

What is electronic market design?

- Building the next eBay?
- Possibly
- Designing software agents for the stock marke \dagger ?
- Possibly

Study the economic foundations of market design (game theory and mechanism design)
Study computational issues that arise in market design
Study the interaction between GT/MD and computation

Why now?

- Fast computers and high bandwidth have changed the cost of dynamic market mechanisms
- Automated winner determination
- Automated bidding using software agents
- Distributed bidders
- Standardized ontologies (ie. XML)
- Ability to exchange structured information

Able to construct new markets

Historical Perspective*

- Nash (1950): General definition of equilibrium for large class of games, proof of existence. [Nobel prize 1994] - "the analytic structure for studying all situations of conflict and cooperation"(Myerson'99)
- Vickrey (1961): Birth of auction theory [Nobel prize 1996]
- FCC Spectrum auction (\$100B by 2001)
- Many other countries followed
- More and more practical applications
- MarketDesign, CombineNet, FreeMarkets, Frictionless
- Used within CS to design and study networked systems -
*Shamelessly borrowed from D. Parkes

Two communities

- Economics
- Traditional emphasis on game theoretic rationality
- Describing how agents should behave
- Multiple selfinterested agents
- Computer Science
- Traditional emphasis on computational and informational constraints
- Building agents
- Individual or cooperative agents

Resolve conflicts between game-theoretic and computational constraints, develop theories and methodologies

Lots of excitement!

- Fifth ACM Electronic Commerce Conference, May 2004
- Market clearing algorithms, mechanism design, preference elicitation, reputation, economic models for getting rid of spam...
- Workshop on Agent Mediated Electronic Commerce, July 2004
- Radcliffe Institute Workshop on Preferences and Computation, May 2004
- FCC Combinatorial Bidding Conference, Nov 2003
- Dagstuhl Workshop on Electronic Market Design, 2002 (another one soon)
- Many papers appearing in AAAI, AAMAS, STOC, FOCS, SODA,...

This Course

- Introduced to the state-of-art in electronic market design
- Game theoretic issues
- Computational issues
- The intersection
- Course structure
- Introductory lectures [until September 29]
- Current research papers
- Combinatorial auctions (WDP, approximation issues, falsename bids, bidding languages, iterative auctions)
- Preference elicitation and communication complexity
- Reputation mechanisms
- Bidding agents
- Selling digital goods
- Applications

Prerequisites

- Students must be comfortable with mathematical proofs
- Background in algorithms and complexity (for example, CS 466)
- Ideally an AI course (for example CS 486) - must be comfortable with agent rationality concepts
- I will cover all game theory and mechanism design required

Grading

- 2-3 assignments on game theory and mechanism design 10\%
- In class presentation(s) 20\%
- Peer-reviewed
- Class participation 20\%
- Research project 50\%

Class Participation

- Students should participate!
- Before each class (midnight the day before) student must email me a list of comments on the paper to be presented
-What is the main contribution?
- Is it important? Why?
-What assumptions are made?
- What applications might arise from the results?
- How can it be extended?

What was unclear?

Presentations

- Each student is responsible for presenting a research paper in class
- Short survey + a critique
- Everyone in class will provide feedback on the presentation
- Marks will be given on coverage of the material + organization + presentation

Projects

- Goal of the project is to develop a deep understanding of a topic related to electronic market design
- Topic is open
- Theoretical, experimental, in depth literature review,...
- Can be related to your own research
- If you have troubles coming up with a topic, come talk to me
- Proposals due October 20th
- Final project due December $6^{\text {th }}$
- Students will present projects in class

Other Important Information

- Office Hours:
- Wednesday 2:30-3:30
- Course webpage
- http://www.cs.uwaterloo.ca/~klarson/teaching/F04-886
- Readings and schedule will soon be finalized

London Bus System

(as of April 2004)

- 5 million passengers each day
- 7500 buses
- 700 routes

- The system has been privatized since 1997 by using competitive tendering
- Idea: Run an auction to allocate routes to companies

Example cont.

- Mechanism: Generalized Vickrey auction (GVA)
- Specifies the rules
- Describes how outcome will be determined
- Strategies:
- Policies which specify what actions an agent should take
- Agents are free to take any allowable action (ie. Specify any amount for each bid)
- Assume self-interested rational agents (ie select strategies which maximize their own utility)

GVA is efficient and strategy-proof!

The Generalized Vickrey Auction
 (VCG mechanism)

- Let G be set of all routes, I be set of bidders
- Agent isubmits bids $v_{i}^{*}(S)$ for all bundles $S \subseteq G$
- Compute allocation S^{\star} to maximize sum of reported bids

$$
V^{*}(I)=\max _{\left(S 1, \ldots, s_{I}\right)} \Sigma_{i} V_{i}^{*}\left(S_{i}\right)
$$

- Compute best allocation without each agent $i:$

$$
V^{*}(I \mid i)=\max _{(S 1, \ldots, S I)}, \Sigma_{j \neq i} v_{i}^{*}\left(S_{i}\right)
$$

- Allocate each agent $S i^{*}$, each agent pays

$$
P(i)=v_{i}^{*}\left(S_{i}^{*}\right)-\left[V^{*}(I)-V^{*}(I \mid i)\right]
$$

An Example

Tractable Winner Determination

- Restricted bidding languages [Rothfkopf et al 98, Vohra \& de Vries 00]
- Limited bid prices
- Limited bundle types
- Implement approximate solutions to the WDP
- Care must be taken - approximations can change the incentive properties of the mechanism
- Change the mechanism [Lehmann et al 02]
- Distribute computation to agents

Agent Valuation Problem

- Explicitly include the valuation problem into the model
- Use dynamic methods
- Ask for some information and perform intermediate computation, ask for more information if required

Preference Elicitation and Communication Complexity

- Sometimes complete information is not necessary!

Single item:

v1=4, v2=8, v3=12
Only need to know $v 2=8, v 1<8$ and $v 3>8$

Combinatorial auction:

Non-overlapping bids

We can compute and check the efficient outcome in both cases

Overview of Initial Lectures

1. Introduction (today)
2. Introduction to Game Theory

- normal and extensive form games, dominant strategy, Nash equil, Bayesian-Nash equil

3. Introduction to Social Choice Theory

- Voting protocols, voting paradoxes, Arrow's thm

4. Mechanism Design (I)

- Implementation, Revelation principle, GibbardSatterthwaite Thm, VCG mechanism

5. Mechanism Design (II)
6. Auctions

Auctioning a single item, private and common values, Revenue equivalence thm

Other topics

- Combinatorial auctions
- Winner determination problem
- Approximations
- Bidding Languages
- Iterative Auctions

Other Topics

- Preference elicitation
- False name bidding
- New form of cheating in Internet auctions
- Selling digital goods
- Agents
- Trading agents (TAC)
- Computationally limited agents

Other topics

- Reputation mechanisms
- eBay and others
- Automated mechanism design
- Applications
- Scheduling
- Avoiding spam
- P2P

