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Abstract

In this paper we introduce and analyze social
distance games, a family of non-transferable
utility coalitional games where an agent’s util-
ity is a measure of closeness to the other mem-
bers of the coalition. We study both social wel-
fare maximisation and stability in these games
using a graph theoretic perspective. We use the
stability gap to investigate the welfare of sta-
ble coalition structures, and propose two new
solution concepts with improved welfare guar-
antees. We argue that social distance games
are both interesting in themselves, as well as in
the context of social networks.

1 Introduction
Game theory provides a rich mathematical framework
for analysing interactions among self interested parties.
Coalitional games study the dynamics of players that
interact to accomplish more together than they would
individually. The central questions in coalitional game
theory are how the players should cooperate and how
the payoffs should be divided among the members of a
coalition.

In recent years there has been growing interest in
the field and many new classes of games have been
formalised. One of the main driving forces behind the
development of new games was the emergence of the
internet, with applications such as internet architecture,
routing, peer-to-peer systems, and viral marketing.
As Scott Shenker famously said, “The Internet is an
equilibrium, we just need to identify the game” [Nisan
et al., 2007]. Another important line of research that
contributed to the development of coalitional games was
inspired from social and economic networks ( [Easley
and Kleinberg, 2010], [Jackson, 2008]). Social networks
influence all aspects of everyday life, such as where
people live, work, what music they listen to, and with
whom they interact. Early work on social networks
was done by Milgram in the 1960’s and his experiments
indicated that any two people in the world are connected
by a path of average length six. This idea is also known
as the six degrees of separation hypothesis. Since then,

researchers observed that many natural networks, such
as the web, biological networks, networks of scientific
collaboration, exhibit the same properties as the web
of human acquaintances. The emergence of online com-
munities such as Facebook, MySpace, and LinkedIn has
enabled a much more detailed analysis of real networks.

Research in network formation focuses on how the
structure of the network influences the behaviour of the
players, what type of equilibria arise, which players are
influential, and which networks are efficient. The study
of network formation games has in turn led to important
theoretical concepts and new analysis tools.

In this paper we formulate a model of interaction on
social networks using coalitional game theory and the no-
tion of social distance. Our game captures the idea that
social networks exhibit homophily, and so the agents pre-
fer to maintain ties with other agents who are close to
them. Using social distance games, we study the prop-
erties of efficient and stable networks, relate them to the
underlying graphical structure of the game, and give an
approximation algorithm for finding optimal social wel-
fare. We use the stability gap to investigate the welfare
of stable coalition structures, and propose two new solu-
tion concepts with improved welfare guarantees.

2 The Model

In this section we introduce social distance games and
key concepts from the literature. We assume the reader
is familiar with basic graph theoretic notions including
shortest path, complete graph, and induced subgraph.

Our utility formulation is based on the concept of so-
cial distance, which is the number of hops required to
reach one node to another, and has become famous since
Milgram’s study on six degrees of separation. The utility
function reflects the principle of homophily, that simi-
larity breeds connection and people tend to form com-
munities with similar others [McPherson et al., 2001].
Homophily has been repeatedly observed in many real
world networks, such as marriage, friendship, work, and
voluntary organizations.

Definition 1. A social distance game is represented as
a simple unweighted graph G = (N,E) where

• N = {x1, . . . , xn} is the set of agents



• The utility of an agent xi in coalition C ⊆ N is

u(xi, C) =
1
|C|

∑
xj∈C\{xi}

1
dC(xi, xj)

where dC(xi, xj) is the shortest path distance be-
tween xi and xj in the subgraph induced by coalition
C on the graph G. If xi and xj are disconnected in
C, then dC(xi, xj) =∞.

The inverse social distance can be viewed as the simi-
larity of a player with the other members of the coalition,
and it indicates the centrality of the player in that coali-
tion.

A singleton agent always receives zero. To be consis-
tent, we define the similarity of an agent to himself as
zero, and so when computing the utility of an agent in a
coalition C, we divide by the size of C.

Our utility formulation is a variant of closeness cen-
trality, is well defined on disconnected sets, and normal-
ized in the interval [0, 1]. Moreover, it is related to sev-
eral other classical measures from network analysis, such
as degree, closeness, betweenness, and eigenvector cen-
trality [Gomez et al., 2003], all of which are used to de-
termine how a node is embedded in the network. Our
main goal is to understand the dynamics generated by
homophily driven communities, and so this utility func-
tion has a number of desirable properties that reflect the
sociable nature of the agents.
Property 1. An agent prefers direct connections over
indirect ones.

In general, the agent prefers a connection by a factor
inversely proportional with the distance to that connec-
tion.
Property 2. Adding a close connection positively affects
an agent’s utility.

Moreover, our improvement function reflects dimin-
ishing returns. An additional friend benefits everyone,
but the added benefit depends on how many friends the
agent already has.
Property 3. Adding a distant connection negatively af-
fects an agent’s utility.

Property 3 states that agents who want to be central
in their coalition experience loss in social status because
of distant connections.
Property 4. All things being equal, agents favour larger
coalitions.

2.1 Background
Let a coalition structure, P , be a partition of the agents
into disjoint coalitions. The set of agents, N , is known
as the grand coalition, and we denote its size by |N | = n.
Definition 2. The social welfare of coalition structure
P = (C1, . . . , Ck) is

SW (P ) =
k∑
i=1

∑
xj∈Ci

u(xj , Ci)

Figure 1: In the grand coalition, u(x0) = 1
6 (1 + 1/2 + 3 ·

1/3) = 0.41, u(x1) = 1
6 (1/2 + 4 · 1) = 0.75. In partition

({0, 3}, {1, 2, 4, 5}), u(x0) = u(x3) = 1
2 , u(x1) = 1

4 (1+2 ·
1/2) = 1

2 , u(x2) = u(x4) = 1
4 (1+2 ·1/2) = 1

2 , u(x5) = 3
4 .

Denote the utility of agent xi in partition P as u(xi, P )
or, when the context is clear, as u(xi). Figure 1 is an
example of a social distance game.

The main notion of stability that we study in this pa-
per is the core solution concept.
Definition 3. A coalition structure P = (C1, . . . , Ck) is
in the core if there is no coalition B ⊆ N such that ∀x ∈
B, u(x,B) ≥ u(x, P ) and for some y ∈ B the inequality
is strict: u(y,B) > u(y, P ). If all the inequalities are
strict then P is in the weak core.

If coalition structure P is in the core, then P is resis-
tant against group deviations. No coalition can deviate
and improve the utility of at least one member, while not
degrading the other ones. If B exists, then it is called a
blocking coalition.

Finally, we introduce the graph theoretic notion of di-
ameter on simple graphs.
Definition 4. The diameter of a graph G is the longest
shortest path between any two vertices of G.

We assume coalitions are connected, since a discon-
nected coalition can improve everyone’s utility by split-
ting into its connected components, and that the input
graph is connected, since disconnected graphs can be an-
alyzed componentwise. We emphasize a coalition is de-
fined on the subgraph it induces on the original graph.

3 Social Welfare
We are interested in understanding the properties of
social welfare maximising structures in social distance
games. These structures can be viewed as the best out-
comes for the society overall. The next properties follow
immediately from the definition of the model.
Property 5. On complete graphs, the grand coalition is
the only welfare maximising coalition structure.
Property 6. The welfare of any coalition structure is
bounded by n− 1.

Note that the upper bound is only attained by the
grand coalition on complete graphs.

From Property 5, the grand coalition is welfare-
maximising on complete graphs. However, the grand
coalition is still welfare maximising on complete bipar-
tite graphs (such as a star), which can be significantly
sparser. In addition, complete bipartite graphs have di-
ameter two, and thus the grand coalition is both optimal
and gives utility at least 1/2 to each agent.



3.1 An Approximation of Optimal Welfare
Finding the optimal welfare partition can be shown to
be NP-hard on social distance games via a reduction
from Partition into Triangles. In this section we give
an algorithm to approximate optimal welfare within a
factor of two. The algorithm decomposes the graph into
connected components, such that each component has
diameter less than or equal to two, and no component
is a singleton. We call this type of partition a diameter
two decomposition of the graph.
Theorem 1. Diameter two decompositions guarantee to
each agent utility at least 1/2.

Proof. Let G be a graph, P a diameter two decomposi-
tion of G, C a coalition in P , and xi ∈ C an agent. Let
a and b the number of agents in distance one and two
from xi, respectively. The diameter of C is at most two,
hence |C| = a+ b+ 1. The utility of xi in C is:

u(xi, C) =
a+ b/2
|C|

=
2a+ b

2(a+ b+ 1)
(1)

C is not a singleton, thus xi has at least one direct neigh-
bour in C, and so a ≥ 1. Using Equation 1, we get
u(xi) ≥ 1/2.

The diameter two decomposition is an approximation
of optimal welfare that satisfies at the same time a notion
of fairness: every agent is guaranteed to receive more
than half of their best possible value. In general, welfare
maximising and core stable partitions do not necessarily
ensure that every agent receives at least 1/2.

Algorithm 1 Fair Approximation of Optimal Welfare
1: T ← Minimum-Spanning-Tree(G);
2: k ← 1;
3: while |T | ≥ 2 do
4: xk ← Deepest-Leaf(T);
5: Ck ← {Parent(xk)};
6: for all y ∈ Children(Parent(xk)) do
7: Ck ← Ck ∪ {y};
8: end for
9: // Remove vertices Ck and their edges from T

10: T ← T − Ck;
11: k ← k + 1;
12: end while
13: // If the root is left, add it to the current coalition
14: if |T | = 1 then
15: Ck ← Ck ∪ {Root(T )};
16: end if
17: return (C1, . . . , Ck);

Algorithm 1 finds a diameter two decomposition of the
graph. Let T be a minimum spanning tree of G. Iter-
atively remove stars from T , starting from the bottom
leaves. In each iteration i, let xi be a leaf of maximum
depth. Place xi and Parent(xi), the parent of xi, in the
same coalition Ci, together with all the direct children of
Parent(xi). The tree remains connected after each such

removal, since otherwise there must have been a leaf of
greater depth than xi. In the last iteration, k, there may
be only one node left, namely Root(T ), the root of the
tree. In that case, add Root(T ) to coalition Ck. Note
that Root(T ) is still distance at most two from all the
nodes in Ck. The algorithm has runtime O(n).
Corollary 1. The optimal welfare partition attains at
least n/2, where n is the number of vertices.

4 The Core
Group stability is an important concept in coalitional
games. No matter how many desirable properties a coali-
tion structure satisfies, if there exist groups of agents
that can deviate and improve their utility by doing
so, then that configuration can be easily undermined.
We investigate properties of the core in social distance
games.
Property 7. On complete graphs, the grand coalition is
the only core stable coalition structure.

There exist social distance games for which the core is
empty, such as the game in Figure 1. The grand coalition
is blocked by {1, 2, 4, 5}, partition ({0, 3}, {1, 2, 4, 5}) is
blocked by {1, 2, 3, 4, 5}. Similar examples exist for the
weak core. However, if the graph is a tree, the weak core
always exists and can be found in polynomial time.
Theorem 2. Algorithm 1 returns a weak core partition
when the graph is a tree.

4.1 Core Partitions are Small Worlds
A small world network is a graph in which most nodes
can be reached from any other node using a small num-
ber of steps through intermediate nodes [Jackson, 2008].
Small worlds in classical random graphs have an aver-
age path length of O(ln(n)), while scale-free networks
have a path length of O(ln(n)/ ln(ln(n))). Most real net-
works display the small world property, and examples
range from genetic and neural networks to the world
wide web [Barabasi and Oltvai, 2004]. In this model,
core stable partitions divide the agents into small world
coalitions, regardless of how wide the original graph was.
We obtained an upper bound of 14 on the diameter of
any coalition in the core. The tight bound is likely even
lower.
Theorem 3. The diameter of any coalition belonging to
a core partition is bounded by the constant 14.

Proof. Let C be a coalition belonging to a core partition.
Denote |C| = c, D the diameter of C, and x0, y two
agents with dC(x0, y) = D. Divide C into sets (C0 =
{x0}, C1, . . . , CD), with Ci = {z ∈ C|dC(x0, z) = i}, and
define A = C0∪C1∪. . .∪CbD4 c, B = CbD4 c+1∪. . .∪CbD2 c,
Γ = CbD2 c+1 ∪ . . .∪Cb 3D

4 c
, and ∆ = Cb 3D

4 c+1 ∪ . . .∪CD,
where |A| = α, |B| = β, |Γ| = γ, |∆| = δ, and α + β +
γ + δ = c.

Let x1 ∈ C1. Agent x0 is connected to all of C1,
and so it is connected to x1. C is in the core, thus
coalition {x0, x1} is not blocking, and so at least one of



x0, x1 obtains utility 1/2. Observe that agents x0 and
x1 prefer B, Γ, and ∆ to be small, because the agents
in those sets are distant and contribute to decreasing x0

and x1’s utility.

1
2
≤ max{u(x0), u(x1)} ≤ 1

c

(
α+

β

bD4 c
+

γ

bD2 c
+

δ

b 3D
4 c

)

≤ 1
c

(
α+

β

(D − 4)/4
+

γ

(D − 4)/2
+

δ

3(D − 4)/4

)
Denote D′ = D − 4 and assume D ≥ 8:

1
2
≤ 1
c

(
α+

4β
D′

+
2γ
D′

+
4δ

3D′

)
or equivalently,

α+ β + γ + δ ≤ 2α+
8β
D′

+
4γ
D′

+
8δ

3D′
(2)

Similarly, let xD ∈ CD. Agent xD can be directly
connected only to agents in CD and CD−1. There must
exist a path from x0 to xD that passes through CD−1,
thus there is xD−1 ∈ CD−1 neighbour of xD. Then

1
2
≤ max{u(xD), u(xD−1)} ≤ 1

c

(
δ +

γ

D − 1− b 3D
4 c

+

+
β

D − 1− bD2 c
+

α

D − 1− bD4 c

)
Use D′ to get simplified (coarser) bounds:
1
2
≤ max{u(xD), u(xD−1)} ≤ 1

c

(
δ +

4γ
D′

+
2β
D′

+
4α
3D′

)
or equivalently,

α+ β + γ + δ ≤ 2δ +
8γ
D′

+
4β
D′

+
8α
3D′

(3)

Summing Inequalities 2 and 3:(
2− 12

D′

)
(β + γ) ≤ 8

3D′
(α+ δ)

that is:
(D′ − 6)(β + γ) ≤ 4

3
(α+ δ) (4)

Finally, take the ”perspective” of the middle agents.
Let xbD2 c+1 ∈ CbD2 c+1. There is a path from xbD2 c+1 to
x0 that passes through CbD2 c

, thus there exists xbD2 c ∈
CbD2 c

connected to xbD2 c+1.

1
2
≤ max{u(xbD2 c), u(xbD2 c+1)} ≤ 1

c

(
β + γ +

4α
D′

+
4δ
D′

)
that is,

α+ β + γ + δ ≤ 2β + 2γ +
8α
D′

+
8δ
D′

if and only if
(D′ − 8)(α+ δ) ≤ D′(β + γ) (5)

Multiplying Inequalities 4 and 5, we get (D′ − 8)(D′ −
6) ≤ 4

3D
′. Solving for integer D′ and taking into account

that D ≥ 8, it follows that D′ ≤ 10, and so D ≤ 14.

Figure 2: The core and welfare maximising parti-
tions do not coincide. The core is ({x0, x1, x2, x3, x4}).
Welfare is maximised by ({x0, x1, x4}, {x2, x3}) and
({x0, x4}, {x1, x2, x3})

5 Stability Gap

We observed from the empty core game in Figure 1 that
maximum welfare partitions are not always stable, and
from Figure 2 that stable partitions do not necessarily
maximise welfare. We analyse the loss of welfare that
comes from being in the core using the notion of stabil-
ity gap [Brânzei and Larson, 2009]. The worst case and
best case performance of a core member are measured by
the minimum and maximum stability gap, respectively.
The stability gap parallels the prices of anarchy and sta-
bility [Nisan et al., 2007] and is defined for games with
non-empty cores.

Let P ∗ be a welfare maximising coalition structure and
PC a member of the core. In the best case, PC is also
a welfare maximiser. Since it is possible that no core
member attains the welfare of P ∗, the quantity

Gapmin(G) =
SW (P ∗)

minP∈Core(G) SW (P )

measures the worst case ratio. We show the worst case
bound for the stability gap of social distance games is
Θ(
√
n). In order to get the bound, we use a few lemmas.

Lemma 1. If an agent has utility greater than 1/2 in
a coalition, then all its direct neighbours from the same
coalition have utility at least 1/4.

Lemma 2. If P is a partition in the core and x, y two
agents adjacent in G, then at least one of x, y attains
utility greater than or equal to 1/2 in P .

Corollary 2. The welfare of any non-singleton coalition
in a core stable partition is at least 1/4 of the maximum
possible for that coalition.

Theorem 4. Let G = (N,E) be a game with nonempty
core. Then Gapmin(G) is in worst case Θ(

√
n).

Proof. Let partition P ∗ be welfare maximising and P =
(C1, . . . , Ck, S1, . . . , Ss) in the core, where ci ≥ 2, i =
1, k, and |Sj | = 1, j = 1, s. Let Ti, Di, and Fi denote
the sets of agents in Ci with utilities strictly greater than
1/2, equal to 1/2, and strictly less than 1/2, respectively.
Denote ti = |Ti|, di = |Di|, fi = |Fi|, and ci = |Ci|. The
sets Ti, Di, and Fi are disjoint, Ti is non-empty, and
Ti ∪Di ∪ Fi = Ci.

From Lemmas 1 and 2, each singleton Si can only be
connected to agents in T1, . . . , Tk. In addition, u(xij) ≤



ci−1
ci

, ∀xij ∈ Ti ⊂ Ci. Thus each such xij can be con-
nected (in G) to at most ci−1 singletons, because other-
wise xij and the singletons would form a blocking coali-
tion. The number of singletons, s, satisfies the inequal-
ity: s ≤

∑k
i=1 ti(ci − 1). With Corollary 2 this gives:

Gapmin(G) ≤ SW (P ∗)
SW (P )

=
SW (P ∗)∑k

i=1 SW (Ci, P )
<

n(∑k
i=1 ci
4

) =
4n
n− s

Consider n fixed and find an upper bound for s, which
in turn gives an upper bound for 4n

n−s . Observe that
each agent in coalition Ci has at most ci − 2 singletons
connected to it, thus Ci has at most ci(ci−2) singletons:

s ≤
k∑
i=1

ci(ci − 2) ≤
k∑
i=1

c2i ≤ (
k∑
i=1

ci)2 = (n− s)2

From s < n and s ≤ (n − s)2, it follows that s ≤
n−
√
n+ 1/2, and so:

Gapmin(G) ≤ 4n
n− s

≤ 4n√
n− 1/2

∈ O(
√
n)

To complete the proof, we give a Θ(
√
n) example. Let

G be such that N = C ∪S, C = {x1, . . . , xc} is a clique,
S = {y1, . . . , ys} an independent set, with |C| = c and
|S| = s. In addition, each agent y ∈ S is connected to
exactly one x ∈ C, and each x ∈ C has exactly c − 2
direct neighbours in S, which we denote as S(x). Thus
s = c(c−2), and so n = c2−c. Note that while n cannot
be any integer, there are arbitrarily large n of this form.
Solving for c gives

c =

√
n+

1
4

+
1
2

(6)

The optimal welfare partition, P ∗, is such that each
agent x ∈ C forms a coalition with its set S(x). Agent x
has utility c−2

c−1 , while each agent in S(x) gets 1/2. Thus,

SW (P ∗) = c

(
c− 2
c− 1

)
+ c(c− 2)

1
2

=
(c− 2)c(c+ 1)

2(c− 1)

Partition P ∗ is not stable because C is blocking, but
P = (C, {y1}, . . . , {ys}) is in the core. Each agent in C
gets c−1

c , while everyone in S obtains zero:

SW (P ) =
∑
x∈C

c− 1
c

= c− 1

Using Equation 6, Gapmin(G) = (c−2)c(c+1)
2(c−1)2 ≈

√
n− 1 ∈

Θ(
√
n).

Better bounds for the gap can be obtained depending
on the underlying graph model. Here we consider dense
graphs, which are common in social networks, and show
their stability gap is small.

Theorem 5. The stability gap of every graph with m
edges, where

m ≥
(

1− ε2

2

)
n2 −

(
1− ε

2

)
n (7)

is at most 4
1−ε , where ε ∈ [0, 1].

Proof. For ε = 0, the inequality simply states that the
number of edges is non-negative. For ε = 1, it requires
that the graph is complete: m ≥ n(n−1)

2 .
We observe that the singletons in the core form an in-

dependent set, since otherwise they could organize them-
selves into coalitions and improve their welfare by doing
so. Let α be the the independence number of the graph.
From the fact that a graph with independence number
α has at most m ≤

(
n
2

)
−
(
α
2

)
edges, it follows that α

satisfies the inequality α ≤ 1
2 +

√
1
4 + n(n− 1)− 2m

From Inequality 7, we get that α ≤ εn, and so any core
configuration has at most εn singletons. From Corro-
lary 2, the welfare of the remaining (1 − ε)n agents is
at least 1−ε

4 n, and so the gap is bounded as follows:
Gapmin(G) < n

(1−ε)n/4 = 4
1−ε .

The Erdős-Rényi random graph model is perhaps the
best known and widely studied method for generating
random graphs [Diestel, 2005].
Theorem 6. The expected stability gap of graphs gen-
erated under the Erdős-Rényi G(n, p) graph model is
bounded by 4

1−2 log(n)/n whenever p ≥ 1/2.

Proof. It is known that the expected independence num-
ber of G(n, 1/2) graphs is α ≤ 2 log(n), and in general,
G(n, p) graphs have α ≤ 2 log(n) whenever p ≥ 1/2.
Then the gap can be bounded as follows: Gapmin(G) <

n
(n−2 log(n))/4 = 4

1−2 log(n)/n .

6 Alternative Solution Concepts

From Theorem 4, the stability gap can be as high as
Θ(
√
n). In this section we consider several variations of

the core with improved social support.

6.1 Stability Threshold
Recall that an agent achieves his best possible utility in
a coalition with his direct neighbours and no-one else.
Moreover, the improvement function satisfies diminish-
ing returns, and so the higher an agent’s utility, the
harder it is to improve it. The stability threshold is de-
scriptive of situations where agents naturally stop seek-
ing improvements once they achieved a minimum value.
This is a well-known assumption observed experimen-
tally as a form of bounded rationality: choosing out-
comes which might not be optimal, but will make the
agents sufficiently happy.

We analyse stability for a threshold of k/(k+1), which
is equivalent to an agent forming a coalition with k of
his direct neighbours. In this case, there can be at most
k − 1 singletons neighbouring any agent with utility at



least 1/2 in the core, since otherwise the singletons can
block with that agent.
Theorem 7. Let G = (N,E) be an induced subgraph
game with nonempty core of threshold k/(k + 1). Then
Gapmin(G) ≤ 4 if k = 1, and Gapmin(G) ≤ 2k if k ≥ 2.

6.2 The “No Man Left Behind” Policy
From Corollary 2, the core guarantees average utility
greater than 1/4 to every non-singleton coalition. Thus
the reason for which the core welfare can be low is
because there exist networks in which many agents are
left alone in equilibrium.

Here we view the formation of core stable structures as
a process that starts from the grand coalition and stabi-
lizes through rounds of coalitions splitting and merging.
While the search for equilibrium can begin from any
partition, we observe that initializing with the grand
coalition is natural in many situations. For example,
at the beginning of any joint project, a group of people
gather to work on it. However, as the project progresses,
they may form subgroups based on the compatibilities
and strength of social ties between them. We formulate a
simple social rule that agents have to follow when merg-
ing or splitting coalitions. That is, whenever a new group
forms, it cannot leave behind any agent working alone.
We call this rule the “No Man Left Behind” policy. The
“No Man Left Behind” code of conduct is well known
in the army and refers to the fact that no soldier can be
left alone in a mission or abandoned in case of injury.
Theorem 8. Let G be a game which is stable under the
“No Man Left Behind” policy. Then Gapmin(G) < 4.

7 Discussion and Related Work
This paper is a step in the direction of understanding
network interactions from the perspective of coalitional
game theory. We formulated an intuitive mathematical
model, analysed its welfare and stability properties,
gave an approximation of the optimal welfare, and
showed that core stable structures have small world
characteristics. We studied the efficiency of the core and
studied two solution concepts with improved welfare
guarantees. This work can be extended in several
ways. We would like to look at power indices and see
how the degree and position of a node in the network
are correlated with the welfare of that node in the
equilibrium. It would be interesting to characterize the
extent to which a node contributes to social welfare or
to stabilizing the game, and to identify stabilizers in
existent networks. It also remains to be determined
whether stable structures are small worlds under general
utility functions that reflect homophily.

Social distance games are a compact model that can be
placed in the general context of hedonic games [Bogomol-
naia and Jackson, 2002]. Alon et al. [Alon et al., 2010]
propose a graph-based model and uncover the relation-
ship between the existence of Nash equilibrium and the
graph’s diameter. Bloch and Jackson [Bloch and Jack-
son, 2004] analyse network formation games among play-

ers whose payoffs depend on the structure of the network,
using the stability notions of Nash equilibrium and pair-
wise stability. In their formulation, players derive utility
from forming links to other agents in the network, but
have to pay explicitely for maintaining those links. Jack-
son and Wolinski [Jackson and Wolinski, 1996] study a
model in which agents are researchers working on several
common projects, and the utility of an agent is a function
of the number of projects they collaborate on. Aadithya
et al. [Aadithya et al., 2010] propose efficient algorithms
for computing a Shapley value-based network centrality.
Finally, there exists a rich body of literature investigat-
ing the small world phenomenon and the properties of
the networks in which it occurs [Kleinberg, 2000].
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