowledge) the boundary “partial strate-
gies” that are possible.5 We then combine parts of the boundary
strategies or modify some of their parts to form intermediate strate-
gies that behave between the extreme bounds (e.g. if the one bound-
ary strategy will place a bid at price plow and the other at price phigh

in a certain case, then the intermediate strategy should place its bid
at price p : plow ≤ p ≤ phigh). For the specifics of how this part
of the methodology is applied to the TAC domain, see section 3.2.
The quantities placed in each bid are determined independently by
maximizing the utility of the agent assuming that all the goods are
bought at some predicted prices and that every unit will be bought
instantly. A dedicated module called “the planner” is doing this
task. The planer for the TAC problem is described in section 3.1.

The second part of our methodology deals with the way experi-
ments are run in order to determine the best combination of partial
strategies. Each set of experiments is designed to evaluate the par-
tial strategies in different mixes of agents. Determining the mix-
ture of agents is an issue of paramount importance in multi-agent
systems, since the performance of each strategy depends on the
competition offered by the other agents. In order to explore the
whole spectrum of mixtures we propose to keep a fixed number of
agents who are using the intermediate strategies, while systemati-
cally changing the mixture of agents using the boundary cases. For
example we start with all “boundary strategy” agents using the low-
bidding strategy and in each subsequent experiment replace some
of these with others using the high-bidding strategy until in the last
experiment we have only the latter type. This will explore suffi-
ciently the different multi-agent environment that the agents can
participate in, since the behavior caused by the intermediate strate-
gies is within the bounds of the behavior caused by the boundary
strategies. For more details about how this helps us determine the
experiments to run in the case of TAC in order to choose the strategy
that performs the best across all agent mixtures, see section 4. Us-

5We called these strategies partial because they only deal with one
particular type of auction.
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ing this methodology also allows us to derive general observations
about the behavior of certain strategies in different domains.

This methodology and the desire to have a scalable and general
system imposes some requirements on the agent architecture that
we must use. For an agent architecture to be useful in a general
setting, it must be adaptive, flexible and easily modifiable, so that
it is possible to make changes on the fly and adapt the agent to
the system in which it is operating. In addition, as information is
gained by participation in the system, the agent architecture must
allow and facilitate the incorporation of the knowledge obtained.
The architecture should support interchangeable parts so that dif-
ferent strategies are easy to implement and change, otherwise run-
ning experiments with agents using the different strategies would be
quite time consuming and also the incorporation of domain specific
knowledge would be an arduous task. These were lessons that we
incorporated into the design of our architecture. The general archi-
tecture that we used follows the “Sense Model Plan Act (SMPA)”
architecture (this name originated with Brooks [2]). Other trading
agents, e.g., [6], have used a similar global design. Including the
decomposition in the bidding section of the architecture that we in-
troduced, the overall architecture can be summarized as follows:

while (not end of game) {
1. Get price quotes and transaction information
2. Calculate price estimates
3. Planner: Form and solve optimization problem
4. Bidder: Bid to implement plan

Determine each bid independently of all other bids
Use a different “partial strategy” for each different bid }

This architecture is quite modular and each component of the
agent can be replaced by another or modified. In fact parts of
the components themselves are also substitutable (e.g. the partial
strategies). One last requirement that is desired is to design our the
modules of the agent to be as fast and adaptive as possible with-
out sacrificing efficiency. Speed is not so much of a problem in
the TAC game, since each agent can spend up to 30-60 seconds de-
ciding its next bids, but in other domains it is crucial to react fast
(within seconds) to domain information and other agents’ actions.

In the next sections, we present how the first part of our method-
ology is applied in the TAC domain, that is the decomposition into
subproblems. In section 3.1 we present the planner module and in
section 3.2 the selection of boundary and intermediate strategies.

3.1 Planner
The planner is a module of our architecture. In order to formulate

the optimization problem that it solves, it is necessary to estimate
the prices at which commodities are expected to be bought or sold.
We started from the “priceline” idea presented in [6] and we simpli-
fied and extended it where appropriate. We implemented a module
which calculates price estimate vectors (PEV). These contain the
value (price) of the xth unit for each commodity. Let PEV arr

d (x),
PEV dep

d (x), PEV goodh
d (x), PEV badh

d (x) and PEV ent
d,t (x) be the

PEVs. For some goods this price is the same for all units, but for
others it is not; e.g. buying more hotel rooms usually increases the
price one has to pay, since there is a limited supply. Other informa-
tion to account for is the fact that some commodities once bought
cannot be sold, so in that case they have to be considered as ”sunk
cost”, and thus their PEV is 0. For some goods these values are
known accurately and for some others they are estimated based on
the current ask and bid prices.

The utility function that the agent wishes to maximize is:

max
AAc,ADc,GHc,ENTc,t

�CUST�
c=1

utilc − COST
�

(2)

where the cost of buying the resources needed is:

COST =
�DAYS

d=1

�
σ
�
PEV arr

d (x),
�CUST

c=1
I(AAc = d)

�

+ σ
�
PEV

dep
d (x),

�CUST

c=1
I(ADc = d)

�

+ σ
�
PEV goodh

d (x),
�CUST

c=1
[GHc · I(AAc ≤ d < ADc)]

�

+ σ
�
PEV badh

d (x),
�CUST

c=1
[(1 − GHc) · I(AAc ≤ d < ADc)]

�

+
�ET

t=1
σ
�
PEV ent

d,t (x),
�CUST

c=1
I(ENT c,t = d)

��

(3)

where the operator σ(f(x), z) =
�z

i=1 f(i).
Once the problem has been formulated, the planner must solve it.

This problem is NP-complete, but for the size of the TAC problem
an optimal solution, that is the type and total quantity of commodi-
ties that should be traded to achieve maximum utility, can usually be
produced fast. However in order to create a more general algorithm
we realized that it should scale well with the size of the problem and
should not include elaborate heuristics applicable only to the TAC
problem. Thus we chose to implement a greedy algorithm: the or-
der of customers is randomized and then each customer’s utility is
optimized separately. This is done a few hundred times in order to
maximize the chances that the solution will be optimal most of the
time.6 In practice we have found the following additions (that were
not reported by anyone else) to be quite useful:

1. Compute the utility of the plan P1 from the previous loop
before considering other plans. Thus the algorithm always
finds a plan P2 that is at least as good as P1 and there are
relatively few radical changes in plans between loops. We
observed empirically that this prevented radical bid changes
and improved efficiency.

2. We added a constraint based on the idea of strategic demand
reduction [16], that dispersed the bids of the agent for re-
sources in limited quantities (hotel rooms in TAC). Plans,
which demanded many hotel rooms for any single day, were
not considered. This leads to some utility loss in rare cases.
However, bidding heavily for one room type means that over-
all demand will very likely be high and therefore prices will
skyrocket, which in turn will lower the agent’s score signifi-
cantly. We observed empirically that the utility loss from not
obtaining the best plan tends to be quite small compared to
the expected utility loss from rising prices.

We have also verified that this randomized greedy algorithm gives
solutions which are often optimal and never far from optimal. We
checked the plans (at the game’s end) that were produced by 100
randomly select runs and observed that over half of the plans were
optimal and on average the utility loss was about 15 points (out
of 9800 to 10000 usually7), namely close to 0.15%. Compared
to the usual utility of 2000 to 3000 that our agents score in most
games, they achieved about 99.3% to 99.5% of optimal. These
observations are consistent with the ones about the related greedy
strategy in [13] from which the initial idea for this algorithm was
taken. Considering that at the beginning of the game the optimiza-
tion problem is based on inaccurate values, since the closing hotel
prices are not known, an 100%-optimal solution is not necessary
and can be replaced by our near-optimal approximation. As com-
modities are bought and the prices approach their closing values,
most of the commodities needed are already bought and we have
observed empirically that bidding is rarely affected by the genera-
tion of near-optimal solutions instead of optimal ones.

This algorithm takes approximately one second to run through
500 different randomized orders and compute an allocation for each.
6For the size of TAC (where CUST = 8), searching systematically
all 8! = 40320 orderings is not recommended, since it would take
considerably more time than we’re willing to allocate to this subtask
and furthermore would not scale well as CUST increases.
7These were the scores of the allocation at the end of the game (no
expenses were considered).
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Our test bed was a cluster of 8 Pentium III 550 MHz CPU’s, with
each agent using no more than one cpu. This system was used for
all our experiments and our participation in the TAC.8 In summary,
our planner is fast, relatively domain-independent, and performs
near-optimally. Moreover, using a close to optimal but nevertheless
non-optimal plan does not effect the agent’s overall performance.

3.2 Bidding Strategies
Once the planner has been generated the desired types and quan-

tities of each good, the bidder module places separate bids for all
these goods. According to our methodology, we need to find strate-
gies for each different set of auctions and this procedure is de-
scribed in this section. We use principled approaches, where appli-
cable, together with empirical knowledge that we acquired during
the competition. In fact every participating team, including ours,
used empirical observations from the games it participated in (some
2000 games over the 2001 and 2002 TAC) in order to improve its
strategy. In the next sections we describe how the strategies are
generated for the different auctions and the tradeoffs that our agent
faced.

3.2.1 Bid Aggressiveness
Bidding for hotel rooms poses some interesting questions. The

main issue in this case is how aggressively each agent should bid
(the level of the prices it submits in its bids). If it bids low it might
get outbid, while if it bids high (aggressively) it is likely to enter
into price wars with the other agents.

The first boundary strategy is to place low bids: the agent bids
an increment higher than the current price. The agent also bids
progressively higher for each consecutive unit of a commodity for
which it wants more than one unit. E.g. if the agent wants to buy
3 units of a hotel room, it might bid 210 for the first, 250 for the
second and 290 for the third. This is the lowest (L) possible ag-
gressiveness since the agent will never wish to bid less. The other
boundary strategy is that the agent bids progressively closer to the
marginal utility δU as time passes9. Since the agent will likely lose
money if it bids above the marginal utility, this is the highest (H)
possible aggressiveness. Now that the boundary strategies are set
our methodology suggest that we try to combine these into interme-
diate strategies. We therefore selected the following compromise:
the agent that bids like the aggressive (H) agent for rooms that have
a high marginal utility δU and bids like the non-aggressiveness (L)
agent otherwise. This is the agent of medium (M) aggressiveness.10

One further improvement, which was judged necessary for the 2002
TAC, is to use historical data to determine the price of the hotel
auction which closes first and that is because we observed that our
agent was getting outbid while the bids were still low.

As far as the timing of the bids is concerned, there is little ambi-
guity about what the optimal strategy is. The agent waits until the
first hotel auction is about to close to places its first bids. The rea-
son for this is that it does not wish to increase the prices earlier than
necessary nor to give away information to the other agents. We also
observed empirically that an added feature which increases perfor-
mance is to place bids for a small number of rooms at the beginning
of the game at a very low price (whether they are needed or not). In
8During the competition only one processor was used, but during
the experimentations we used all 8, since 8 different instantiations
of the agent were running at the same time.
9The marginal utility δU for a particular hotel room is the change
in utility that occurs if the agent fails to acquire it. In fact for each
customer i that needs a particular room we bid δU√

z
instead of δU ,

where z is the number of rooms which are still needed to complete
her itinerary. We do this, based on empirical observations, in order
not to drive the prices up prematurely.

10We decided that this intermediate strategy was more appropriate
compared to others, e.g. a weighted average of the boundary bids,
based mainly on empirical observations from the competition.

case these rooms are eventually bought, the agent pays only a very
small price and gains increased flexibility in implementing its plan.

3.2.2 Paying for adaptability
The purchase of flight tickets presents an interesting dilemma

as well. We have calculated (based on the model of price change
described in the rules) that ticket prices are expected to increase ap-
proximately in proportion to the square of the time elapsed since the
start of the game. This means that the more one waits the higher the
prices will get and the increase is more dramatic towards the end of
the game. From that point of view, if an agent knows accurately
the plan that it wishes to implement, it should buy the plane tickets
immediately. On the other hand, if the plan is not known accu-
rately (which is usually the case), the agent should wait until the
prices for hotel rooms have been determined. This is because buy-
ing plane tickets early restricts the flexibility (adaptability) that the
agent has in forming plans: e.g. if some hotel room that the agent
needs becomes too expensive, then if it has already bought the cor-
responding plane tickets, it must either waste these, or pay a high
price to get the room. An obvious tradeoff exists in this case, since
delaying the purchase of plane tickets increases the flexibility of the
agent and hence provides the potential for a higher income at the
expense of some monetary penalty.

One way to solve this is to use a cost-benefit analysis. In this
case the cost of deferring purchase can be computed, but in order to
estimate the benefit from delayed buying, one must use models for
the opponent agents, which are not easy to obtain. Our first step is
to decide the boundary strategies. Since the only issue is the time of
bid placement, two obvious strategies are to buy everything at the
beginning or to defer all the tickets purchases at a much later time.
Initially we set this later time to be right after 2 (out of the 8) hotel
auctions have closed. The reason for this is that at that time the in-
tentions of the other agents can be partially observed by their effect
on the auctions’ bid prices and thus after this time the room prices
approximate sufficiently their potential closing prices. Hence a plan
generated at that time is usually quite similar to the optimal plan,
when the closing prices are known. Another reason is that since
ticket prices are expected to increase approximately in proportion
to the square of the time elapsed, the price increases after this point
tend to be prohibitive. However this is still not a very good bound-
ary case; a further improvement is to buy some tickets at the start
of the game. We buy about 50% of the tickets at the beginning:
these are the “almost certain to be used” tickets (computed based
on the client preferences and the ticket prices) and we have em-
pirically observed that these tickets are almost never wasted. Given
these boundary strategies, we first obtained an intermediate strategy
by modifying the latter to wait until only 1 (the first) hotel auction
closes. Another intermediate strategy comes from the idea of strate-
gic demand reduction [16]: we compute the minimum number of
tickets which, if left unpurchased, will allow the agent to complete
its itineraries even if it fails to buy a hotel room on days during
which it wishes a lot of rooms. A “small” optimization problem is
solved to determine these tickets. 80% to 100% of the tickets are
now bought at the beginning.

An improvement (for agents who defer the purchase of some
tickets) was obtained by estimating the likelihood of price increases.
This information is then used to bid earlier for tickets whose price
is very likely to increase and to wait more for tickets whose price
is expected to increase little or none. We calculated that the agent
approximately halves the cost it would otherwise pay for the de-
ferred purchases. The full details can be found in a workshop paper
which described the strategy we used in the 2001 TAC [15]. A
further improvement (especially for agents who buy most tickets
at the beginning) was obtained by using historical averages of the
hotel prices in previous games to set the PEVs at the beginning of
the game, since the planner gives a much more accurate plan in this
way.
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Experiments WB-N2L WB-M2L WB-M2M WB-M2H
agent 1 2087 2238 2387 2429

Exp 1 agent 2 2087 2274 2418 2399
(144) average 2087 2256 2402 2414
Exp 2 (200) 3519 3581 3661 3656

Table 1: Average scores of agents WB-N2L, WB-M2L, WB-
M2M and WB-M2H. For experiment 1 the scores of the 2 in-
stances of each agent type are also averaged. The number inside
the parentheses is the total number of games for each experiment
and this will be the case for every table.

WB*xSM WB*xSH WB*x2M WB*x2H
# x=M 1941 1887 1744 1677

games x=A 1729 1645 1686 1706
(206) Difference? � � × ×

Table 4: The effect of using historical averages in the PEVs.
Early bidding agents benefit the most from this.

3.2.3 Entertainment
The entertainment tickets do not present us with a challenging

tradeoff. Therefore we only used the following strategy. The agent
buys (sells) the entertainment tickets that it needs (does not need)
for implementing its plan at a price equal to the current price plus
(minus) a small increment. The only exceptions to this rule are:
(i) At the game’s start and depending on how many tickets the agent
begins with, it will offer to buy tickets at low prices, in order to
increase its flexibility at a small cost. Even if these tickets are not
used the agent sometimes manages to sell them for a profit.
(ii) The agent will not buy (sell) at a high (low) price, even if this
is beneficial to its utility, because otherwise it helps other agents.
This restriction is somewhat relaxed at 11:00, in order for the agent
to improve its score further, but it will still avoid some beneficial
deals if these would be very profitable for another agent.11

4. EXPERIMENTAL RESULTS
In this section we describe the controlled experiments we per-

formed (the majority of which were based on agent mixtures desig-
nated by our methodology) in order to determine the “best overall
strategy” and the conclusions we drew from them concerning the
tradeoffs described in section 3.2. To distinguish between the dif-
ferent strategies (or if you prefer versions of the agent), we use the
notations WB-xyz and WB*xyz,12 where (i) x is M if the agent
models the plane ticket prices, N if this feature is not used and A
if historical averages are used in the PEVs, (ii) y takes values 0, 1
or 2, which means that the agent buys its unpurchased tickets when
the yth hotel auction closes (0 means it does not wait at all), or the
value S, which means that the version based on strategic demand
reduction is used and (iii) z characterizes the aggressiveness with
which the agent bids for hotel rooms and takes values L,M and H
for low, medium and high degree of aggressiveness respectively.

To formally evaluate whether one version outperforms another,
we use paired t-tests; values of less than 10% are considered to
indicate a statistically significant difference (in most experiments
the values are actually well below 5%). If more than 1 instances of
a certain version participate in an experiment, we compute the t-test
for all possible combinations of instances.13

The first set of experiments were aimed at verifying our observa-
tion that modeling the plane ticket prices improves the performance

11This is introduced because in the competition the agent is inter-
ested in maximizing not just its own utility, but also the difference
between its utility and the utilities of the other agents.

12WB-xyz is the based on our 2001 TAC agent and WB*xyz is a
slightly improved version based on our 2002 TAC agent.

13This means that 8 t-tests will be computed if we have 2 instances
of version A and 4 of version B etc. We consider the difference
between the scores of A and B to be significant, if almost all the
tests produce values below 10%.

of the agent. We expected an improvement14, since the agent uses
this information to bid later for tickets whose price will not increase
much (therefore achieving a greater flexibility at low cost), while
bidding earlier for tickets whose price increases faster (reducing its
cost). We run 2 experiments with the following 4 versions: WB-
N2L, WB-M2L, WB-M2M and WB-M2H. In the first we run 2
instances of each agent, while in the second we run only one and
the other 4 slots were filled with the standard agent provided by the
TAC support team. The results are presented in table 1. The other
agents, which model the plane ticket prices, perform better than
agent WB-N2L, which does not do so. The differences between
WB-N2L and the other agents are statistically significant, except
for the one between WB-N2L and WB-M2L in experiment 2. We
also observe that WB-M2L is outperformed by agents WB-M2M
and WB-M2H, which in turn achieve similar scores; these results
are statistically significant for experiment 1. Having determined
that this modeling leads to significant improvement, we concen-
trated our attention only to agents using this feature.

The next experiment was designed to explore the tradeoff of bid
aggressiveness. As proposed by our methodology we used agents
WB-M2z (z=L,M,H), keeping all other partial strategies fixed, and
we used a constant number of 2 instances of agent WB-M2M, while
the number of agents WB-M2H was increased from 0 to 6. The rest
of the slots were filled with instances of version WB-M2L. The
result of this experiment are presented in table 2. By increasing
the number of agents which bid more aggressively, there is more
competition between agents and the hotel room prices increase,
leading to a decrease in scores. While the number of aggressive
agents #WB-M2H≤4, the decrease in score is relatively small for
all agents and is approximately linear with #WB-M2H; The ag-
gressive agents (WB-M2H) do relatively better in less competitive
environments and non-aggressive agents (WB-M2L) do relatively
better in more competitive environments, but still not good enough
compared to WB-M2M and WB-M2H agents. Overall WB-M2M
(medium aggressiveness) performs comparably or better than the
other agents in almost every instance. Agents WB-M2L are at a
disadvantage compared to the other agents, because they do not
bid aggressively enough to acquire the hotel rooms that they need.
When an agent fails to get a hotel room it needs, its score suffers a
double penalty: (i) it will have to buy at least one more plane ticket
at a high price in order to complete the itinerary, or else it will end
up wasting at least some of the other commodities it has already
bought for that itinerary and (ii) since the arrival and/or departure
date will probably be further away from the customer’s preference
and the stay will be shorter (hence less entertainment tickets can be
assigned), there is a significant utility penalty for the new itinerary.
On the other hand, aggressive agents (WB-M2H) will not face this
problem and they will score well in the case that prices do not go
up. In the case that there are a lot of them in the game though, the
price wars will hurt them more than other agents. The reasons for
this are: (i) aggressive agents will pay more than other agents, since
the prices will rise faster for the rooms that they need the most in
comparison to other rooms, which are needed mostly by less ag-
gressive agents, and (ii) the utility penalty for losing a hotel room
becomes comparable to the price paid for buying the room, so non-
aggressive agents suffer only a relatively small penalty for being
overbid. Agent WB-M2M performs “reasonably well” in every sit-
uation, since it bids enough to maximize the probability that it is
not outbid for critical rooms, and avoids ”price wars” to a larger
degree then WB-M2H. Based on these results we did not use low
aggressiveness agents in the next experiments.

The next set of experiments intended to further explore the trade-
off of bidding early for plane tickets against waiting more in or-
der to gain more flexibility in planning. Initially we run a smaller
experiment with 2 instances of each of the following agents: WB-

14A gain of 120 to 150 was expected according to a rough estimate.
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Agent Scores Average Scores Statistically Significant Difference?
#WB-M2H 1 2 3 4 5 6 7 8 WB-M2L WB-M2M WB-M2H M2L/M2M M2M/M2H M2L/M2H

0 (178) 2614 2638 2490 2463 2421 2442 2526 2455 2466 2626 N/A �

2 (242) 2339 2350 2269 2265 2229 2241 2347 2371 2251 2344 2359 � × �

4 (199) 2130 2073 2072 2029 2046 2098 2048 2033 2051 2101 2056 × × ×
6 (100) 1112 1165 796 843 920 884 848 898 N/A 1138 865 �

Table 2: Scores for agents WB-M2L, WB-M2M and WB-M2H as the number of aggressive agents (WB-M2H) participating increases.
In each experiment agents 1 and 2 are instances of WB-M2M. The agents above the stair-step line are WB-M2L, while the ones below
are WB-M2H. The averages scores for each agent type are presented in the next rows. In the last rows, �indicates statistically
significant difference in the scores of the corresponding agents, while × indicates statistically similar scores.

Agent Scores Average Scores Statistically Significant Difference?
#WB-M0H 1 2 3 4 5 6 7 8 WB-M2M WB-M0H WB-M2M/WB-M0H

2 (343) 1607 1522 1564 1523 1497 1517 1531 1501 1517 1540 ×
4 (282) 1398 1425 1401 1387 1292 1333 1265 1341 1403 1308 �

6 (69) 1570 1602 1278 1178 1241 1289 1151 1207 1586 1224 �

Table 3: Scores for agents WB-M2M and WB-M0H as the number of early bidding agents (WB-M0H) participating increases. The
agents above the stair-step line are WB-M2M, while the ones below are WB-M0H.

M2M and WB-M2H together with WB-M1M (which bids for most
of its tickets at the beginning) and WB-M0H (which buys imme-
diately all the plane tickets it needs and bids aggressively for ho-
tel rooms.15 We ran 78 games and observed that WB-M2M scores
slightly higher than the other agents, while WB-M2H scores slightly
lower. These results are however not statistically significant. The
bigger experiment was done to examine the behavior of the two
boundary strategies against each other. We varied the mixture of
agents WB-M2M and WB-M0H as shown in table 3. When only
2 of the agents were WB-M0H, the WB-M0H’s scored on average
close to the score of the WB-M2M’s, but as their number increased
their score dropped and, when they are the majority, the WB-M0H’s
performed much worse than the WB-M2M’s. In this case, the WB-
M2M’s try to stay clear of rooms whose price increases too much
(usually, but not always, successfully), while the early-bidders do
not have this choice due to the reduced flexibility in changing their
plans. One interesting result which we did not expect is that the
score of the WB-M2M’s increases when there are 2 instances of
them compared to the case when there are 4; however hotel room
prices are higher in the former case, so this result seems contra-
dictory! The explanation for this is that the prices tend to increase
quite fast for the rooms that are needed by the early-bidders, so the
2 WB-M2M’s avoid these rooms when possible and try to position
themselves mostly on the other rooms, so they do not have to pay so
much. This behavior also happens in the case that there are 4 WB-
M2M’s, but in this case there are many WB-M2M’s and when they
try to move away from the rooms that the early-bidders want, they
end up on similar rooms (so the reason it’s harder to find the good
deals is because they stop being “deals” much more often once the
other WB-M2M’s go after them).

These results would normally allow us to conclude that it is usu-
ally beneficial not to bid for everything at the beginning of the
game, but there is a minor catch: without using historical prices the
early-bidding agents buy goods “blindly”. Therefore we introduced
this feature and run an experiment in which we examined the benefit
that agents WB*M2M, WB*M2H, WB*MSM and WB*MSH gain
if historical prices are used. Note that we did not use WB*M0z, be-
cause the agent WB*MSz also buys the vast majority of its tickets
at the beginning (but not all). The results are presented in table 4.
We observe that the agents which bid earlier are the ones who ben-
efit from the use of this feature, while the benefits for WB*M2M
and WB*M2H are virtually non-existent. The increase of the price
estimate has the effect that the planner generates itineraries which
use slightly fewer rooms than before. This decreases the price wars
between agents and improves their scores.

15An early-bidder must be aggressive, because if it fails to get a
room, it will pay a substantial cost for changing its plan, due to the
lack of flexibility in planning.

The last experiment extends the experiment presented in table 3.
This time we examine the effect on agents WB*AyM and WB*AyH
(the medium and high aggressiveness with historical prices in the
PEVs at the beginning of the game) when y = 0, y = 2 and y = S.
Since y = S is the intermediate strategy we always keep 2 agents
WB*ASz (z=M,H) in the mixture of agents and change the number
of the other agents (which use the boundary strategies) as described
by our methodology; half of these are of Medium and half of High
aggressiveness. The results are presented in table 5. We observe
that the strategy y = 2, which leaves the highest number of unpur-
chased tickets, performs worse than the other two. The other two
perform similarly overall. The only case, in which the WB*ASz’s
performance is statistically better than that of the early bidders, is
when there are lots of early bidders. From these results we deter-
mine that the strategic demand agent is probably performing most
consistently and that is the reason we used it in the TAC. Another
observation is that the scores of all agents tend to go up as the prices
go higher. We believe (but need to check further) that this is a result
of the fact that the historical prices are used in the PEVs mainly at
the beginning of the game and, when some auctions have closed,
we do not any more; the later bidding agents (y = 2) observe the
lower prices and try to purchase more rooms which in turn drives
the prices up. As their number decreases the economy becomes
more efficient and all the agents profit.

We are continuing the experiments in order to increase the sta-
tistical confidence in the interpretation of the results so far. This is
quite a time-consuming process, since each game is run at 15 to 20
minute intervals16. It took over 4500 runs (about 9 weeks of con-
tinuous running time) to get the controlled experiment results and
some 2000 more for our observations during the competitions.

5. TRADING AGENT COMPETITION: RE-
SULTS AND OBSERVATIONS

We have entered our agent, WhiteBear, in the last two Trading
Agent Competitions. Preliminary and seeding rounds were held
before the finals, so that teams could improve their strategies over
time. The top 16 teams were invited to participate in the semi-finals
and the best 8 advanced to the finals.

In the 2001 TAC the White Bear variant we used in the compe-
tition was WB-M2M. The 4 top scoring agents (scores in paren-
theses) that year were: livingagents (3670), ATTac (3622), White-
Bear (3513) and Urlaub01 (3421). The scores in the finals were
higher than in the previous rounds, because most teams had learned
(ourselves included) that it was generally better to have a more
adaptive agent than to bid too aggressively.17 A surprising excep-

16This is a restriction of the game and the TAC servers
17This was demonstrated by the second controlled experiment that
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Agent Scores Average Scores Statistically Significant Difference?
#WB*A0z WB*ASM WB*ASH 3 4 5 6 7 8 WB*A2M WB*A2H WB*A0M WB*A0H A2z/ASz ASz/A0z A2z/A0z

0 (413) 2175 2213 1948 1954 1907 1899 1939 1876 1936 1904 N/A N/A M� H�
2 (650) 2115 2110 2014 2031 1841 1882 2103 2130 2023 1862 2103 2130 M� H� M× H× M� H�
4 (438) 2404 2419 2261 2207 2305 2390 2408 2362 2261 2207 2347 2385 M� H� M× H× M� H�
6 (1023) 2430 2442 2370 2368 2364 2384 2384 2378 N/A N/A 2367 2382 M� H�

Table 5: Scores for agents WB*A2z, WB*ASz and WB*A0z (where z=M or H) as the number of early bidding agents (WB-A2z)
participating increases. In each experiment agent 1 is WB*ASM and 2 is WB*ASH. The agents above the stair-step line are WB*A2z,
while the ones below are WB*A0z (the scores when z=M are presented in italic). In the last rows, we compare the scores for the M
and H aggressiveness of the two version; so M� in the A2z/Asz box means that the difference between A2M and ASM is significant.

tion to this rule was livingagents [3] which followed a strategy
similar to WB-A0H (it used historical prices to approximate closing
prices). This agent capitalized on the fact that the other agents were
careful not to be very aggressive and that prices remained quite low.
Despite bidding aggressively for rooms, since prices did not go up,
it was not penalized for this behavior. This strategy works well
within the confines of an “efficient economy”. This was observed
in the last experiment that we ran as well. The other top scorer, AT-
Tac, also purchased over 75% of the plane tickets at the beginning
of the game. The fact that they deferred few of their plane ticket
purchases for a later time is likely to be the main reason for their
success in 2001.

In the recent (2002) TAC, we implemented all the features and
continued our controlled experiments. Using the knowledge ob-
tained from the previous competition, we decided to enter version
WB*ASM in the finals. This decision was also based on observa-
tions of the other agents’ overall behavior. The 4 top scoring agents
were: WhiteBear (3556), SouthamptonTAC (3492), Thalis (3351)
and UMBCTAC (3320). The competence of the agents who quali-
fied for the finals was much higher than in the previous year. The
agents would bid more aggressively and most of them would buy
all of the plane tickets at the beginning. However this did not lead
to an inefficient economy, as most agents were more adaptive and
restricted their itineraries to somewhat fewer rooms.18

6. CONCLUSIONS
In this paper we have proposed an architecture and a method-

ology for bidding strategically in simultaneous auctions. We have
demonstrated how to maximize the flexibility (actions available, in-
formation etc.) of the agent while minimizing the cost that it has to
pay for this benefit, and that by using simple knowledge (such as
modeling prices) of the domain it can make this choice more intel-
ligently and improve its performance even more. We also showed
that bidding aggressively is not a panacea and established that an
agent, who is just aggressive enough to implement its plan effi-
ciently, outperforms overall agents who are either not aggressive
enough or who are too aggressive. Finally we established that even
though generating a good plan is crucial for the agent to maximize
its utility, the greedy algorithm that we used was more than capa-
ble to help the agent produce comparable results with other agents
that use a slower provably optimal algorithm. One of the primary
benefits of our approach is that it allowed us to combine seamlessly
both principled methods and methods based on empirical knowl-
edge, which, we believe, led to the consistently good performance
in the TAC competitions. Overall our agent is adaptive, scalable,
and robust, and its elements are general enough to work well in a
multiple simultaneous auctions setting.

In the future we will continue to run experiments in order to fur-
ther determine parameters that affect the performance of agents in
multi-agent systems. We also intend to incorporate learning into
our agent to evaluate how much this improves performance.

we ran as well.
18In the same way that the inclusion of historical average prices in
the PEVs produced the same effect on our agent.

7. ACKNOWLEDGEMENTS
We would like to thank the organizers of both competitions for

their technical support during the running of our experiments and
the competition (over 6500 games!).

8. REFERENCES
[1] P. Anthony, W. Hall, V. Dang, and N. R. Jennings. Autonomous

agents for participating in multiple on-line auctions. In Proc IJCAI
Workshop on E-Business and Intelligent Web, pages 54–64, 2001.

[2] R. Brooks. Intelligence without reason. In Proc of the 12th
International Joint Conference on Artificial Intelligence, 1999.

[3] C. Fritcshi and K. Dorer. Agent oriented software engineering for
successful tac participation. In Proc of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems, 2002.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions: Optimal and
approximate approaches. In Proc of the 16th International Joint
Conference on Artificial Intelligence, pages 548–553, Aug. 1999.

[5] A. Greenwald and P. Stone. Autonomous bidding agents in the
trading agent competition. IEEE Internet Computing, April, 2001.

[6] A. R. Greenwald and J. Boyan. Bid determination for simultaneous
auctions. In Proc of the 3rd ACM Conference on Electronic
Commerce (EC-01), pages 115–124 and 210–212, Oct. 2001.

[7] A. R. Greenwald, J. O. Kephart, and G. J. Tesauro. Strategic pricebot
dynamics. In Proceedings of the ACM Conference on Electronic
Commerce (EC-99), pages 58–67, Nov. 1999.

[8] T. Ito, N. Fukuta, T. Shintani, and K. Sycara. Biddingbot: a
multiagent support system for cooperative bidding in multiple
auctions. In Proceedings of the Fourth International Conference on
MultiAgent Systems, pages 399 – 400, July 2000.

[9] P. Klemperer. Auction theory: A guide to the literature. Journal of
Economic Surveys Vol13(3), July 1999.

[10] D. C. Parkes and L. H. Ungar. Iterative combinatorial auctions:
Theory and practice. In Proceedings of the 7th Conference on
Artificial Intelligence (AAAI-00), pages 74–81, 2000.

[11] C. Preist, C. Bartolini, and I. Phillips. Algorithm design for agents
which participate in multiple simultaneous auctions. In Agent
Mediated Electronic Commerce III (LNAI), Springer-Verlag, Berlin,
pages 139–154, 2001.

[12] T. Sandholm and S. Suri. Improved algorithms for optimal winner
determination in combinatorial auctions. In Proc 7th Conference on
Artificial Intelligence (AAAI-00), pages 90–97, July 2000.

[13] P. Stone, M. L. Littman, S. Singh, and M. Kearns. ATTac-2000: an
adaptive autonomous bidding agent. In Proc 5th International
Conference on Autonomous Agents, pages 238–245, May 2001.

[14] P. Stone, R. Schapire, M. Littman, J. Csirik, and D. McAllester.
Attac-2001: A learning, autonomous bidding agent. In Agent
Mediated Electronic Commerce IV. LNCS, volume 2531. Springer
Verlag, Berlin., 2002.

[15] I. A. Vetsikas and B. Selman. Whitebear: An empirical study of
design tradeoffs for autonomous trading agents. In Proc AAAI
Workshop on Game Theoretic and Decision Theoretic Agents, 2002.

[16] R. Weber. Making more from less: Strategic demand reduction in the
fcc spectrum auctions. Journal of Economics and Management
Strategy Vol6(3), pages 529–548, 1997.

[17] M. P. Wellman, P. R. Wurman, K. O’Malley, R. Bangera, S. de Lin,
D. Reeves, and W. E. Walsh. Designing the market game for tac.
IEEE Internet Computing, April, March/April 2001.

[18] P. R. Wurman and M. P. Wellman. AkBA: A progressive,
anonymous-price combinatorial auction. In Proceedings of the ACM
Conference on Electronic Commerce (EC-00), pages 21–29, 2000.

480


